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Abstract

Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is a transcription factor which regulates the expression of many
cytoprotective genes. In the present study, we found that the expression of Nrf2 was suppressed in prostate tumor of the
Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. Similarly, the expression of Nrf2 and the induction of NQO1
were also substantially suppressed in tumorigenic TRAMP C1 cells but not in non-tumorigenic TRAMP C3 cells. Examination
of the promoter region of the mouse Nrf2 gene identified a CpG island, which was methylated at specific CpG sites in
prostate TRAMP tumor and in TRAMP C1 cells but not in normal prostate or TRAMP C3 cells, as shown by bisulfite genomic
sequencing. Reporter assays indicated that methylation of these CpG sites dramatically inhibited the transcriptional activity
of the Nrf2 promoter. Chromatin immunopreceipitation (ChIP) assays revealed increased binding of the methyl-CpG-binding
protein 2 (MBD2) and trimethyl-histone H3 (Lys9) proteins to these CpG sites in the TRAMP C1 cells as compared to TRAMP
C3 cells. In contrast, the binding of RNA Pol II and acetylated histone H3 to the Nrf2 promoter was decreased. Furthermore,
treatment of TRAMP C1 cells with DNA methyltransferase (DNMT) inhibitor 5-aza-29-deoxycytidine (5-aza) and histone
deacetylase (HDAC) inhibitor trichostatin A (TSA) restored the expression of Nrf2 as well as the induction of NQO1 in TRAMP
C1 cells. Taken together, these results indicate that the expression of Nrf2 is suppressed epigenetically by promoter
methylation associated with MBD2 and histone modifications in the prostate tumor of TRAMP mice. Our present findings
reveal a novel mechanism by which Nrf2 expression is suppressed in TRAMP prostate tumor, shed new light on the role of
Nrf2 in carcinogenesis and provide potential new directions for the detection and prevention of prostate cancer.
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Introduction

Prostate cancer, as well as many other age-related cancers, is

characterized by increased intracellular oxidative stress [1,2].

Chronic oxidative stress and its associated pathological conditions

including inflammation and metabolic disorders have been

postulated to drive somatic mutations and neoplastic transforma-

tion, thus could play an important role in the development and

progression of prostate cancer [3]. Increased oxidative stress or

reactive oxygen species (ROS) levels could be a consequence of

increased ROS generation and/or decreased antioxidant capacities

and or ROS detoxification. Recently the impaired antioxidant

defense system in carcinogenesis of prostate cancer has been gaining

increased attentions.

The cellular antioxidant defense system comprises a battery of

antioxidant/detoxifying enzymes and proteins such as superoxide

dismutase (SOD), catalase, hemeoxgenase (HO), UDP-glucurono-

syltransferases (UGT), glutathione peroxidase (GPx), glutathione S-

transferases (GST), and NAD(P)H:quinone oxidoreductase (NQO)

[4]. Down-regulation of GST by DNA methylation appears to be

quite common in human prostate cancer that it has been developed

as a diagnostic marker [5]. The expression and the activities of

SOD, catalase and GPx have been reported to be decreased in

prostate carcinoma tissues as well as in plasma and erythrocytes

[6–8]. Recent studies from our laboratory and others have found

that the expression levels of SOD, UGT1A1, NQO1 and several

GST family genes were significantly suppressed in prostate tumors

in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice

[9–11]. Although the down-regulation of GST enzymes in human

prostate cancer have been linked to the promoter hypermethylation

of GST genes [5,12]; promoter DNA hypermethylation does not

appear to cause GST gene repression in TRAMP tumors [9].

Instead, down-regulation of nuclear factor-erythroid 2p45 (NF-E2)-

related factor 2 (Nrf2), a key regulator of cellular antioxidant

enzymes, may be responsible for the transcriptional suppression of

GSTs and other phase II detoxifying enzyme genes [11].

Nrf2 is a helix–loop–helix basic leucine zipper transcription

factor that regulates the expression of many phase II detoxifying
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and antioxidant enzymes via its binding to the antioxidant-

response element (ARE) in the promoter region [4]. Knockout of

Nrf2 in mice substantially abrogated the inducible expression of

ARE-mediated detoxifying and antioxidant enzymes, and ren-

dered these mice highly susceptible to carcinogens and/or

oxidative damages [13,14]. In these context, previously we have

found that the protein expression levels of Nrf2 and Nrf2-target

gene heme-oxygenase-1 (HO-1) were attenuated in the skin

tumors of a mouse skin carcinogenesis model [15]. Similarly, the

expression of Nrf2 as well as its downstream target genes such as

UGT1A1, GSTM1 and NQO1 were found to be gradually down-

regulated in prostate tumors with the progression of prostate

tumorigenesis in TRAMP mice [10]. Frolich et al. recently

reported the expression of Nrf2 and GST mu family genes were

significantly decreased in TRAMP prostate tumor, and linked this

phenomenon to increased oxidative stress and DNA damage in

prostate cancer. Meta-analysis of tissue expression profiling data

from Oncomine database (www.oncomine.org) suggested that the

expressions of Nrf2 and several GST mu genes are also gradually

down-regulated in human prostate cancers [11].

The transcription of Nrf2 has recently been shown to be

regulated by the aryl hydrocarbon receptor (AhR) and Nrf2 itself

[16,17]. However, the currently accepted paradigm of Nrf2

regulation appears to be mainly achieved via post-translational

mechanisms. As such, Nrf2 is functionally suppressed by the Kelch-

like Erythroid-cell-derived protein with CNC homology (ECH)-

Associated Protein 1 (Keap1), which binds to and sequesters Nrf2 in

the cytoplasm leading to the degradation of Nrf2, and thus prevents

Nrf2 nuclear translocation and transactivation of its target genes

[18]. Upon challenges by oxidative or electrophilic stresses that

could involve potential modification of critical cysteine residues in

Keap1 and or Nrf2 itself coupled with phosphorylation by kinases,

Nrf2 is released from Keap-1, translocates into the nucleus,

dimerizes with small Maf proteins, binds to ARE and transcrip-

tionally activates Nrf2-ARE target genes [4]. To date, it is not clear

as to how the expression of Nrf2 in human prostate cancer or in

TRAMP mouse tumor is suppressed.

Epigenetic or epigenomic mechanisms, particularly DNA

methylation, have been frequently implicated in the alterations

of gene expression in prostate cancer [19,20]. Coordinated

hypermethylation of APC and GSTP1 in early carcinogenesis

has been utilized as potential diagnostic markers to detect prostate

cancer [21]. In addition, alteration of DNA methylation profiles

has been linked with cancer progression [20]. DNA methylation,

coupled with histone modifications, would affect the interactions of

the promoters of critical genes with transcriptional corepressors

and coactivators leading to changes in gene expressions, which

could be one of the driving forces for prostate carcinogenesis.

Silencing of multiple genes by DNA methylation has been

reported in TRAMP prostate tumors and cell lines derived from

TRAMP prostate tumors [22–24]. Inhibition of DNA methyl-

transferase activity by 5-aza-29-deoxycytidine (5-aza) has been

shown to prevent prostate tumorigenesis in TRAMP mice [25]. In

addition, the expression of Keap1 has been reported to be

regulated by DNA methylation in lung cancer [26]. In the present

study, we first identified a CpG island in the upstream 59-flanking

region of the murine Nrf2 gene followed by interrogation of the

DNA methylation status of the whole CpG island via bisulfite

genomic sequencing. We found that certain CpG sites in the distal

region of the CpG island were hypermethylated in the TRAMP

tumor tissues as well as in tumorigenic TRAMP-C1 and -C2 cells,

but not in normal prostatic tissue and non-tumorigenic TRAMP-

C3 cells. Utilizing methylated reporter assay, chromatin immu-

noprecipitation (ChIP) assay and treatments with trichostatin A

(TSA)/5-aza, we provided compelling evidence that the expression

of Nrf2 is epigenetically regulated during the development of

prostate tumors in TRAMP mice. Nrf2 expression was suppressed

by methylation of certain CpG sites and this was accompanied by

the recruitment of MBD2 and trimethyl-histone H3 (Lys9) to the

Nrf2 gene promoter in prostate tumor of TRAMP mice.

Results

Hypermethylation of Specific CpG Sites in the CpG Island
in Murine Nrf2 Gene

The genomic sequence of Nrf2 gene (NC_000068.6: 75544698-

75513576 Mus musculus chromosome 2, reference assembly

(C57BL/6J), including 2 kb of its 59-upstream sequence) was

analyzed for CpG island using CpG island Finder (http://people.

usd.edu/,sye/cpgisland/CpGIF.htm). Since several mRNA vari-

ants with different transcription start sites (TSS) have been reported

in the literature [16,27,28], therefore in the present study we define

the translation initiation site (TIS) as position 1 to avoid any possible

confusion. A CpG island was identified between -1175 and +1240,

with a GC content of 61.53%, CpG observed/expected ratio of 0.66

and a total of 150 CpGs. The CpG island includes the murine Nrf2

promoter, the first exon and part of the first intron (Figure 1A).

Similar results were obtained when using other criteria and

algorithm (http://www.uscnorris.com/cpgislands2/cpg.aspx, data

not shown). 10 sets of bisulfite genomic sequencing (BGS) primers

were designed using the BiSearch web server (http://bisearch.

enzim.hu/, [29]) to cover the 59-flanking region spanning from

21226 to +844 of the murine Nrf2 gene (Table S1). Bisulfite-

converted genomic DNA derived from 12 palpable prostate tumors

of 24 weeks old TRAMP mice and 10 apparently normal prostate

tissues of C57BL/6J mice was used as templates. As shown in

Figure 1B, although the majority of the CpG island is barely

methylated, the first 5 CpG sites were found to be hypermethylated

(96%) in prostate tumors compared to apparently normal prostate

tissues (4%). Representative sequencing chromatographs showing

the first 5 CpGs in prostate tumor and normal prostate are shown in

Figure S1. The following 10 CpGs that are separated by two CpG-

free gaps (21131 to 21060 and 2886 to 2798) also displayed

differential methylation status in tumors (34%) compared to normal

tissues (2%). In addition, another region located in the first intron

appears to be sparsely CpG-methylated in prostate tumor (4.5%).

TRAMP C1, C2 and C3 cell lines were originated from a

heterogeneous tumor of 32-week TRAMP mouse [30]. While

TRAMP C1 and C2 cells are tumorigenic when grafted into

syngenic C57BL/6J hosts, TRAMP C3 cells are not. Genomic

DNA from C1 and C3 cells was bisulfite-sequenced as above to

detect the methylation status of the CpG island in Nrf2 gene.

Surprisingly, the methylated CpG ‘‘hot spots’’ as found above in

the TRAMP prostate tumor were also methylated in tumorigenic

C1 cells but not in non-tumorigenic TRAMP C3 cells (Figure 1C).

Methylation of the First 5 CpGs Significantly Suppressed
the Transcriptional Activity of Mouse Nrf2 Promoter

To investigate the functional role of methylation of specific CpG

sites, particularly the first 5 CpGs in the CpG island, luciferase

reporters driven by the Nrf2 promoter with or without the first 5

CpGs (designated as 21367 and 21065, respectively) were

constructed as described in Materials and Methods (Figure 2A).

The plasmids were methylated using M. sssI CpG methyltrans-

ferase in vitro and the methylation status was confirmed by HpaI/

HhaII digestion (Figure S2). As shown in Fig. 2B, the 21065 Nrf2

promoter, which had been reported previously [17,28], substan-

tially increased the luciferase activity to about 200 folds. In

Epigenetic Regulation of Nrf2
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contrast, the 21367 Nrf2 promoter showed a less potent

transcriptional activity (,67 folds). Importantly, in vitro CpG-

methylation of the reporter construct resulted in a dramatic

decrease of the transcriptional activity of the 21367 Nrf2

promoter (84% decrease); while, the activity of the 21065

promoter was decreased by only 23.4% by CpG-methylation.

Similar results were obtained in Hep G2 hepatoma cells and

human embryonic kidney HEK 293 cells (Figure S3).

Hypermethylated CpG Island Was Associated with
Methyl-CpG-Binding Domain (MBD2) and Histone
Modifications, Which Is Reversible by 5-aza/TSA
Treatment

The repression of gene expression by CpG methylation is

generally achieved by MBD proteins that bind to methylated DNA

leading to recruitment of chromatin remodeling and transcrip-

tional repressor complexes [31]. In the current study, ChIP assays

were employed to examine the proteins that could be potentially

associated with Nrf2 promoter in TRAMP C1 and C3 cells. Based

on the methylation status of Nrf2 promoter, primer sets were

designed to cover the first 5 CpGs and the TSS to detect the

association of specified DNA-binding proteins as well as RNA

polymerase II (Pol II). The specificity of ChIP assays were verified

by nonspecific IgG which did not pull down anything. As a

positive control, b-actin promoter is equally associated with Pol II

in C1 and C3 (Figure 3A). The binding of Pol II to the Nrf2 gene

TSS was significantly decreased in C1 cells as compared to in C3

cells, indicating a suppressed transcription of Nrf2 in C1 cells

(Figure 3A & B). In agreement with this observation, the binding of

MBD2 and tri-methylated histone 3-lys9, (H3K9me3) to the

methylated CpGs in Nrf2 promoter was higher in C1 cells than in

C3 cells, whereas the association of acetylated histone 3 (H3Ac)

displayed a reversed pattern (Figure 3A & B). Methyl CpG binding

protein 2 (MeCP2) and mammalian Sin3A (mSin3A) were also

tested for their binding with this Nrf2 promoter; however no

detectable binding was observed (data not shown).

The methylation status of DNA is regulated by DNA methyl-

transferases (DNMTs) and 5-aza is a DNMT inhibitor, is often

used to examine the effects of DNA methylation [32]. As shown in

Figure 3C & D, 5-aza treatment of C1 cells decreases the binding

of MBD2 and H3K9me3 to the Nrf2 promoter, while the H3Ac

exhibits no observable effect. However, combined treatment of C1

cells with 5-aza and a histone deactylase (HDAC) inhibitor, TSA,

substantially increases the binding of H3Ac to the Nrf2 promoter,

and further decreases the bindings of MBD2 and H3K9me3 to the

Nrf2 promoter. Consistent with the above results, the recruitment

of Pol II to the Nrf2 promoter also increases correspondingly,

whereas Pol II’s binding to b-actin promoter was not changed

(Figure 3C).

Figure 1. Hypermethylation of Nrf2 promoter in TRAMP prostate was correlated with tumorigenesis. (A) A CpG island was identified in
the 59-flanking region of mouse Nrf2 gene, spanning from position 21175 to +1240 with the translation initiation site set as position 1. The
sequences covered by bisulfite genomic sequencing (21226 to +844) and contain methylated CpGs are schematically presented with CpG sites
indicated by vertical lines. (B) The methylation patterns and extents of CpG sites in the promoter of Nrf2 gene in TRAMP prostate tumor and
apparently normal prostate were determined by bisulfite genomic sequencing as described in Material & Methods. Black dots indicate methylated
CpGs and open circles indicate non-methylated CpGs. (C) The methylation patterns and extents of CpG sites in the promoter of Nrf2 gene in TRAMP
C1 and C3 cells were determined. The CpGs in the sequence between +296 to +594 are not displayed because methylation is insignificant.
doi:10.1371/journal.pone.0008579.g001
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The Transcriptional Induction of Nrf2 and NQO-1 in
TRAMP Cell Lines Was Correlated with CpG Islands
Methylation Status and Could Be Restored by 5-aza/TSA
Treatment

We and others have previously reported that the expression of

Nrf2 and its target genes is suppressed in TRAMP prostate tumors

[10,11]. Marvis et al., had reported that the expression of GST

family genes was suppressed in TRAMP C2 cells and 5-aza and

TSA treatment could restore the expression [9]. Here we

examined the expression of Nrf2 and one of its downstream

target genes NQO1 in TRAMP C1 and C3 cells. As shown in

Figure 4A, the mRNA level of Nrf2 is significantly lower in C1

cells than in C3 cells. The expression of NQO1 was readily

induced by tBHQ, a classic Nrf2 agonist, in C3 cells, while such

induction was blunted in C1 cells (Figure 4A & C). Treatment of

C1 cells with 5-aza and TSA modestly restored Nrf2 expression

and significantly enhanced the induction of NQO1 by tBHQ.

However, the treatment of C3 cells under the same conditions

exhibited no effect on the expression of Nrf2 or NQO1 (Figure 4A,

B & C). Western blotting was performed to examine the protein

expression levels of Nrf2, NQO1, MBD2, H3Ac and H3K9me3

(Figure 4D). The protein levels of Nrf2 and NQO1 were lower in

C1 cells than in C3 cells, and 5-aza and TSA treatment enhanced

the induction of NQO1 protein by tBHQ. Although 5-aza and

TSA treatment did not increase the basal level of Nrf2 protein the

treatment significantly augmented tBHQ-induced Nrf2 protein

expression. TSA treatment strongly increased acetylated histone 3

protein while had no effect on histone 3 methylation status.

Interestingly, although the protein level of MBD2 was not affected

by 5-aza and TSA treatment, it was much higher in C1 cells than

in C3 cells (Figure 4D).

Discussion

Previous findings from several laboratories including our

laboratory have demonstrated that Nrf2 plays an essential role

in the development of various cancers [33]. Nrf2 regulates the

expression of antioxidant and phase II detoxifying enzymes

including NQO1, HO-1 and GST [33]. Therefore, the control

of transcriptional activation of Nrf2 and Nrf2-target genes would

appear to be an important homeostatic mechanism that protect

cellular injuries or damages resulted from oxidative stress [33].

Nrf2 deficiency could lead to defect in the cellular defense system

against oxidative stress, potentially resulting in cancer initiation,

promotion and progression [34]. The repressed expression of

antioxidant and detoxifying enzymes such as GSTP1 in prostate

cancer has extensively been studied [2,5]. However the role of

Nrf2 in prostate cancer have not received enough attention until

recently [10,11].

Frolich et al. reported that the down-regulation of Nrf2 appears

to be responsible for the reduced GST expression, elevated

oxidative stress and DNA damage in prostate tumorigenesis in

TRAMP mice [11]. We have recently found that the expression of

Nrf2 as well as Nrf2-target genes is gradually down-regulated

during the progression of prostate cancer in TRAMP mice [10].

Previous analysis of the online human prostate gene expression

data sets demonstrated that the expression of Nrf2 and GST [11]

Figure 2. Methylation of the first 5 CpGs inhibited the transcriptional activity of Nrf2 promoter. (A) The construction of luciferase
reporters is schematically presented. Nrf2 promoters with (21367–1) or without (21065–1) the extra sequence containing the first 5 CpGs were
amplified from mouse genomic DNA and inserted into pGL 4.15 vector. The resulted reporters were designated as pGL-1367 and pGL-1065,
respectively. (B) pGL-1367 or pGL-1065 reporters, either methylated by CpG methyltransferase or not, were co-transfected with pGL 4.75 vector which
contains a Renilla reniformis luciferase gene driven by CMV promoter into TRAMP C1 cells, and the luciferase activities were measured after 24 hrs.
The transcriptional activities of each constructs were calculated by normalizing the firefly luciferase activities with corresponding Renilla luciferase
activities, and are represented as folds of induction compared with the activity of empty pGL 4.15 vector. The values are mean6SD of four separate
samples.
doi:10.1371/journal.pone.0008579.g002
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as well as NQO1 was gradually decrease during human prostate

carcinogenesis (Figure S4). Furthermore, it has been reported that

several GST genes are down-regulated in primary but not in

metastatic TRAMP tumors [9]. In current study, we found that

the expression of Nrf2 and the induction of NQO1 was

compromised in tumorigenic TRAMP C1 cells but not in non-

tumorigenic TRAMP C3 cells (Figure 4A). This suppression of

Nrf2 expression and Nrf2-target gene NQO1 in both of these

TRAMP cell lines would exclude the possibility that Nrf2

expression would be affected by the SV40 transgene, since these

TRAMP cell lines do not express the SV40 transgene [30].

DNA methylation has been implicated in the silencing of the

GSTP1 gene in human prostate cancer, and similarly DNA-

methylation silencing of several other genes are also implicated in

TRAMP prostate tumor [5,23,24]. However, interestingly Mas-

sARRAY Quantitative DNA Methylation Analyses (MAQMA)

analysis of the 59 region of several GST genes displayed no

significant differences between normal prostatic epithelial cells and

prostate tumor from the TRAMP mice [9]. Recently, several reports

show that in both TRAMP and Rb2/2 prostate tumors, an Rb/

E2F-dependent increase of DNMT1 expression and methylation

activity [25,35]. Hypermethylation Nrf2 promoter was ruled out

using MSP and that 5-aza treatment had no effect on Nrf2

expression (with data not shown) [11]. We analyzed the 59-flanking

region of Nrf2 gene and identified a CpG island that extends to

position -1175 (Figure 1A). Using bisulfite sequencing, which would

be more specific in identifying CpG methylation and would reveal

more details about DNA methylation than MSP, we found that the

first 5 CpGs in the CpG island are hypermethylated in TRAMP

prostate tumors and in the tumorigenic TRAMP C1 cells but not in

normal prostate tissues and non-tumorigenic TRAMP C3 cells

(Figure 1B). Remarkably, these 5 CpGs are located adjacent to the

previously reported Nrf2 promoter [17]. Thus, the methylation

status of these specific CpGs appears to be correlated with the

tumorigenicity as well as Nrf2 expression and NQO1 induction

(Figures 1 and 4). Notably, similar pattern of specific methylation of

the distal CpG island has also been observed in the Keap1 gene in

lung cancer cells [26]. It is important to note that some of our current

findings appear to be somewhat contradictory with the results

reported previously [11], however previous findings of extensive

down-regulation of Nrf2 and GST during prostate tumor progres-

sion in TRAMP mice [11], are consistent with our current results.

To determine the functional role of methylation of these 5 CpGs

in the suppression of Nrf2 expession, luciferase reporters of the

Figure 3. Hypermethylated CpG island was associated with MBD2 binding and histone modifications and 5-aza/TSA treatment
reversed the association. (A) ChIP assay was performed to detect the binding of indicated proteins to specific regions of Nrf2 gene cross-linked
and immunoprecipitated from TRAMP C1 and C3 cells. The results from 3 independent experiments were quantified by densitometry as shown in (B).
(C) TRAMP C1 cells were treated with vehicle, 5-aza or 5-aza+TSA as described, then the cells were subjected to ChIP assay. The results from 2
independent experiments were quantified by densitometry as shown in (D). ChIP assays were performed as described in Material & Methods using
antibodies against Pol II, MBD2, H3K9m3 and AcH3. 3 sets of ChIP primers were used (Table S2), with Nrf2P1 covers the first 5 CpGs (21190 to 21092)
in the CpG island and Nrf2P2 covers a region close to TSS (262 to +20). Nonspecific IgG was employed as a negative control and binding of Pol II to
b-actin promoter was used to verify the efficiency of ChIP assay. The experiments were repeated at least twice with similar results.
doi:10.1371/journal.pone.0008579.g003
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Nrf2 promoter with or without these 5 CpGs were constructed

(Figure 2A). The Nrf2 promoter possesses very GC-rich non-

canonical promoter which contains neither TATA box nor a

CCAAT box [28], however, this Nrf2-promoter potently activated

the transcription of luciferase reporter gene (Figure 2B). Interest-

ingly, the addition of sequences from 21065 to 21367 appears to

be repressive to the transcriptional activity of the Nrf2 promoter

(Figure 2B). Such repressive sequence could function by recruiting

specific repressing factors [36], but the exact mechanism accounting

for this repressive function of this sequence even in the absence of

methylation would require further investigation. Nevertheless, when

the reporters were methylated in vitro by CpG methyltransferase, the

luciferase reporter activity of the Nrf2 promoter with the additional

sequence containing the 5 CpGs (pGL-1367) was reduced by about

84%. In contrast, methylation of the reporter without the additional

sequence resulted in about 23% reduction (Figure 2B). This is

probably due to the heavy methylation of the whole construct

including the luciferase gene (but further study would be needed to

prove this). Altogether, these results suggest that the extra 5 CpGs

(21065 to 21367) could play a critical role in methylation-

dependent suppression of Nrf2 promoter activity.

The role of CpG methylation in suppressing Nrf2 expression

and activation was tested by treatment with 5-aza in TRAMP

cells. 5-Aza has previously been shown to be able to prevent early

disease progression, delay androgen-independent disease and

improve survival of TRAMP mice [25,37]. In addition, stage

and phenotype-specific CpG island methylation and DNA

methyltransferase expression have been well documented during

prostate cancer progression in TRAMP mice [38,39]. These

published findings suggest the relevance of using this TRAMP

system to interrogate the possible role of epigenetic alterations in

prostate carcinogenesis. 5-aza treatment of TRAMP C1 cells

modestly increased the mRNA level of Nrf2, while combined

treatments of 5-aza and TSA induced a more prominent increase

of Nrf2 (Figure 4A). This result is consistent with the report by

Mavis et al., in which combined 5-aza and TSA treatments

significantly enhanced the expression of GST genes [9]. The

protein level of Nrf2 in TRAMP C1 cells remained unaffected by

either 5-aza or 5-aza/TSA treatments, however, addition of a

potent Nrf2-activator tBHQ would enhance the accumulation of

Nrf2 protein (Figure 4B). As expected, the induction of NQO1

mRNA and protein levels displayed a similar trend with that of the

Nrf2 protein. It is highly likely that since Nrf2 signaling is

primarily regulated via post-translational mechanisms, without

challenges with Nrf2-activators such as tBHQ, Nrf2 protein would

be rapidly turned over by proteosome-dependent degradation

[18]. The precise reason as to why tBHQ is needed for NQO1

induction would require further study.

Figure 4. The expression of Nrf2 and NQO-1 in TRAMP cell lines was correlated with CpG islands methylation status and could be
restored by 5-aza/TSA treatment. TRAMP C1 and C3 cells were treated with 2 mM 5-aza, 200 nM TSA, or 1 mM 5-aza plus 100 nM TSA for 60 hrs or
48 hrs followed by incubation in the presence of 5 mM tBHQ for further 12 hrs. After treatments, the cells were harvested for total protein or RNA
extractions. (A) the mRNA levels of Nrf2 and NQO1 were determined by RT-PCR, with GAPDH serving as internal control, and the results from 3
independent experiments were quantified by densitometry and the results are shown in B and C. (D) the protein levels of Nrf2, NQO1, MBD2,
H3K9me3 and H3Ac were determined by Western blotting, with actin as a loading control. Each experiment was repeated at least twice with similar
results.
doi:10.1371/journal.pone.0008579.g004
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To further delineate the molecular mechanism by which the

specific CpG-methylation suppresses Nrf2 expression, ChIP assays

were performed. The result reveals that the binding of MBD2 and

H3K9m3 to the specific CpGs was substantially higher in TRAMP

C1 cells than in TRAMP C3 cells correlating with the fact that the

CpGs were minimally methylated in TRAMP C3 cells (Figure 3A).

In contrast, AcH3 displayed an opposite binding pattern to the same

CpGs sequence in TRAMP C1 cells as compared to TRAMP C3

cells, and similarly the binding of Pol II to the transcription start site

showed similar pattern as AcH3 (Figure 3A). These methylation-

dependent associations of corepressors could be modulated by 5-aza

and TSA treatments and our results (Figure 3B) correlated very well

with the transcription level of Nrf2 (mRNA level) in these two cell

lines (Figure 4A). MBD2 has been reported to mediate epigenetic

silencing of 14-3-3s in TRAMP C1 cells and human LNCaP

prostate cells [24], and has been shown to be involved in the

transcriptional repression of GSTP1 in MCF-7 breast cancer cells

[40]. MBD2 and other MBD proteins bind to methylated CpGs and

recruit corepressor complexes which contain HDACs, chromatin

remodeling proteins as well as other proteins leading to the

repression of the expression of hypermethylated genes [31].

Interestingly, the protein level of MBD2 was much higher in

TRAMP C1 cells than in TRAMP C3 cells (Figure 4A), suggesting a

possible common MBD2-mediated epigenetic suppression of Nrf2 in

TRAMP C1 cells. In contrast, the protein level of AcH3 was

apparently lower in TRAMP C1 cells than in TRAMP C3 cells but

was increased tremendously by TSA treatment (Figure 4D). Since

the expression of MBD2 would be dependent on HDAC activities,

our above results would potentially explain the requirement of

HDAC inhibitors in order to effectively modulate corepressors

binding and to maximally restore the reexpression of Nrf2 as well as

induction of NQO1 in TRAMP C1 cells. In addition, when this

suppressive sequence containing the extra 5 CpGs was further

analyzed using the Transcriptional Elements Search System (TESS,

http://www.cbil.upenn.edu/tess) based on the TRANSFAC V6.0

database, several transcription factor binding sites were identified,

including the binding sites of E2F1-p107 and NF-E2 (data not

shown). The exact binding proteins and their functions leading to the

suppression of Nrf2 expression would require further investigation.

In summary, our present results clearly demonstrate that the

expression of Nrf2 is suppressed by promoter CpG methylation in

TRAMP prostate tumors. The existence and possible biological

consequences of such epigenetic mechanism in the regulation of

Nrf2 expression in human prostate cancer is currently under

investigation in our laboratory. To the best of our knowledge, this

is the first report revealing the epigenetic regulation of Nrf2 in

prostate tumorigenesis. These findings would certainly open the

door for further study on the role of Nrf2 as a plausible target for

cancer chemoprevention and a possible diagnostic marker for

detection of human prostate cancer.

Materials and Methods

Reagents and Cell Culture
All the enzymes used in the present study were obtained from

New England Biolabs Inc. (Ipswich, MA) unless specified. Human

recombinant insulin was purchased from Invitrogen. Dual

luciferase assay system, luciferase reporter vectors pGL 4.75 with

CMV promoter and pGL 4.15 were obtained from Promega

(Madison, WI). All other chemicals were purchased from Sigma

(St Louis, MO, USA).

TRAMP C1 and C3 cells were maintained in DMEM

supplemented with 10% heat-inactivated fetal bovine serum,

5 mg/ml human recombinant insulin, 1028 mol/L 5-androstan-

17b-ol-3-one, and antibiotics. The cells were grown at 37uC in a

humidified 5% CO2 atmosphere.

Animals
Female hemizygous C57BL/TGN TRAMP mice, line PB Tag

8247NG, and male C57BL/6 mice were purchased from The

Jackson Laboratory (Bar Harbor, ME). The animals were bred on

same genetic background and maintained in the Animal Care

Facility of Rutgers University. Housing and care of the animals

were in accordance with the guidelines established by the

University’s Animal Research Committee consistent with the

NIH Guidelines for the Care and Use of Laboratory Animals.

Transgenic males used in the current study were routinely

obtained as [TRAMP 6 C57BL/6] F1 or as [TRAMP 6
C57BL/6] F2 offspring. Identities of transgenic mice were

confirmed by the PCR-based genotyping. Throughout the

experiment the animals were housed in cages with wood chip

bedding in a temperature-controlled room (68–72uF) with a 12-h

light dark cycle, at a relative humidity of 45–55%, and fed with

irradiated AIN-76A diet (DYETS Inc, Bethlehem, PA).

Bisulfite Genomic Sequencing (BGS)
Genomic DNA was isolated from the palpable prostate tumors of

24 weeks old TRAMP mice (n = 12), apparently normal prostate

tissue of 24 weeks old C57BL/6J mice (n = 10), TRAMP-C1 and C3

cells using the DNeasy tissue kit (Qiagen, Valencia, CA). The

bisulfite conversion was carried out using 500 ng of genomic DNA

with the use of EZ DNA Methylation Gold Kits following

manufacturer’s instructions (Zymo Research Corp., Orange, CA).

The converted DNA was amplified by PCR using Platinum Blue

PCR SuperMix (Invitrogen, Grand Island, NY) with specific primer

sets (Table S1), with the translation initiation site (TIS) defined as

position 1. The PCR products were purified by gel extraction using

the QiaquickTM gel extraction kit (Qiagen, Valencia, CA), then

cloned into pCR4 TOPO vector using a TOPOTM TA Cloning kit

(Invitrogen, Grand Island, NY). Plasmids DNA from at least 10

colonies per each group were prepared using QIAprep Spin

Miniprep Kit (Qiagen, Valencia, CA) and sequenced (DNA Core

Facility, Rutgers/UMDNJ, Piscataway, NJ).

Plasmids
The genomic sequence of murine Nrf2 containing the promoter

region was retrieved from NCBI mouse genome data base. Two

murine Nrf2 promoter segments, 21065–1 and 21367–1 with the

translation initiation site (TSS) referred to as position 1, were

amplified from mouse genomic DNA isolated from normal mouse

prostate using the following primers: 1065 forward, 59-GGTACC-

TAAGTACGTGTAAAGGAACCCTGAGA-39; 1367 forward,

59-GGTACCAACAGTCACTACCACCACCA-39; and a com-

mon reverse primer, 59-CTCGAGGCTGAGGGCGGACGC-

TGT-39. The PCR products were cloned into pCR4 TOPO

vector using a TOPO TA Cloning kit (Invitrogen, Grand Island,

NY) then digested with KpnI and XhoI and inserted into pGL4.15

luc2P/Hygro vector. All the sequences of recombinant plasmids

were verified by sequencing (DNA Core Facility, Rutgers/

UMDNJ, Piscataway, NJ).

The CpG-methylated reporters were generated by treating the

reporter plasmids with methyl-transferase M. SssI according to the

instruction provided by manufacturer. Briefly, 5 mg reporter

constructs were incubated with 5 units of M. SssI for 1 hr in

NEBuffer 2 (50 mM NaCl, 10 mM Tris-HCl pH 7.9, 10 mM

MgCl2, and 1 mM dithiothreitol) supplemented with 160 mM S-

adenosylmethionine at 37uC. Methylated plasmids were purified

using QIAquick PCR purification kit (Qiagen, Valencia, CA) and
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the concentrations of all plasmids were determined by agarose gel

electrophoresis. The efficiency of methylation reactions was

confirmed by digestion using the methylation-dependent HhaI

and HpaII restriction endonucleases (Figure S2).

Transfection and Luciferase Reporter Assay
TRAMP C1 cells were plated in 24-well plates for 24 hrs, then

transfected with 100 ng of the indicated reporter plasmids by using

GeneJuice (Novagen, Madison, WI) according to the manufac-

turer’s instructions. 25 ng of pGL 4.75, which contains a Renilla

reniformis luciferase gene driven by CMV promoter, was co-

transfected as internal control. 24 hrs after transfection, the cells

were lysed in dual luciferase lysis buffer, and 10 ml aliquots of the

cell lysate were assayed using a dual luciferase assay kit with a

Sirius luminometer (Berthold Technologies, Pforzheim, Germany).

The transcriptional activities of each constructs were calculated by

normalizing the firefly luciferase activities with corresponding

Renilla luciferase activities, and were reported as folds of induction

compared with the activity of empty pGL 4.15 vector. The values

are mean6SD of four separate samples.

Cell Treatments and Western Blotting
Cells were plated in 6-well or 12-well plates for 24 hrs, then

treated with 2 mM 5-aza, 200 nM TSA, or 1 mM 5-aza plus

100 nM TSA in media containing 0.5% FBS for 60 hrs, or 48 hrs

followed by incubation in the presence of 5 mM tert-butylhydro-

quinone (tBHQ) for additional 12 hrs. After treatments, the cells

were harvested in radioimmunoprecipitation assay (RIPA) buffer

(Sigma, St Louis, MO). The protein concentrations of the cleared

lysates were determined by using the bicinchoninic acid method

(Pierce, Rockford, IL), and aliquots each containing 20 mg of total

protein were resolved by 4%–15% SDS-polyacrylamide gel

electrophoresis (Bio-rad, Hercules, CA). After electrophoresis,

the proteins were electro-transferred to polyvinylidene difluoride

(PVDF) membrane (Millipore, Bedford, MA). The PVDF mem-

brane was blocked with 5% fat-free milk in phosphate-buffered

saline-0.1% Tween 20 (PBST), then sequentially incubated with

specified primary antibodies and HRP-conjugated secondary

antibodies. The blots were visualized by SuperSignal enhanced

chemiluminiscence (ECL) detection system and documented using a

Gel Documentation 2000 system (Bio-Rad, Hercules, CA).

RNA Isolation and Reverse Transcription-PCR
Total RNA was extracted from the treated cells using the Trizol

(Invitrogen, Carlsbad, CA). Steady-state mRNA levels of Nrf2 and

NQO1 were determined by semi-quantitative reverse transcrip-

tion-PCR (RT-PCR). First-strand cDNA was synthesized from

2 mg of total RNA using SuperScript III First-Strand Synthesis

System for RT-PCR (Invitrogen, Grand Island, NY) according to

the manufacturer’s instructions. The cDNA was used as the

template for PCR reactions performed using Platinum Blue PCR

SuperMix (Invitrogen, Grand Island, NY). The PCR products

were isolated by agarose gel electrophoresis and visualized by EB

staining using a Gel Documentation 2000 system (Bio-Rad,

Hercules, CA). Primers to specifically amplify the genes involved

were shown in Table S2.

Chromatin Immunoprecipitation (ChIP) Assay
Chromoatin immunoprecipitation (ChIP) assay was carried out

using Millipore’s Magna-ChIP A kit (Millipore, Lake Placid, NY)

following manufacturer’s protocol. In brief, freshly prepared 18.5%

formaldehyde was added to the cells (,16107 cells in 150 mm dish)

at a final concentration of 1%. Cells were incubated at 37uC for

10 min, then excess formaldehyde was quenched by addition of 5M

glycine. After washing twice, the cells were scraped into 2 ml cold

PBS containing 16 protease inhibitor cocktail II. The cells were

pelleted and then resuspended in Cell Lysis Buffer containing 16
protease inhibitor cocktail II. Nuclei were isolated after Dounce

homogenization and resuspended in Nuclear Lysis Buffer containing

16protease inhibitor cocktail II. The samples were sonicated on ice

using a Bioruptor sonicator (Diagenode Inc., Sparta, NJ) to shear the

cross-linked DNA to an average length of 200–1000 bp and

centrifuged at 12,000 rpm to remove insoluble material. The

chromatin solutions were diluted 10-folds using dilution buffer,

and 10 ml of each was reserved as total input control. Diluted

chromatin solutions were precleared with salmon sperm DNA-

protein A magnetic beads for 1 hr, and then incubated with protein

A magnetic beads and antibodies specific for MBD2, Pol II, H3Ac

and H3K9me3 (Millipore, Lake Placid, NY) or nonspecific IgG

overnight at 4uC. The immunoprecipitated complex-magnetic beads

were collected using magnetic separator and washed according to

manufacturer’s instruction. The pellets were then incubated with

proteinase K in ChIP Elution buffer for 2 hrs at 62uC with shaking

to elute immunocomplex and reverse cross-link. The samples were

incubated at 95uC for 10 min and DNA was purified according to

manufacturer’s instruction. 1 ml of each of the purified DNA was

used as template for 30 cycles of PCR amplification using designated

primers (Table S2). The PCR products were then analyzed by

agarose gel electrophoresis and visualized using EB staining. Primer

set was designed to cover the DNA sequence from position 21190 to

21092 (mNrf2P1) in which the first 5 CpGs locate. To determine

the association of RNA polymerase complex II to the Nrf2 promoter,

another primer set was designed to cover the sequence closer to the

transcription start site (TSS, 262 to +20, mNrf2P2). Primers

covering b-actin promoter region was used as a control to verify the

efficacy of ChIP assays.

Supporting Information

Figure S1 Typical bisulfite genomic sequencing chromatographs

show that the first 5 CpGs (indicated by arrows) are methylated in

TRAMP prostate tumor but not in normal prostate. All the non-

methylated cytosines were converted into thymidine by bisulfite

treatment, while the methylated cytosines remained unchanged.

Found at: doi:10.1371/journal.pone.0008579.s001 (0.22 MB

PDF)

Figure S2 pGL-1065 and pGL-1367 reporters were methylated

in vitro by CpG methyltransferase M. sssI, then digested by HpaI or

HhaII. HpaI and HhaII are CpG-methylation-sensitive restriction

endonucleases whose activity is blocked by CpG methylation.

Found at: doi:10.1371/journal.pone.0008579.s002 (0.09 MB

PDF)

Figure S3 pGL-1367 or pGL-1065 reporters, either methylated

by CpG methyltransferase or not, were co-transfected with pGL

4.75 vector which contains a Renilla reniformis luciferase gene

driven by CMV promoter into Hep G2 cells (A) or HEK293 cells

(B), and the luciferase activities were measured after 24 hrs. The

transcriptional activities of each constructs were calculated by

normalizing the firefly luciferase activities with corresponding

Renilla luciferase activities, and are represented as folds of

induction compared with the activity of empty pGL 4.15 vector.

The values are mean Â6SD of four separate samples.

Found at: doi:10.1371/journal.pone.0008579.s003 (0.08 MB

PDF)

Figure S4 The normalized expression of NQO1 in human

prostate specimens is decreasing along with the progression of
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prostate cancer. Gene expression profiling data sets were retrieved

from online database (www.oncomine.org) and analyzed for the

expression of NQO1 in normal benign prostate, prostate

carcinoma and metastatic prostate tumor.

Found at: doi:10.1371/journal.pone.0008579.s004 (0.09 MB

PDF)

Table S1

Found at: doi:10.1371/journal.pone.0008579.s005 (0.03 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0008579.s006 (0.03 MB

DOC)
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