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Abstract

Background: As Pandemic (H1N1) 2009 influenza spreads around the globe, it strikes school-age children more often than
adults. Although there is some evidence of pre-existing immunity among older adults, this alone may not explain the
significant gap in age-specific infection rates.

Methods and Findings: Based on a retrospective analysis of pandemic strains of influenza from the last century, we show
that school-age children typically experience the highest attack rates in primarily naive populations, with the burden
shifting to adults during the subsequent season. Using a parsimonious network-based mathematical model which
incorporates the changing distribution of contacts in the susceptible population, we demonstrate that new pandemic
strains of influenza are expected to shift the epidemiological landscape in exactly this way.

Conclusions: Our analysis provides a simple demographic explanation for the age bias observed for H1N1/09 attack rates,
and suggests that this bias may shift in coming months. These results have significant implications for the allocation of
public health resources for H1N1/09 and future influenza pandemics.
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Introduction

In March 2009, a new A/H1N1 influenza strain (Pandemic

(H1N1) 2009 Influenza or H1N1/09) emerged in humans in

Mexico and by early June 2009, the World Health Organization

(WHO) had raised the worldwide pandemic alert level to signal a

global pandemic of a novel influenza virus. Since the WHO

declaration of a pandemic, the new H1N1/09 virus spread across

the globe, causing epidemics in most countries [1]. The U.S.

Centers for Disease Control and Preventions (CDC) has estimated

that there were approximately 55 million infections, 246,000

hospitalizations, and over 11,000 deaths due to H1N1/09 by

December 2009 [2]. The 2008–2009 seasonal influenza vaccine was

determined to be ineffective against the new strain; however, older

individuals who were previously infected by another H1N1 strain

circulating prior to 1957 were less likely to develop clinical infection

[3,4,5]. Multiple manufacturers have successfully developed

monovalent vaccines for H1N1/09, but production delays meant

that widespread vaccination did not occur until late Fall 2009,

permitting the virus to spread widely in the Northern Hemisphere.

Influenza is a complex and continually changing disease that

infects individuals of all ages. In contrast to diseases like measles

and rubella, the dynamics of influenza are strongly influenced by

the evolution of immunological properties of the pathogen [6].

The epidemiological landscape of flu is dynamically shaped by

cycles of naturally-acquired immunity (through infection) and

immune escape (through viral evolution). Based on data from prior

influenza pandemics and a simple network-based mathematical

model, we argue that, for a newly introduced strain of influenza,

this process will cause a shift in the demographic burden of

influenza from children to adults. Our analysis also has important

implications for the decision making process that sets priorities for

both U.S. and global influenza vaccine allocation. We echo our

previous conclusions that high-risk groups should receive highest

priority and direct protection when vaccine supplies are limited

[7]. However, secondary efforts should focus on indirect protection
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of groups with greatest potential for infection, whose identities may

change over time.

Methods

Population Model
Influenza spreads during close contacts between susceptible and

infected individuals. The likelihood of a person becoming exposed

to disease will strongly depend on the number and intensity of his

or her interactions [8,9,10,11,12]. To study the combined impact

of complex interaction patterns and infection-induced immunity

on the demographic progression of pandemic influenza, we use

network models in which individuals are represented as nodes, and

edges connecting nodes represent disease-causing interactions, or

contacts, which may occur between individuals during an infectious

period. The number of edges for a given node is known as the

node’s degree, and the probability distribution of degrees over all

nodes is referred to as the degree distribution.

Our network model represents an urban area population and is

based on data for the city of Vancouver, British Columbia [9]. We

model the interaction patterns relevant for the spread of influenza

in the population via a data-driven, activity-based contact network

model. Each person is assigned an age based on census data from

the city of Vancouver, British Columbia, and age-appropriate

activities (e.g. school, work, nursing home, etc.) Contacts among

individuals reflect household size, employment, school and

hospital data also from Vancouver. (More details can be found

in [7,9].) School-age children are defined as 5–18 year olds and

adults are assumed to be between 19 and 64 years of age. The

emergent age-specific contact patterns of our model closely

resemble other empirical estimates (Figure 1), and parsimoniously

incorporate individual-level heterogeneity.

Modeling Immunity and Second Season Dynamics
We assume that an infected node will infect a susceptible

contact with a given probability (known as transmissibility) that

depends on both the infectiousness and susceptibility of the nodes.

Once infected, a node cannot be reinfected during the same

outbreak and will have resistance to infection during the

subsequent season (Figure 2). The cross-immunity in the second

season is assumed to be partial and we use a to represent the loss of

immunity from one season to the next (a~0 is full immunity

against future infection, a~1 is complete loss of immunity, and

intermediate values correspond to partial immunity). For influenza

A, natural immunity acquired in one epidemic tends to be

heterotypic for the second epidemic appearance of the virus,

though several studies have shown that individuals infected by

influenza A can be reinfected by antigenically similar strains

during the following seasons. An estimated 8% of individuals who

were infected in the 1918–1919 Spanish flu pandemic were

reinfected in January–February 1920 [13]; and the relative risk for

clinical illness during the second wave of the 1918 pandemic after

infection in the first wave was estimated to be as low as 6% in U.S.

Army personnel camps (but was found to be as high as 51% in one

of the camps) [14]. Similar rates of reinfection have been estimated

for the 1968 Hong Kong influenza pandemic [15,16]. Generally,

Figure 1. Estimated age-specific contact rates in an urban population. We compare six estimates for the mean degree by age of individuals
(left panel) and the mean degree across the population (right panel). Meyers et al. [9] and Eubank et al. [44] are model-based estimates in which
survey, census and other data were used to construct detailed computer simulations of contact patterns in Vancouver, BC and Portland, OR,
respectively. The remaining four sets of estimates [40,41,42,43] are inferred from responses to survey questions about the frequencies of (a) two-way
conversations lasting three or more words in the physical presence of another individual, and (b) a physical contacts which involve skin-to-skin
contact. The Wallinga study includes only conversational contacts, while the Mossong, Read and Beutels studies include both contact types. The Read
and Beutels studies only include adults. Our model (based on [9]) measures contacts during an average infectious period, while the remaining studies
measure daily contacts.
doi:10.1371/journal.pone.0009360.g001
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immunity loss for influenza A has been estimated at 5% per year

[17], and an estimated 7.4% of previously infected individuals

become fully susceptible within one year [18]. Should H1N1/09

produce a second wave of transmission, these studies of prior

pandemic strains suggest that a will likely lie somewhere between

0:05 and 0:10. Following infection, antibodies that recognize

influenza surface antigens, hemagglutinin and neuraminidase,

persist and are associated with resistance to reinfection [19]. There

is evidence that anti-hemagglutinin (HA) antibodies limit reinfec-

tion by antigenically similar strains of influenza [20,21] and anti-

neuriminidase (NA) antibodies significantly reduce virus replica-

tion and release if reinfected [22,23]. Thus, our model assumes

that cross-immunity reduces both susceptibility and infectiousness

by a factor a.

Most empirical studies measuring immunity to influenza

measure a reduction in infection rate at the population scale.

Thus, we model the spread of influenza in a partially immune

population assuming perfect partial immunity, using empirical

data for infection-acquired immunity to influenza described above.

Perfect partial immunity implies that for a level of loss of partial

immunity a, a proportion 1{að Þ of the previously infected

population is completely protected, while the remaining a are fully

susceptible. (If empirical data on leaky partial immunity for

influenza is available, the network-based model described in [24]

can be used instead.)

To consider disease dynamics beyond the initial pandemic

period, we have developed a mathematical approach based on

percolation methods. The standard bond percolation model [25]

assumes no pre-existing immunity, thus is an appropriate model

for the spread of a novel influenza strain. Using this method to

model the spread of influenza in a naive population, we can define

a residual network, which is the relevant contact network for a

subsequent outbreak caused by the same pathogen in the same

population. The residual network is made up of individuals who

were not infected in the initial epidemic, a proportion a of whom

were infected but have lost immunity since infection and the edges

joining them. We describe the residual network via its degree

distribution, pres(kr), or the probability that a (susceptible)

individual in the residual network has kr contacts with other

(susceptible) individuals in the residual network (which we derive

in Text S1) [24]. Given the transmissibility of the second season

pathogen, T2, (which may or may not be different than the

transmissibility of the first season pathogen), we use bond

percolation techniques to predict the consequences of a second

season spread of infection.The relationship between transmissibil-

ity T1ð Þ and the reproductive number in a naive population R0ð Þ
is described by:

R0~T1
Sk k{1ð ÞT

SkT
~T1

P
k k k{1ð Þp kð ÞP

k kp kð Þ

where p kð Þ is the degree distribution in the naive population.

Similarly, the effective reproductive number in the partially

immune population Reð Þ is described by

Re~T2
Skr kr{1ð ÞT

SkrT
~T2

P
k k k{1ð Þpres kð ÞP

k kpres kð Þ :

An individual will be susceptible to infection in the second

season if they were not infected in the first season or if they were

infected and have lost immunity (with probability a). Thus, the

probability that a node of degree k is susceptible to infection in the

second season is equal to:

S kð Þ~ 1{T1zT1u1ð Þkza 1{ 1{T1zT1u1ð Þk
� �

where, T1 is the transmissibility of the first season influenza strain

and u1 is a quantity that can be calculated from bond percolation

techniques and depends on both the population’s contact structure

as well as the transmissibility of the pathogen [25]. Also, the

probability of infection in the second season to an individual of

residual degree kr (number of edges in the residual network)

can be computed as 1{ 1{T2zT2u2ð Þkr
� �

, where T2 is the

transmissibility of the second season influenza strain, and u2 is a

quantity that can be calculated from bond percolation techniques.

We can combine these two quantities to find the risk of infection to a

node of (original) degree k in the second season:

R kð Þ~S kð Þ
X

kr

pres krDkð Þ 1{ 1{T2zT2u2ð Þkr
� �

where, pres krDkð Þ is the probability that a node will have residual

degree kr, given that it has a degree of k before the first season

(and is derived in Text S1) [24]. The values for risk of infection for

the second season shown in Figure 3 were calculated using the

above formulation, and verified by comparison to stochastic

simulations (not shown). Stochastic simulations for this verification

Figure 2. Changing immunological structure of a population throughout an influenza pandemic. Lines in these network diagrams
indicate contacts through which influenza can spread. Prior to the introduction of a novel pandemic strain, most of the population is susceptible. The
pandemic initially sweeps through the most connected portions of the populations, including groups of school-age children, leaving a wake of
temporarily immunized individuals. The remaining susceptible population will consist of less connected portions of the population.
doi:10.1371/journal.pone.0009360.g002
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and Figure 3(A) assumed a simple percolation process with T1 and

T2 as described.

Vaccination Priorities
In contrast to studies assuming instantaneous pre-exposure

vaccination of target groups [26], we model vaccination priorities

by randomly selecting individuals within a given priority group

(e.g. school-age children) to be vaccinated prior to the start of a

second season of the novel strain. We assume a coverage rate of

15% for the entire population, which resembles current H1N1/09

pandemic vaccine uptake [27] and allows for straightforward

comparison across different vaccination strategies. We also model

cross-immunity from exposure to pre-1957 H1N1 strains of

influenza by ‘‘pre-immunizing’’ a randomly chosen subset of

adults (9%) and elderly (33%) [5]. Vaccine efficacy for the

remaining non-immune population is assumed to be 100% for all

age groups, based on high seasonal influenza vaccine efficacy rates

in the target groups of this study (school-age children and adults)

[28] and initial evidence for a robust immune response with the

monovalent 2009 H1N1 vaccine [29,3].

Results

Evidence for a Fluctuating Landscape
Pandemic influenza is feared for its severe excess mortality [30].

Mortality rates vary significantly, and depend on both viral strain

and the age of the person infected. For most seasonal and

pandemic flu, the elderly and very young are at highest risk for

severe disease; however, the 1918 Spanish flu pandemic is believed

to have been deadliest for 20–40 year olds [31]. Influenza

morbidity and attack rates also vary among strains and

demographic groups. Epidemiological studies and conventional

Figure 3. Attack rates among adults and children during influenza pandemics and subsequent seasons. Multiple bars for a single strain
represent data from different populations. Data are from a: [62], b: [61], c: [66], d: [67], e: [68], f: [69], g: [70], h: [71], i: [72], j: [73], k: [74], l: [38]. Numbers
above bars represent odds ratios. While there are consistent qualitative patterns, the estimates are based on diverse data and methodologies and
thus should not be compared quantitatively across studies. The 1968 Hong Kong H3N2 pandemic is the only one of the four strains that does not
appear to have an initial bias towards children, which may be influenced by cross immunity from prior H2N2 infections as the two viruses shared
nearly identical neuriminidase molecules [75]. Data for H1N1/09 is reported as number of confirmed cases as a proportion of age group size in the
respective country.
doi:10.1371/journal.pone.0009360.g003
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wisdom suggest that school children have the highest attack rates

and ultimately fuel transmission throughout the community

[32,33,34,35,36]. Data from the three known influenza emergence

events in the twentieth century initially show this bias towards

school-aged children (Figure 3). When we look beyond the initial

pandemic period, however, the age-specific attack rates reverse,

with the probability of infection in adults exceeding that of

children.

Data from H1N1/09 outbreaks thus far reveals a similar initial

discrepancy in attack rates (Figure 3, [37,38]). There is mounting

evidence that cross-immunity from exposure to prior strains may

be protecting older adults [5], as has been suggested for infection

with the 1918 influenza strain [39]. However, there is a simple and

complementary explanation for the differences in attack rates and

subsequent age shifts that is based on the heterogeneous contact

patterns underlying the spread of influenza.

Several diverse studies have estimated the distribution of contact

patterns among age groups, primarily in urban populations

[40,41,42,43,44]. Although the studies use different definitions of

contact and contact rate, all but one suggest that children have the

highest numbers of contacts followed by adults (Figure 1). Basic

epidemiological theory suggests that, in the absence of intervention

and cross-immunity, children should therefore have the highest

attack rates [45,46,9]. As infection-induced immunity accumulates

among the highly connected individuals, however, the infection

cascades into other parts of the population [47,48,24]. In fact,

stochastic simulations of disease transmission illustrate that even

within a single influenza outbreak, the burden of disease shifts

from children to adults as disease progresses from the most

connected to more moderately connected portions of the

population (Figure 4(A)).

Using our mathematical model, we calculate the expected age-

specific attack rates in the first and second seasons given the

contact structure of the network (its degree distribution), the

infectiousness of the strain, and the level of partial immunity from

one season to the next. We find that the attack rate shifts shown in

Figure 3 are a natural outcome of the contact patterns described in

Figure 1. Intuitively, the likelihood of becoming infected during

the initial phase of the pandemic increases with number of

contacts. However, if the strain makes a second appearance, then

the relationship between contact patterns and epidemiological risk

is altered by immunity acquired during the initial outbreak

(Figure 4(B)). When the population is fully susceptible, the highest-

degree nodes are most at risk for infection; and thus are likely to be

protected against reinfection. In a partially immune population,

while individuals with very few contacts maintain low levels of risk,

moderately connected individuals become the most vulnerable

subset of the population. This transition is expected to be more

pronounced if high levels of immunity are maintained by

individuals infected during the initial outbreak (Figure 4(B)), and

for strains with higher reproductive numbers (Text S1). These

patterns are also expected to occur in populations with different

contact and demographic structures (Text S1).

If the reproductive number in the first season is R0~1:6 (as has

been estimated for H1N1/09 [37,49]), our model suggests that the

returning strain will only invade if it is more transmissible (higher

Figure 4. Individual risk of influenza infection during two sequential outbreaks. (A) During the initial pandemic season, we notice a shift in
the attack rate (the number of new cases during a week in an age group divided by the size of the age group). The attack rate among children is
initially higher than the attack rate among adults, but this reverses after the epidemic peak. (B) During the initial pandemic, all individuals are
susceptible, and risk of infection (defined in Methods) increases with number of contacts (dashed brown line, and right y-axis). During a subsequent
outbreak the epidemiological risk landscape shifts towards moderately connected individuals, depending on the the level of immunity (green lines,
and left y-axis) for T1~0:09 R0~1:6ð Þ and T2~0:15 Re~1:05,1:16ð Þ. (C) The degree distributions for school-age children (mean degree of 21.5) and
adults (mean degree of 16.1) in our urban population network model. The bimodal adult degree distribution reflects heterogeneities in adult
employment status.
doi:10.1371/journal.pone.0009360.g004
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probability of transmission per contact) than the original strain;

however, because of a reduced number of contacts among

susceptible individuals, its effective reproductive number may be

considerably lower than the original strain (Text S1). Higher

transmissibility can occur if the pathogen evolves to be more

infectious [50,51] or if the social structure changes to enhance

transmission, for example, with the commencement of school or

relaxation of social distancing measures. Children tend to have

higher numbers of contacts than adults (Figure 4(C)) (who

combined make up more than 80% of the population in most

developed nations). Thus Figure 4 suggests that the burden of

disease is expected to shift from school-age children to adults both

during the initial pandemic and between the initial pandemic and

the subsequent season, which is consistent with the patterns

observed during the three influenza pandemics of the twentieth

century (Figure 3).

Implications for Vaccination
The vaccination of school-age children has been suggested as an

effective influenza control strategy [52,34,53,54]; and school-age

children are among the U.S. CDC’s H1N1/09 vaccination

priority groups [55]. Since school children are thought to be

critical transmitters of flu, immunizing them can break potential

chains of transmission before they reach the greater community.

This strategy, however, hinges on the primacy of school-age

children in influenza transmission and the general idea that the

likelihood of catching and spreading flu is proportional to one’s

number of contacts [56,57,58,7]. However, our study illustrates

that naturally-acquired immunity may restructure the population

so that the most highly connected individuals are no longer the

most vulnerable nor the most likely to transmit infection. Thus the

optimal vaccination strategy may depend on the recent epidemi-

ological history of the population. For example, we consider a

scenario of 15% overall pandemic vaccination coverage and

consider two allocation strategies: (i) vaccinate a random subset of

children (who are highly connected) or (ii) vaccinate a random

subset of adults (who are moderately connected) (Figure 5). This

analysis is meant to explore whether vaccination strategies to

minimize transmission should shift as the disease alters the

immunological structure the host population; and we do not

explicitly consider other outcome measures such as mortality,

years of life lost or economic costs [7,26,59].

Vaccination reduces the size of the epidemic through both

direct protection of 15% of the population and indirect protection

of others through partial herd immunity. Figure 5(A) shows that

during the initial phase of pandemic spread, when the population

is fully susceptible, it is more effective to vaccinate children than

adults. This prediction reverses for a second season, with adult

vaccination more effectively reducing total cases than school-age

vaccination. We find this reversal despite the smaller proportion of

adults that are covered by vaccination compared with school-age

children. We further consider the impact of resistance from

exposure to prior strains of the same subtype among older adults

(Figure 5(B)). In particular, there are estimates that 9% of adults

and 33% of elderly are resistant to H1N1/09 from H1N1

infections prior to 1957 [5]. Even with historical cross-immunity,

adult vaccination is expected to be more effective than school-aged

vaccination in the second season.

Discussion

Influenza transmission is constrained by contact patterns, which

are influenced by individual behavior and sociological events. For

example, the early transmission of H1N1/09 in Mexico City was

likely hampered by the closing of schools for the two-week Holy

Week period and the subsequent implementation of social

distancing interventions including school closures [49]. These

events prevented contacts that typically take place within schools

that are thought to be pivotal to spread of flu through communities

[54,53].

The reverse is also true: the dynamics of infectious diseases can

dramatically alter the structure of a host population. Outbreaks of

fully immunizing diseases like measles permanently remove cases

from the susceptible fraction of the population. Influenza, along

with many other partially immunizing diseases such as RSV,

pertussis and rotavirus, provides temporary incomplete immunity.

Individuals fade in and out of the epidemiological active portion of

the population as they become infected and slowly regain

susceptibility to future infection. When a novel influenza strain

emerges into a pandemic, it works its way through the population,

preferentially infecting and thus immunizing individuals with high

Figure 5. Comparison of vaccination policies. (A) The impact of school-aged and adult vaccination priorities at 15% vaccine coverage in a naive
(‘‘Season 1’’) and partially immune population (‘‘Season 2’’) population at a~0:05: (B) The impact of these policies assuming pre-existing resistance
among adults (9%) and elderly (33%) acquired through exposure to a strain of the same subtype prior to 1956. The first season pathogen has a
reproductive ratio of Ro~1:6 T1~0:09ð Þ and the second season pathogen has an effective reproductive ratio of Re~1:05 T2~0:15ð Þ.
doi:10.1371/journal.pone.0009360.g005
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numbers of contacts. It essentially prunes the underlying contact

network by removing highly connected individuals and all of their

connections. If the strain reemerges in the following season, it faces

much sparser chains of susceptible individuals, in which spread is

more limited and new groups are expected to bear the brunt of the

epidemic. Our simple network-based mathematical model eluci-

dates this phenomenon by both incorporating the heterogeneous

distribution of contacts among age groups and tracking the

changing immunological structure of the population from one

season to the next [12,24].

This model does not consider variability in contact patterns due

to seasonality, nor do we account for demographic processes such

as births, deaths, and aging. We have found, however, that

population aging has minimal impact on network structure or

disease dynamics across levels of immunity (Text S1). We also have

not addressed the dynamics beyond two seasons and believe that,

while the relative risks will continue to change, we cannot simply

extrapolate our results to future seasons.

When schools are in session, school children tend to have the

highest numbers of contacts among all age groups [40,60].

Consequently, they often form the leading edge of a pandemic

[61,62,37]. Adults tend to have lower numbers of contacts and

thus lower risk of infection, although they play an important role

in spatially dispersing infection [63]. Based on estimated contact

patterns, our network model suggests that attack rates for a novel

strain of influenza should initially be biased towards children and

then shift towards adults. This is consistent with estimated attack

rates for the three major pandemics of the 20th century (with the

exception of the initial 1968 pandemic season).

This analysis suggests that we might experience a shift in

H1N1/09 age-specific infection risks (and thus potential for

infecting others) over the next 12 to 24 months, and that the

optimal distribution of vaccines and other public health resources

may change throughout this period. Early data from the Fall wave

of the H1N1/09 outbreak in the United States already shows a

trend towards a decrease in cases in school-age children [64].

School-aged children were given the highest priority for the

earliest available H1N1/09 vaccines in the U.S. [55]. Although

the vaccines are now widely available to all age groups, adherence

is quite low [27]. Our results suggest that public health efforts to

increase vaccination rates should perhaps be directed towards

adults in the coming months.

Although our study does not explicitly consider the important

option of prioritizing groups at high risk for mortality, we echo our

previous claim ([7]) that high-risk groups and critical personnel

should receive highest priority when vaccine supplies are limited.

Secondary efforts should focus on groups with greatest potential

for becoming infected and infecting others in order to maximize

indirect protection. For seasonal influenza, the high risk age

groups (elderly and infants) are distinct from the high transmission

age group (school-age children). However, during the second

season following a pandemic these priorities may align. In prior

pandemics, the highest-risk age groups were young healthy adults

(1918) or elderly and infants (1957 and 1968) [65]. Thus, in a

partially immune population, prioritizing adults, elderly and

infants may not only provide indirect protection by achieving

the greatest herd immunity but also directly protect those at risk of

complications or death. Our study thus highlights the need for

dynamic public health policy– designing priorities that shift along

with the epidemiological structure of a population.

Supporting Information

Text S1 Supporting methods and analysis.

Found at: doi:10.1371/journal.pone.0009360.s001 (0.42 MB

PDF)
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