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Abstract

Background: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable
populations. The gradient has often been attributed to changes in the interactions between microtines and their predators.
Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species,
it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding
season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating
population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in
the field. The distinction is here attempted using realistic agent-based modelling.

Methodology/Principal Findings: By using a spatially explicit computer simulation model based on behavioural and
ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities
whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical
autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of
altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the
presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator
assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the
oscillations.

Significance: There is good agreement between our results and the experimental work from Fennoscandia, but our results
allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the
reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape
fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in
future analyses of vole dynamics.
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Introduction

Microtine populations in Fennoscandia displays a wide range of

population dynamic patterns, shifting along a north-south gradient

from persistent multi-annual fluctuations of 3–5 years in the north,

to stable populations in the south [1–5]. The predominant length

of the cyclic period and the amplitude of the multiannual fluc-

tuations both increase toward the north [1,6]. Analysis of time

series data of rodents in Fennoscandia have shown that the latitu-

dinal gradient in microtine dynamics is caused by an underlying

cline in the strength of direct density dependence [6–8]. Why some

microtine populations exhibit multiannually cyclic density fluctu-

ations, while others do not, remains one of the classical problems

in ecology (e.g. [2,5,9,10]).

Examination of the multiannual fluctuations has shown that

they are a result of a ‘second order’ process [6], that is, they reflect

the combined effects of direct and delayed density-dependent

processes. The populations are influenced by factors that are a

function of the current population density and by factors that are

a function of population densities in the past. Direct density-

dependent mechanisms tend to stabilise populations, making them

less prone to multiannual fluctuations, whereas delayed density-

dependent mechanisms do the opposite [11,12]. Several biological

mechanisms are able to produce negative direct density-depen-

dence in rodent populations. One such is crowding leading to

competition for space and territories, which has been widely

recorded in small mammals [13,14]. Positive direct density de-

pendence can occur at low population densities, where e.g. mate

search becomes more efficient as population densities increase,

generating a positive correlation between population density and

population growth rate [15–17]. Delayed density dependence

refers to the time-delayed regulatory effect of past population

densities on the reproduction and survival of individuals. It is often

interpreted as a sign of trophic interactions, because lagged
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feedback can readily arise from specialist predator-prey or

consumer-resource interactions [18,19].

A large number of hypotheses have been proposed to explain

population cycles and the geographical gradients in density depen-

dence, cycle length and amplitude (for reviews see e.g. [7,9,20]).

Yet there exists no consensus about what causes these cycles. One

of the hypotheses which has received considerable support is the

‘predation hypothesis’, which suggests that the delayed density-

dependent effect in the northern populations are generated by a

strong numerical response of stationary specialist predators, such

as mustelids, which respond to changes in prey densities with a

delayed reproductive output [1,21]. The fluctuations are damp-

ened towards the south by an increased density and diversity of

generalist predators [1,22,23]. The generalist predators display a

functional or migratory response to changes in prey density, and

can switch between prey species. The response of these predators

to altered prey abundance is nearly instantaneous and does not

produce delayed density dependence [1,3,22,24]. Thus if only

generalist predators are present, the direct density dependent

processes should be sufficient to describe the dynamics [6,7]. How-

ever, the predation hypothesis explicitly incorporates the presence

of specialist predators throughout the region. According to the

predator hypothesis, specialist predators are thought to cause the

fluctuations, whereas generalist predators are considered the cause

of the north-south gradient [1,3,22,24,25]. However recent work

suggests that specialist predation may not be necessary for large-

scale fluctuations and that these may be generated by other factors

depending on their geographical location [26,27].

The gradient in cycle length and amplitude may also be

influenced by landscape heterogeneity. In Fennoscandia, large

tracts of continuous habitat dominate northern areas, whereas the

south is characterised by a heterogeneous agricultural landscape

[28]. Since both predator and prey populations’ intraspecific

interactions are influenced by landscape heterogeneity [29–32],

their interspecific interactions are likely to be altered too. Con-

sequently, both direct and delayed density dependence may be

affected by habitat fragmentation. This has received attention in

some studies [33,34]. A spatially diverse landscape makes it more

difficult for a predator to control its environment and potentially

decreases the degree of synchronisation between patches, by

allowing prey outbreaks to remain undiscovered by predators [35–

37]. Accordingly, it can be expected that increasing fragmentation

stabilises population densities and decrease the impact of predators

on prey populations [34]. However, the degree to which fragmen-

tation alters the dynamics of predators and prey in Fennoscandia is

poorly known.

The duration of the rodent breeding season also varies with

latitude. For the field vole (Microtus agrestis) the length of the

breeding season changes from 3–4 months in the north to .7

months in the southern Fennoscandia [38–40]. Essentially, sea-

sonality implies that the population dynamics switches between

two modes; 1) the summer, or main reproductive period and 2) the

winter where no reproduction occurs. The switching between two

modes is likely to introduce an inherent oscillator which potentially

may be a cause of the multiannual density cycles. Previous studies

show that density dependent regulation is strongest during winter

[41–43] which suggests that the multiannual fluctuations could

be influenced by the length of the breeding season [44,45]. The

breeding season hypothesis has gained some support (e.g. [41,44,

45,46]), but it is still open whether seasonality is the cause or just a

correlate of the cline in population cycling in Fennoscandia.

Investigating the joint effect of predation, fragmentation and

breeding season on a large scale in natural systems is inherently

difficult. Habitat type, resource availability, species density and

species composition of prey and predators covary in Fennoscandia,

impeding the separation of explanatory factors in empirical

studies. Furthermore, type of predator, breeding season and land-

scape may be interdependent, since generalist predators are

facilitated by an increased diversity of alternative prey, in turn

facilitated by a diverse habitat and relative long summer periods

[1,3,38]. Here we attempt to bridge the gap between the difficulty

of obtaining empirical data where predator response, breeding

season and landscape heterogeneity are independent, and the need

to study these factors separately to understand their impact on

prey population dynamics. We investigate and contrast the effects

of predation, habitat and breeding season using a realistic agent-

based simulation model to examine three descriptive endpoints:

mean population size, cycle length and amplitude; and two mecha-

nistic endpoints: direct and delayed density dependence. Agent-

based models are particularly useful for this purpose as they allow

independent investigation of the impact of single factors by

changing one variable at a time [47–50]. Their complexity offers

the opportunity to incorporate, with a high degree of realism,

behavioural plasticity, and individual responses to external pertur-

bations, as well as spatial and temporal landscape change [49,51–

54]. They differ fundamentally from models traditionally used to

investigate vole cycles in that their aim is to simulate system

responses rather than to analytically describe patterns [55]. This

means that the resulting data must be subjected to analyses similar

to those used for field data, with all the associated complexities and

difficulties. However, the advantage is that the experimenter is in

total control of the variables in the experiment.

Materials and Methods

The experiment was designed to investigate the joint effect of

predation, fragmentation and breeding season on vole population

dynamics. To this end 36 scenarios were designed comprising all

possible combinations of three types of predator assembly, four

levels of landscape fragmentation, and three durations of breeding

season. Each scenario was investigated using the simulation system

described below to produce time series for 100 years, with 20

replicates. The sampling was carried out after a ‘burn-in’ period of

100 years.

The ALMaSS system [56] used here is a mature, well tested,

comprehensive, but large simulation system; hence detailed model

descriptions cannot be presented in text. Full documentation is

available in ODdox format [49] from http://www2.dmu.dk/

ALMaSS/ODDox/Field_Vole/V1_02/index.html, providing a

model overview hyper-linked to a fully documented source code.

In addition, ALMaSS is an open source project hosted on the

Collaborative Computing Projects site CCPForge (http://ccpforge.

cse.rl.ac.uk/gf/), where code and further documentation are hosted.

Hence, although an overview is provided below, the reader is

directed to the online materials for further details. The model has

been tested and found to be able to recreate vole cycle patterns

closely similar to those found in a range of real world situations [57].

Appendix S1 provides a description of where to download the

source code, together with a link to a zip file with all input files and

executable programs used for the simulations. This ensures full

replicability of this study.

Simulation system and landscapes
Time series were generated in the general purpose simulation

system ALMaSS [56], a spatially explicit agent-based model (ABM)

which has been used for a range of applied and theoretical

applications (e.g. [47,58,59,60]). ALMaSS is an adaptive system

incorporating species specific information on ecology, as well as

Investigation of Predator Prey Dynamics
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biotic and abiotic environmental factors. The system models the

ecology and behaviour of the field vole at an individual level,

together with its interactions with conspecifics, predators and the

environment. The time step of the model is one day and has a

spatial resolution of 1 meter [56]. The ABM consists of three main

parts: the landscape and models of field vole and their predators. A

10610 km landscape was used comprised of areas of optimal vole

habitat, interspersed in a matrix of unsuitable vole habitat. The

unsuitable habitat allowed voles to move through freely, but

reproduction and long-term survival were restricted to fragments of

optimal habitat. Landscape heterogeneity was obtained by frag-

menting a one patch homogeneous landscape into 9, 25, and 100

equally sized and spaced patches of optimal habitat (Figure 1). The

total area covered with suitable habitat remained unchanged at

1.5% of the total area. Voles could not deplete food resources in the

landscape, preventing bottom up regulation from food availability.

Density dependence was incorporated through local competition for

territories.

Field voles
The modelled field voles consisted of three life-stages, juveniles

and adult females and males. During its life-cycle a vole could

engage in a number of behaviours based on information obtained

from its local environment and conspecifics. The vole entered the

simulation at the location of its mother’s nest when it was weaned

at day 14 [61,62]. It entered the simulation as either female or

male, assuming an even sex ratio [63] and started off by searching

for a suitable territory.

Each day in the simulation the vole would start by assessing the

local environment or its territory. Other behaviours could

subsequently follow dependent on the information received during

this process. A vole needed to have a territory in order to breed. A

male could mate with a female if his territory overlapped her

position. If this was the case for more than one male, she chose the

one closest. Younger voles that found themselves in an older vole’s

territory of the same gender with an overlap of more than 50%

were forced to move. The criteria for assessing territories quality

varied with the season and for the mature male during breeding

season included assessing for the presence of mature females.

The breeding season started 5th April and ended 1st October

[63–65]. The length of the breeding season was altered by

changing the end date to the 1st September or 1st November to

simulate a short or long breeding season respectively. Mortality

was modelled as being the result of predation, starvation if they

spent too much time in unsuitable habitat, or by reaching their

physiological lifespan limit [63]. Mortality also included infanticide

attempts if the mature male moved beyond the bounds of his

original territory and encountered females with un-weaned young.

His success would depend on the age of the young as specified by

[66].

Generalist and specialist predators
The predators were simulated to represent resident mammalian

specialist and generalists such as mustelids and foxes, parameter

values are given in Table 1. Specialist predators are characterised

by a delayed numerical response to changes in prey density [19]

and were consequently modelled to require a relatively high

number of voles in order to survive and a low number of voles to

reproduce. Predator dispersal would occur within a few days of

unsuccessful hunting. Their home range and dispersal ability was

relatively low in order to represent small mammalian predators.

Generalist predators on the other hand were modelled with a

weakly coupled functional rather than a numerical response and

thus required a relatively small number of prey items to survive

and a higher number to reproduce. Generalists were relatively

unaffected by vole densities and would stay longer in an area with

low vole densities before changing to dispersal behaviour. Their

home range and dispersal distance were simulated to be greater

than specialists to represent the larger generalist mammal predator.

No territory overlap was allowed for predators of the same type.

Hunting occurred within the bounds of the territory and voles

were predated with the killing efficiency specified in Table 1.

Predators reproduced in the spring and mortality were evaluated

at the end of the year based on the number of voles consumed

(Table 1).

Data analysis
After a ‘burn in period’ of 100 years mean population size was

recorded for each 100 year time series, loge transformed, together

with cycle amplitude and length. Amplitude was calculated as

maximum/minimum vole population size. Cycle length was

estimated from the plot of the autocorrelation function acf()

carried out in R 2.12.0 (http://cran.r-project.org/bin/windows/

base/old/2.12.0/) by listing the lag at which acf() reached its

second positive significant (p,0.05) maximum, while producing

stable fluctuations [8,67,68]. 95% confidence interval bands (CI)

were generated using the formula:

CI~+
Z1{a

Z
ffiffiffiffiffi

N
p

where N is the sample size, z the percent point function of the

standard normal distribution and a is the significance level. If acf()

Figure 1. Landscape characteristics of the four 10 km610 km landscapes. Each landscape comprises two types of habitat: optimal field vole
habitat, and unfavourable habitat in which voles cannot feed or breed, but through which they can disperse. Fragmentation was achieved by
breaking up the 1.5% optimal habitat into 9, 25 or 100 equally sized patches.
doi:10.1371/journal.pone.0022834.g001
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was not significantly different from zero or if irregular fluctuations

were present, then we concluded that no stable periodicity existed

for the analysed time series and the cycle length was recorded as

zero. The generated time series were subsequently analysed using

standard second-order autoregressive analyses [67,68] to deter-

mine the coefficients of direct (AR1) and delayed (AR2) density

dependence. These analyses were performed using R 2.12.0,

analyses of variance used Minitab 15.

Results

Model vole population dynamics exhibited a range of patterns

from four year cycles to stable populations (Figure 2 and 3).

Landscape structure, the type of predator and the interaction

between the two had marked effects on all measured parameters in

the analyses of variance, whereas the effects of length of breeding

season and its interactions were minor (Table 2). We therefore

focus here on landscape structure, type of predator and their

interactions.

Analyses of variance showed that mean vole population size

density was mainly affected by landscape structure and predator

assembly with the two factors accounting for similar amounts of

the total explained variance (,30%), whereas the interaction

between the two explained 17% (Table 2). For all predator assem-

blages, increasing habitat fragmentation increased mean vole

population size up to 25 patches after which a reduction in popu-

lation size occurred (Figure 3). Introducing specialist predators,

whether or not generalists were present, more than halved vole

population sizes.

Cycle length and amplitude were largely determined by the

predator assembly, which described between 59–82% of the total

explained variance (Table 2). Populations did not cycle in the 100-

patch landscapes, or if exposed only to generalist predators, but in

all other cases cycles occurred (Figure 3). As the landscape pro-

gressively became more homogeneous, cycle length and amplitude

increased.

Direct density dependence, AR1, was most affected by

landscape structure, followed by the landscape*predator interac-

tion, and lastly the predator assembly (Table 2). With generalist

predators AR1 was weakly positive for all fragmentation levels

(Figure 4). With specialist predators AR1 shifted from positive to

negative as fragmentation increased. The response was similar

with mixed predators except that with 100 patches AR1 became

positive.

Delayed density dependence, AR2, was most affected by

predator assembly (55%), followed by the landscape structure

(22%) and then their interaction (15%) (Table 2). No delayed

density dependence was observed when voles were exposed only to

generalist predators (Figure 4). Introducing specialist predators

made AR2 strongly negative, below 20.7, except in the 100 patch

landscape, where it was weakly negative for specialist and weakly

positive for mixed predators.

Discussion

The existence of population cycles is best judged by their stable

multiannual fluctuations and amplitude, and as expected this was

associated with delayed density dependence. Cycles were absent

if the only predators were generalists, or if the landscape was

fragmented into 100 patches (Figure 3). There is good agreement

between our results and those obtained by workers in Fennoscan-

dia. Thus in the North, where the landscape is relatively homo-

geneous and specialist predators are abundant, there are pronounced

population cycles with associated high delayed density dependence

(i.e., strongly negative AR2), and overall vole mean population size

are relative low. As we move towards the south and fragmentation

level and generalist abundance increases, cycle length and direct

density dependence decreases, while delayed density dependence

remains stable. In the South where landscapes are fragmented and

generalist predators are abundant, there are no cycles and no

delayed density dependence, and mean vole population size are

higher. In Fennoscandia predator type and landscape fragmenta-

tion covary, so their effects are confounded. This ambiguity is here

resolved by modelling, which has allowed us to distinguish the

effects of predator type and landscape fragmentation.

Population cycles only occurred in our simulations in fairly

homogeneous environments containing specialist predators. To an

extent this concurs with previous interpretations, which have

usually considered predation the main factor driving the popu-

lation dynamics of Fennoscandian microtines [1,3,22,24]. In the

past fragmentation has received less attention (but see [33,34,69]).

However our results suggest that low fragmentation levels as well

as the presence of specialist predators are necessary for the

occurrence of population cycles. This is not surprising because

ecological processes influence and are influenced by the landscape

[29–31,51], so predator-prey dynamics are likely to be affected by

landscape structure as well as by the predator assembly.

One perhaps unexpected result was that intermediate fragmen-

tation levels increased the number of voles. Subsequent analysis to

test this pattern showed that a predator in the homogeneous

landscape experienced few days during the year without successful

predation. Therefore it had a relatively constant supply of voles

Table 1. Predator parameters and settings.

Predator parameter Specification Settings

Specialist Generalist

Reproductive threshold Number of predated voles needed to produce one offspring. A low value
ensures a significant numerical response to high prey density

5 90

Survival threshold Number of predated voles needed per year to survive. A high value ensure
a pronounced decrease in predators in response to low vole density

90 10

Territory size The predator hunts within its territory and tolerates no overlap with other predators 2500 m2 6400 m2

Kill efficiency The probability of killing a vole within the territory. A high value ensures significant
pressure on the vole population

9.5% 4%

Failures before dispersal Number of days without successful predation before dispersal 5 days 20 days

Max dispersal distance Maximum distance the predator can disperse 500 m 1000 m

doi:10.1371/journal.pone.0022834.t001
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and could remain stationary for longer and thus kill a large

proportion of voles. As fragmentation levels increased up to 25

patches the predator experienced around 18% extra days without

successful predation and a 23% lower predation rate. Conse-

quently, the predators’ regulatory effect decreased. By contrast,

predators in fragmented landscapes had an increased risk of

driving voles to local extinction as the habitat size became smaller

[29,32,70]. Subsequent analyses showed there to be around 60–

70% unoccupied patches in the most fragmented landscape. This

is why mean vole population size decreased in the most hetero-

geneous landscape.

Predator dispersal in fragmented landscapes also accounts for

the reduction in delayed density dependence that occurred there.

Predators in heterogeneous landscapes were more often forced to

disperse by lack of food, and this diluted their effects on population

dynamics. Similar effects of fragmentation are seen in other sys-

tems [35,71]. The extent to which fragmentation reduces predator

impact depends on whether they are specialist or generalist.

Specialists may retain some impact because they occasionally

occur at high population sizes [1,25]. On the other hand

populations exposed to generalist predators displayed very low

levels of delayed density dependence (Figure 4). This is because

generalists responded near instantaneously to changes in prey

population size without affecting their abundance [72,73].

The overshadowing of predator effects by fragmentation may in

part explain the difficulty of reconciling vole time-series from

Britain [26] with those from Fennoscandia, and the difficulty

experienced by Lima et al. [74] in explaining differences in vole

dynamics along similar latitudinal gradients in Fennoscandia and

Russia. It would be interesting to identify the precise variations in

the predator complex and the degree of fragmentation in these

gradients, to see if they match our predictions.

Negative direct density dependence results from direct compe-

tition for food or territories, and is indicated by negative values of

AR1. We found no negative direct density dependence in the

absence of specialist predators or in homogeneous environments

(Figure 4). This lack of intraspecific competition was a result of

populations being kept below potential carrying capacity [75,76],

which was more effective in homogeneous environments and/or

when predators were generalists, as we have illustrated. Field

studies have shown that density dependent regulation is strongest

during winter [41–43] which suggests that multiannual fluctua-

Figure 2. Examples of time series of vole density (log10 transformed). The graph displays field vole population size in landscapes containing
a specialist predator but differing in degree of fragmentation. Landscape fragmentation increases from the top (1 patch) to the bottom (100 patches).
doi:10.1371/journal.pone.0022834.g002
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tions could be influenced by the length of the breeding season, but

in our analysis the latter had little effect. However, other related

factors such as changes in predation efficiency due to snow cover,

and vole food limitation during winter were not investigated in this

study. Further data addressing these issues would be necessary

before eliminating the length of breeding season as an important

factor in shaping the multiannual fluctuations. Our results clearly

demonstrate that landscape fragmentation can produce the

increased strength in negative direct density dependence observed

in the Fennoscandian gradient as often has been assigned to the

increased abundance of generalist predators and we stress that

landscape structure should receive more consideration when

analysing multiannual fluctuations.

Conclusion
In agreement with the literature, specialist predators generated

delayed density dependence and vole population cycles, whilst

fragmentation and generalist predators dampened these effects.

Interaction effects were surprisingly strong, suggesting that voles in

different landscapes under the same predator assemblage could

have distinctly different population dynamics, depending on the

level of landscape fragmentation. The length of the vole breeding

season had few effects. Naturally, as in the real world, our results

are system-configuration dependent, but they indicate that the

impact of fragmentation should be considered to a greater degree

when analysing vole cycles.

Figure 3. Mean population size, cycle length and amplitude, and mean values for the intermediate vole breeding season. Each
column refers to one of the three types of predators as indicated at the top of the figure. The colour code for each graph refers to the level of
heterogeneity in the landscape as shown in the key at the right. Bars indicate standard errors.
doi:10.1371/journal.pone.0022834.g003

Table 2. Analysis of variance.

Radj
2 (%)

Descriptive
variables

Mechanistic
variables

DF N CL Amp AR1 AR2

Source

Land (L) 3 34 21 7 33 22

PrType (Pr) 2 30 59 82 22 55

BSeason (B) 2 0 0 2 5 0

L*Pr 6 17 14 2 24 15

L*B 6 0 1 2 1 1

Pr*B 4 0 1 1 3 0

L*Pr*B 12 0 2 1 3 1

Percentage of variation accounted for (Radj
2) in an analysis of variance of the

effects of landscape structure (L), predator type (Pr), and Breeding season (B) on
the descriptive variables: population size (N), amplitude (Amp) and cycle length
(CL), and on the mechanistic variables: direct density dependence (AR1), and
delayed density dependence (AR2). The * illustrates the interaction between the
listed parameters. All effects were statistically significant (p,0.05).
doi:10.1371/journal.pone.0022834.t002
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24. Hanski I, Henttonen H, Korpimäki E, Oksanen L, Turchin P (2001) Small-
rodent dynamics and predation. Ecology 82: 1505–1520.

25. Gilg O, Hanski I, Sittler B (2003) Cyclic dynamics in a simple vertebrate

predator-prey community. Science 302: 866–868.

26. Lambin X, Bretagnolle V, Yoccoz NG (2006) Vole population cycles in northern

and southern Europe: Is there a need for different explanations for single

pattern? J Anim Ecol 75: 340–349.

27. Oli MK (2003) Population cycles of small rodents are caused by specialist

predators: or are they? Trends Ecol Evol 18: 105–107.

28. Martinsson B, Hansson L, Angelstam P (1993) Small mammal dynamics in

adjacent landscapes with varying predator communities. Ann Zool Fenn 30:

31–42.

29. Hanski I (1994) Patch-occupancy dynamics in fragmented landscapes. Trends

Ecol Evol 9: 131–135.

30. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol

23: 879–890.

31. Fahrig L, Nuttle WK (2005) Population ecology in spatially heterogeneous

environments. In: GM. Lovett, CG. Jones, MG. Turner, KC. Weathers, eds.

Ecosystem Function in Heterogeneous Landscapes. New York: Springer. pp

95–118.

32. Hanski I (1999) Metapopulation ecology. Oxford: Oxford University Press.

33. Huitu O, Laaksonen J, Klemola T, Korpimäki E (2008) Spatial dynamics of
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34. Huitu O, Norrdahl K, Korpimäki E (2003) Landscape effects on temporal and

spatial properties of vole population fluctuations. Oecologia 135: 209–220.

35. Ellner SP, McCauley E, Kendall BE, Briggs CJ, Hosseini PR, et al. (2001)

Habitat structure and population persistence in an experimental community.

Nature 412: 538–543.

36. Bonsall MB, French DR, Hassell MP (2002) Metapopulation structures affect

persistence of predator-prey interactions. J Anim Ecol 71: 1075–1084.

37. Brockhurst MA, Buckling A, Rainey PB (2006) Spatial heterogeneity and the

stability of host-parasite coexistence. J Evol Biol 19: 374–379.

38. Nelson J, Agrell J, Erlinge S, Sandell M (1991) Reproduction of different female

age categories and dynamics in a noncyclic field vole, Microtus agrestis population.

Oikos 61: 73–78.

39. Viitala J (1977) Social-organization in cyclic subarctic populations of voles

Clethrionomys rufocanus (Sund) and Microtus agrestis (L). Ann Zool Fenn 14: 53–93.

40. Hansson L (1969) Spring populations of small mammals in central Swedish

Lapland in1964–68. Oikos 20: 431-&.

41. Saitoh T, Stenseth NC, Viljugrein H, Kittilsen MO (2003) Mechanisms of

density dependence in fluctuating vole populations: deducing annual density

dependence from seasonal processes. Popul Ecol 45: 165–173.

42. Stenseth NC, Kittilsen MO, Hjermann DO, Viljugrein H, Saitoh T (2002)

Interaction between seasonal density-dependence structures and length of the

seasons explain the geographical structure of the dynamics of voles in Hokkaido:

an example of seasonal forcing. Proc R Soc Lond, Ser B: Biol Sci 269:

1853–1863.

43. Hansen TF, Stenseth NC, Henttonen H (1999) Multiannual vole cycles and

population regulation during long winters: An analysis of seasonal density

dependence. Am Nat 154: 129–139.

Figure 4. Direct and delayed density dependence, measured by AR1 and AR2 respectively. Conventions as in Figure 3.
doi:10.1371/journal.pone.0022834.g004

Investigation of Predator Prey Dynamics

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e22834



44. Stenseth NC, Bjørnstad ON, Saitoh T (1998) Seasonal forcing on the dynamics

of Clethrionomys rufocanus: Modeling geographic gradients in population dynamics.

Res Popul Ecol 40: 85–95.

45. Smith MJ, White A, Lambin X, Sherratt JA, Begon M (2006) Delayed density-

dependent season length alone can lead to rodent population cycles. Am Nat

167: 695–704.

46. Stenseth NC, Viljugrein H, Saitoh T, Hansen TF, Kittilsen MO, et al. (2003)

Seasonality, density dependence, and population cycles in Hokkaido voles. Proc

Natl Acad Sci U S A 100: 11478–11483.

47. Dalkvist T, Topping CJ, Forbes VE (2009) Population-level impacts of pesticide-

induced chronic effects on individuals depend more on ecology than toxicology.

Ecotoxicol Environ Saf 72: 1663–1672.

48. Topping CJ, Høye TT, Odderskaer P, Aebischer NJ (2010) A pattern-oriented

modelling approach to simulating populations of grey partridge. Ecol Model

221: 729–737.

49. Topping CJ, Høye TT, Olesen CR (2009) Opening the black box-Development,

testing and documentation of a mechanistically rich agent-based model. Ecol

Model 221: 245–255.

50. Grimm V, Railsback SF (2005) Individual-based modeling and ecology.

Princeton series in theoretical and computational biology. Princeton: Princeton

university press.

51. Turner MG (2005) Landscape ecology: What is the state of the science? Annu

Rev Ecol Evol Syst 36: 319–344.

52. Grimm V (1999) Ten years of individual-based modelling in ecology: what have

we learned and what could we learn in the future? Ecol Model 115: 129–148.

53. Cope DR (2005) Individuality in modelling: a simplifying assumption too far?

Nonlinear Analysis-Real World Applications 6: 691–704.

54. DeAngelis DL, Mooij WM (2005) Individual-based modeling of ecological and

evolutionary processes. Annu Rev Ecol Evol Syst 36: 147–168.

55. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, et al. (2005) Pattern-

oriented modeling of agent-based complex systems: Lessons from ecology.

Science 310: 987–991.

56. Topping CJ, Hansen TS, Jensen TS, Jepsen JU, Nikolajsen F, et al. (2003)

ALMaSS, an agent-based model for animals in temperate European landscapes.

Ecol Model 167: 65–82.

57. Hendrichsen DK, Topping CJ, Forchhammer MC (2009) Predation and

fragmentation portrayed in the statistical structure of prey time series. BMC Ecol

9: Article No.: 10.

58. Topping CJ, Sibly RM, Akcakaya HR, Smith GC, Crocker DR (2005) Risk

assessment of UK skylark populations using life-history and individual-based

landscape models. Ecotoxicology 14: 925–936.

59. Nabe-Nielsen J, Sibly RM, Forchhammer MC, Forbes VE, Topping CJ (2010)

The effects of landscape modifications on the long-term persistence of animal
populations. PLoS ONE (In press).

60. Sibly RM, Akcakaya HR, Topping CJ, O’Connor RJ (2005) Population-level

assessment of risks of pesticides to birds and mammals in the UK. Ecotoxicology
14: 863–876.

61. Leslie PH, Ranson RM (1940) The mortality, fertility and rate of natural
increase of the vole (Microtus agrestis) as observed in the laboratory. J Anim Ecol

9: 27–52.

62. Innes DGL, Millar JS (1994) Life-histories of Clethrionomys and Microtus

(Microtinae). Mamm Rev 24: 179–207.

63. Myllymaki A (1977) Demographic mechanisms in fluctuating populations of field
vole Microtus agrestis. Oikos 29: 468–493.

64. Erlinge S (1983) Demography and dynamics of a stoat Mustela erminea population
in a diverse community of vertebrates. J Anim Ecol 52: 705–726.

65. Jensen TS, Hansen TS (2001) Effekten af husdyrgræsning på småpattedyr. In:
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