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Abstract

Liver disease due to hepatitis C virus (HCV) infection is an important health problem worldwide. HCV induced changes in
microRNAs (miRNA) are shown to mediate inflammation leading to liver fibrosis. Gene expression analyses identified
dysregulation of miRNA-449a in HCV patients but not in alcoholic and non-alcoholic liver diseases. By sequence analysis of
the promoter for YKL40, an inflammatory marker upregulated in patients with chronic liver diseases with fibrosis, adjacent
binding sites for nuclear factor of Kappa B/P65 and CCAAT/enhancer-binding protein alpha (CEBPa) were identified. P65
interacted with CEBPa to co-operatively activate YKL40 expression through sequence specific DNA binding. In vitro analysis
demonstrated that tumor necrosis factor alpha (TNFa) mediated YKL40 expression is regulated by miRNA-449a and its target
NOTCH1 in human hepatocytes.NOTCH1 facilitated nuclear localization of P65 in response to TNFa. Further, HCV patients
demonstrated upregulation of NOTCH1 along with downregulation of miRNA-449a. Taken together it is demonstrated that
miRNA-449a plays an important role in modulating expression of YKL40 through targeting the components of the NOTCH
signaling pathway following HCV infection. Therefore, defining transcriptional regulatory mechanisms which control
inflammatory responses and fibrosis will be important towards developing strategies to prevent hepatic fibrosis especially
following HCV recurrence in liver transplant recipients.
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Introduction

Liver diseases resulting from hepatitis C virus (HCV) infection is

a major health issue worldwide as well as the United States [1,2].

It is estimated that about 4 million people are infected with HCV

in the United States and about 300 million worldwide [1]. The

natural history of HCV infection in the liver is characterized by

slow progression to fibrosis and cirrhosis, end-stage liver diseases,

and high risk of developing hepatocellular carcinoma (HCC) [3].

YKL40 (CHI3L1) is a member of the ‘‘mammalian chitinase–

like proteins,’’ secreted by activated macrophages and neutrophils

during inflammation in various tissues including liver, smooth

muscle and cancer cells [4]. YKL40 is elevated in patients with

chronic liver diseases that are characterized by inflammation and

increased extra-cellular remodeling [5,6]. Although increased

levels of YKL40 have been shown to be induced by tumor

necrosis factor alpha (TNFa), the molecular mechanisms are not

clearly identified [7]. TNFa, an inflammatory cytokine regulates

gene expression in the nuclear factor of Kappa B (NFKB) signaling

pathway [8]. Components of the mammalian NFKB family of

transcription factors includes NFKB1 (P105/P50), NFKB2 (P100/

P52), RelA (P65), RelB and c-Rel [9]. The NFKB component P65

is a multimeric DNA binding transcription factor involved in

inflammatory and immune disorders especially autoimmune

diseases and cancer [10]. NOTCH1 is one of the upstream

regulator of NFKB complex and downregulation of NOTCH1

impairs its function [11,12]. It has been shown that NOTCH1 and

TNFa regulate nuclear retention of NFKB [13,14]. CCAAT/

enhancer-binding protein alpha (CEBPa) is a homodimeric DNA

binding bZIP transcription factor that controls cell proliferation

and differentiation [15]. CEBPa is differentially regulated in cases

of HCC and targets expression of a wide range of genes and

microRNAs (miRNA) involved in liver diseases [16,17].

miRNAs have been shown to play an important role in immune

evasion, regulation of cell cycle and in cancer progression

[18,19,20]. HCV infection results in modulation of miRNA

particularly those that control viral particle entry and propagation,

thus playing an important role in host immune evasion [21]. In

this study we defined the molecular mechanisms of YKL40

expression that involves HCV induced miRNA modulation and

regulation by novel pathways including NOTCH1, NFKB and

CEBPa.
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Materials and Methods

Patients
Liver biopsies were obtained from 10 chronic HCV patients, 10

alcoholic hepatitis patients, 10 non-alcoholic steatohepatitis

patients and 10 normal donor livers (control) at the time of

transplantation at Washington University Medical Center/Barnes-

Jewish Hospital (Table 1). Patients with hepatitis B virus and/or

HIV were excluded from the study. All of the human studies were

approved by the human research protection committee at

Washington University (protocol 201104075) and patients were

enrolled after written informed consent was obtained.

Plasmids and Constructs
For YKL40 luciferase constructs, the promoter regions were

amplified from human genomic DNA (Zyagen, CA) by PCR using

iProof High-Fidelity DNA Polymerase (Biorad, CA). PCR

products were subcloned into pGL4.11 vector (Promega, WI)

upstream of a luciferase gene using the NheI/EcoRV restriction

sites. P65 and CEBPa were amplified from a human cDNA library

(Stratagene, CA) and subcloned into pcDNA using the HindIII/

Not1 and HindIII/BamH1 restriction sites, respectively. Hsa-

miRNA-449a (SC400399) and control constructs were purchased

from Origene, MD. NOTCH1 (sc-36095), P65 (sc-29410) and

control siRNA (sc-37007) were purchased from Santacruz Bio-

technology, CA. Computational analysis of the promoter bound

transcription factors was done using the Transcription Element

Search System http://www.cbil.upenn.edu/cgi-bin/tess/tess.

miRNA target analysis was done using http://www.targetscan.

org.

miRNA and mRNA Expression Analysis
Total RNA was isolated from the liver biopsies or hepatocytes

using the RNAaqueous kit (Ambion, NY). Expression level of

miRNA-449a was determined using the TaqManH MicroRNA

assays and TaqManH Universal Master Mix II (Life technologies,

NY) using predesigned primers. Quantitative PCR (qPCR) to

analyze YKL40 and NOTCH1 was performed using a BioRad

Real-Time PCR System with cycling conditions of 95uC for

10 min followed by 95uC for 15 sec and 60uC for 60 sec for a total

of 40 cycles. Each TaqMan assay was run in triplicate. The DDCt
value was calculated by normalizing the threshold (CT) values

with GAPDH expression and respective gene expression in

controls.

Primary Hepatocytes and HEPG2 Cell Line Transfection
Primary human hepatocytes were purchased from Life Tech-

nologies, New York and grown in 24 well plates in Williams

Medium E supplemented with 5% FCS, 100 units/mL penicillin,

100 units/ml Amphotericin, 0.1% Albumin, 300 nM insulin,

2 mM L-glutamine and 0.1 nM Hydrocortisone. HEPG2 cells

were grown in RPMI with 10% FBS, 1 mM sodium-pyruvate,

10 mM HEPES, 2 mM L-glutamine, and 100 units/mL penicil-

lin/streptomycin. 20 ng/ml of TNFa (Sigma, St. Louis, MO) was

added for 6 hours wherever indicated. The optimal concentration

of TNFa was determined by dose-dependent analyses.

For transfection of hepatocytes and HEPG2 cells (ATCC),

0.26105 cells were seeded into each well of a 24 well plate and

grown for 24–48 hours. On the day of transfection, medium was

changed and 500 ng of DNA was transfected using Lipofectami-

neTM LTX and Plus Reagent (Invitrogen, NY). For siRNA

delivery 0.16105 cells were grown in each well of a 24 well plate

for 24–48 hours in antibiotic free medium and 80 pico moles of

siRNA were transfected using LipofectamineTM RNAiMAX

(Invitrogen). Cells were harvested 48 hours post transfection and

efficiency was measured by qPCR, immunostaining and western

blot.

Western Blot and Immunofluorescence Microscopy
For localization of YKL40, NOTCH1 and P65, 50,000 HEPG2

cells were grown on coverslips in 24 well plates. Immunostaining

was done as described before [22]. Briefly, cells were fixed with

4% paraformaldehyde and permeabilized with 0.1% Triton X-

100. 2% normal goat serum in DPBS with 1% BSA, 0.1% Tween

20 was used for blocking and washing. Primary antibodies for

western blot and Immunofluorescence used were goat anti-YKL40

(sc-31722), rabbit anti-NOTCH1 (sc-9170), mouse anti-CEBPa
(sc-166258) and rabbit anti-P65 (sc-109). The secondary antibodies

used were FITC-conjugated anti-mouse IgG (sc-2010), Rhoda-

mine-conjugated anti-goat IgG (sc-3945) and Rhodamine-conju-

gated anti-rabbit IgG (sc-2492). The images were captured using

an Eclipse 80i fluorescent microscope (Nikon, NY) and processed

using Metamorph version 6.3r2 software (Molecular Devices, CA).

Extraction of the nuclear and cytoplasmic fractions from the

hepatocytes (16106 cells) was done using NE-PERH Nuclear and

Cytoplasmic Extraction Kit (Thermo Scientific, IL).

Luciferase Assay
Human primary hepatocytes (16105) were transfected in 24

well plates as mentioned earlier with 1 mg pGL4.11 luciferase

reporter vector or pGL4.11 driven by the YKL40 promoter or

deletion constructs. For miRNA regulation studies the reporter

construct was transfected in combination with 1 mg of either

control vector or vector expressing miRNA-449 precursor. For

NOTCH1 regulation studies the reporter construct was transfected

in combination with 80 picomoles of either non specific siRNA or

siRNA specific for NOTCH1. For transcription factor studies the

reporter constructs were transfected in combination with 2 mg of

empty pcDNA3 vector, or pcDNA3 expressing P65 or CEBPa or

Table 1. Patient Demographics.

Demographic HCV AH NASH Control

Number (n) 10 10 10 10

Age (mean, SD) 5764 5067 5465 34613

Gender M:F 6:4 5:5 7:3 5:5

Recipient Race (n) Caucasian 5 4 5 5

African American 5 5 5 5

Others 1

Bilirubin (mg/dL) 1.960.4 1.560.3 1.860.6 0.960.8

AST (IU/ml) 90634 110640 74630 25610

ALT (IU/ml) 55629 140660 63638 23612

HCV Viral load (X106/mL) 1.460.3 n/a n/a n/a

HCV genotype 1 4 n/a n/a n/a

% 21.5% n/a n/a n/a

1a 4 n/a n/a n/a

% 30.8% n/a n/a n/a

1b 2 n/a n/a n/a

% 15.4% n/a n/a n/a

SD: Standard Deviation, HCV: Hepatitis C Virus, AH: Alcoholic Hepatitis, NASH:
Non-Alcoholic Steatohepatitis, M: Male, F: Female, AST: Aspartate Amino
Transferase, ALT: Alanine Amino Transferase.
doi:10.1371/journal.pone.0050826.t001
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both. 20 ng/ml of TNFa was added to the medium 6 hours before

harvesting. To control for efficiency of transfection, 0.1 mg of

pRL-TK (Promega, Madison, WI), which expresses Renilla

luciferase was included. Luciferase activity was measured 48 h

after electroporation using the Dual Luciferase Reporter Assay

System (Promega, Madison, WI) and the results were normalized

to Renilla luciferase.

Co-immunoprecipitation
Immunoprecipitation of P65 with CEBPa or the reverse

immunoprecipiation in TNFa treated hepatocytes (16106) were

carried out as described by Sarma et al [22]. Briefly, cells were

washed with DPBS, and lysed with 0.5 ml of lysis buffer (10 mM

Tris-HCl, pH 7.5, 0.4 M NaCl, 1% Nonidet P-40, 0.4% Triton

X-100, 0.2% sodium deoxycholate, 1 mM EDTA, protease

inhibitors (PI), 1 mM PMSF). Diluted with 0.5 ml buffer contain-

ing 10 mM Tris-HCl, pH 7.5, 1 mM EDTA, PI, 1 mM PMSF

and centrifuged at 17,0006g for 30 min. 1 mg normal mouse/

rabbit IgG or mouse anti-CEBPa or rabbit anti-P65 was used to

immunoprecipitate the complexes from the supernatant. After

overnight incubation with the antibodies 30 ml of Protein G beads

were added to lysates and incubated for another 1 hour. Beads

were washed with 700 ml of wash buffer (10 mM Tris-HCl,

pH 7.5, 0.2 M NaCl, 0.5% Nonidet P-40, 0.2% Triton X-100,

0.1% sodium deoxycholate, 1 mM EDTA, PI, 1 mM PMSF)

3 min each for 5 times and once with cold DPBS by centrifugation

at 1,8006g for 3 min at 4uC. Immunocomplexes were eluted by

boiling with 30 ml of 2X SDS buffer (0.1 M Tris-HCl, pH 6.8,

3.5% SDS, 10% glycerol, 2 mM DTT, 0.004% bromphenol blue)

for 10 min and subjected to SDS-PAGE (4–20% gel). P65 or

CEBPa were detected with a rabbit anti-P65 or a mouse anti-

CEBPa respectively.

Chromatin Immunoprecipitation
Chromatin Immunoprecipitation was carried out with ChIP-

ITTM Express (Active Motif, Carlsbad, CA). Briefly, hepatocytes

(16106) were crosslinked with 1% formaldehyde and quenched

with 0.375 M glycine. Nuclei were isolated and sonicated in

350 ml of shearing buffer to prepare chromatin extracts. 1 mg of

antibodies for control IgG, P65 or CEBPa were added to 60 ml of
sheared chromatin along with Protein G Magnetic Beads.

Antibody-lysate mix was washed and DNA was eluted according

to the instructions. YKL40 promoter regions were amplified by

PCR.

Results

miRNA-449a is Downregulated in HCV Patients
A genomewide miRNA analysis in liver biopsies obtained from

chronic HCV infected patients demonstrated a distinct expression

profile when compared to the normal liver. Particularly, a signif-

icant downregulation of microRNA-449a was observed in the

HCV infected livers.

To analyze the specific role of miRNA-449a following HCV

infection, biopsies were obtained from 10 chronic HCV patients,

10 alcoholic hepatitis patients, 10 non-alcoholic Steatohepatitis

(NASH) patients and 10 control normal donor livers at the time of

liver transplant. Total RNA was isolated from the liver biopsies

and expression level of miRNA-449a was determined by qPCR

using specific primers and the results were normalized to GAPDH

Figure 1. miRNA-449a is downregulated in HCV patients and YKL40 is upregulated in patients with hepatic fibrosis. Total RNA was
isolated from liver biopsies obtained from 10 chronic HCV patients, 10 alcoholic hepatitis patients, 10 non-alcoholic steatohepatitis (NASH) patients
and 10 normal donor livers (control). Expression of miRNA-449a (1A) and YKL40 (1B) were determined by Q-PCR. The DDCt value was calculated by
normalizing the threshold (CT) values with GAPDH expression and miRNA-449a (1A) or YKL40 (1B) expression respectively in controls. The ‘*’
represents p value,0.01 obtained by a two-tailed t test. Error bars represent Standard Deviations (SD) calculated from three independent
experiments.
doi:10.1371/journal.pone.0050826.g001
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expression. Expression analysis demonstrated that miRNA-449a is

downregulated more than two fold in livers obtained from HCV

patients whereas no significant differences in the expression was

observed in alcoholic hepatitis patients, NASH patients and

Figure 2. TNFa regulates the expression of YKL40 at the transcriptional level. A. (Upper panel) Hepatocytes were transfected with an
23000 bp YKL40-promoter driven reporter construct with (+) or without (2) TNFa. Firefly luciferase activity was measured 48 hours after transfection
and normalized to a Renilla luciferase internal control. The numbers represent fold-change over control (average of three independent experiments);
error bars represent SD. The ‘*’ represents p value,0.05 obtained by a two-tailed t test. (Lower panel): hepatocytes from 2A were immunoblotted with
anti-YKL40 with (+) or without (2) TNFa. ACTIN was used as the loading control. B. HEPG2 cells were immunostained with anti-YKL40 antibody
without (2) or with (+) TNFa. C. Quantification of the YKL40 immunostaining signal in HEPG2 cells (1B). The numbers represent the average
fluorescence intensity of YKL40 (n = 100). D. Essential regions in the YKL40 promoter required for TNFa mediated expression. Hepatocytes were
transfected with luciferase reporters driven by deletion constructs of YKL40 promoter (23000 bp, 22000 bp, 21000 bp, 2500 bp, filled black bars
on left) construct with (+) or without (2) TNFa. Firefly luciferase activity was measured 48 hours after transfection and normalized to a Renilla
luciferase internal control. The luciferase activity was normalized to the control empty luciferase vector and the numbers represent fold-change over
control (average of three independent experiments); error bars represent SD calculated from three independent experiments.
doi:10.1371/journal.pone.0050826.g002
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Figure 3. Transcription factors P65 and CEBPa regulate expression of YKL40. A. Computational prediction of transcription factors binding to
the YKL40 promoter. Computational analysis of24000 bp upstream of the open reading frame using the Transcription Element Search System (TESS).
The bars represent the predicted consensus binding sites in the DNA for transcription factors P65 and CEBPa. B. Mutation of NFKB/P65 binding site
inhibits TNFa mediated YKL40 induction. Hepatocytes were transfected with luciferase reporters driven by deletion constructs of YKL40 promoter
2578 bp wildtype, 2578 bp P65 binding site mutated (*) and 2500 bp wildtype (P65 site deleted), filled black bars on left) construct with (+) or
without (2) TNFa. Firefly luciferase activity was measured 48 hours after transfection and normalized to a Renilla luciferase internal control. The
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normal livers (Figure 1A). This suggests that miRNA-449a is

specifically downreguated in patients with liver diseases following

HCV infection.

YKL40 is Upregulated in HCV Patients with Fibrosis
To determine the expression level of YKL40 in liver diseases,

biopsies were obtained from 10 chronic HCV patients, 10

alcoholic hepatitis patients, 10 NASH patients and 10 control

normal donor livers at the time of liver transplant. Total RNA was

isolated from the liver biopsies and expression level of YKL40 was

determined by qPCR using specific primers and the results were

normalized to GAPDH expression. Expression analysis showed that

YKL40 to be upregulated in alcoholic hepatitis patients (2.4 fold),

NASH patients (2.9 fold) and HCV patients (2.6 fold) compared to

normals (Figure 1B). These results demonstrate that YKL40 is

elevated in patients with chronic liver diseases which are

accompanied by inflammation.

TNFa Regulates the Expression of YKL40 at the
Transcriptional Level
We and others have shown that YKL40 expression is elevated in

patients with chronic liver diseases accompanied by inflammation

[5,6]. In vitro studies have shown that inflammatory cytokines such

as TNFa have the ability to induce expression of YKL40 [7]. To

study the molecular mechanisms of TNFa mediated regulation of

YKL40, 23000 base pairs (bp) of the human YKL40 promoter was

cloned upstream of a luciferase reporter gene and the construct

was introduced into human hepatocytes. The cells were treated

either with or without 20 ng/ml TNFa for 6 hours and luciferase

activity was measured. More than four fold increase in the YKL40

promoter activity was observed in cells treated with TNFa
compared to untreated (Figure 2A, upper panel). Further, western

blot analysis showed increased expression of YKL40 in TNFa
treated cells (Figure 2A, lower panel). This reporter gene analysis

suggests that TNFa regulates the expression of YKL40 through

modulation of upstream transcriptional complexes that interact

with the YKL40 promoter.

To further demonstrate that TNFa induces expression of

YKL40, human HEPG2 cells were cultured and treated with

TNFa. Immunostaining of the HEPG2 cells with anti-YKL40

showed a more than 2 fold increase in expression of YKL40 in the

cells treated with TNFa compared to untreated cells (Figures 2B

and 2C).

Reporter Analysis Identified Essential Regions in the
YKL40 Promoter Required for TNFa Regulated Expression
of YKL40
Since TNFa regulated the expression of YKL40 at the

transcriptional level we hypothesized the possible interaction of

TNFa with upstream regulatory complexes of the YKL40 gene. To

identify the essential regions for TNFa mediated expression

deletion mutants of the YKL40 promoter regions were cloned

upstream of a luciferase reporter gene. Sequential deletion

mutants of the YKL40 promoter region (Figure 2D, black filled

bars on the left) were introduced into hepatocytes. The cells were

treated with or without TNFa and the luciferase activity was

measured. Significant increases (.10 fold) in the expression from

the YKL40 promoter deletion constructs were observed in the cells

treated with TNFa compared to untreated (Figure 2D). However,

deletion of the 21000 to 2500 bp region of the YKL40 promoter

impaired TNFa mediated transcriptional induction. This indicates

that this region (21000 to 2500 bp) contains binding sites for

transcriptional regulatory elements on the YKL40 promoter.

Computational Prediction of Transcription Factors
Regulating YKL40 Expression
In order to identify transcription factors that regulate the

expression of YKL40 a computational analysis of 24000 bp

upstream of the open reading frame was done using the

transcription element search system. The program predicted

consensus binding sites in the DNA for several transcription factors

that included NFKB subunit P65 and CEBPa (Figure 3A). The

software predicted a consensus binding site for p65

(GGAATTTCC) at 2578 bp position at the promoter. Similarly

several DNA binding sites for CEBPa (CCAAT) was also

predicted throughout the YKL40 promoter. Most of the CEBPa
binding sites were concentrated in the 23000 to 22000 bp region

of the promoter. Interestingly, two CEBPa binding sites were

identified in close proximity to the P65 DNA binding site on the

promoter (Figure 3A) suggesting that these two transcription

factors may bind to the YKL40 promoter by forming a transcrip-

tional regulatory complex.

Mutation of NFKB (P65) Binding Site Inhibits TNFa
Mediated YKL40 Induction
Computational analysis predicted a putative binding site for

NFKB subunit P65 at 2578 bp position of the human YKL40

promoter. Further the YKL40 promoter analysis using the deletion

constructs identified 21000 to 2500 bp region to be essential for

TNFa mediated induction of YKL40 in hepatocytes. To test

whether P65 binding plays a role in TNFa mediated upregulation

of YKL40 promoter a 2578 bp wildtype luciferase reporter

construct, a 2578 bp construct with point mutations in the P65

binding site (wildtype: GGAATTTCC, point mutation: AGCT-

TATCA) and a 2500 bp construct with P65 binding site deleted

were prepared. Hepatocytes were transfected with these three

reporter constructs and cells were treated either with or without

TNFa and Luciferase activity was measured. As expected the

wildtype 2578 bp promoter construct with an intact P65 binding

site showed two fold increase in transcriptional activity in the

presence of TNFa (Figure 3B). However, point mutation in the

P65 binding site or deletion of the P65 binding site (2500 bp)

completely abolished TNFa mediated induction of YKL40

(Figure 3B). Further, we demonstrated that siRNA mediated

knockdown of P65 resulted in impairment of transcriptional

activation by the YKL40 promoter in TNFa treated cells.

CEBPa in an Upstream Transcription Factor which
Activate YKL40 Expression
Computational analysis identified CEBPa as a putative DNA

binding factor for transcriptional regulation of YKL40. To test

whether CEBPa regulates YKL40 expression an empty vector or

numbers represent fold-change over the 2578 wildtype construct without TNFa treatment (average of three independent experiments); error bars
represent SD. The P65 binding site mutation is shown in the lower panel. The ‘*’ represents p value,0.05 obtained by a two-tailed t test. C. CEBPa in
an upstream transcription factor to activate YKL40 expression. Hepatocytes were transfected with luciferase reporters driven by deletion constructs of
YKL40 promoter (23000 bp, 22000 bp, 21000 bp, 2500 bp, filled black bars on left) along with an empty vector or vector expressing CEBPa and
treated with TNFa. Firefly luciferase activity was measured 48 hours after transfection and normalized to a Renilla luciferase internal control. The
numbers represent fold-change over the control empty luciferase vector (average of three independent experiments); error bars represent SD.
doi:10.1371/journal.pone.0050826.g003
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a vector expressing CEBPa was overexpressed in hepatocytes

along with deletion mutants of the YKL40 promoter cloned

upstream of a luciferase reporter gene. The deletion mutants

included 23000 bp, 22000 bp, 21000 bp and 2500 bp of the

YKL40 promoter region (Figure 3C, black filled bars on the left)

and the luciferase activity was measured after the cells were treated

with TNFa for 6 hours. Significant increases (.9 fold) in the

YKL40 expression from the 23000 bp promoter construct was

noted when CEBPa was overexpressed compared to control

empty vector (Figure 3C). However, deletion of the 23000 bp to

22000 bp region of the YKL40 promoter impaired CEBPa
mediated transcriptional induction of YKL40 as that region

contained several putative CEBPa binding sites as shown on our

computational analysis (Figure 3A).

CEBPa Interacts with NFKB/P65 to Bind YKL40 Promoter
and Cooperates to Activate Transcription in Hepatocytes
Reporter analysis demonstrated that both P65 and CEBPa

regulate expression from the YKL40 promoter. To test whether

P65 and CEBPa interact and bind to adjacent consensus sites

present on the YKL40 promoter a chromatin immunoprecipitation

analysis was done. TNFa treated hepatocytes were fixed with

formaldehyde and chromatin extracts were prepared. The DNA-

protein complexes were immunoprecipitated with anti-P65 or

anti-CEBPa or isotype control IgGs. Chromatin fragments were

isolated from the immunoprecipitated DNA-protein complexes

and subjected to PCR amplification using primers specific for

YKL40 promoter regions as shown in Figure 4A. The PCR

products were resolved on agarose gel. Chromatin immunopre-

cipitation analysis showed that both P65 and CEBPa bind to the

YKL40 promoter (Figure 4B). P65 binds to the 2300 bp to

2700 bp region of the YKL40 whereas no binding was observed

with other regions of the promoter. This region encompasses the

P65 binding site at 2578 bp position. CEPBa showed binding to

several regions of the YKL40 promoter where maximum band

intensity was seen at 21900 bp to 22300 bp region that

encompasses most of the CEBPa binding sites. Immunoprecipi-

tation with isotype IgGs did not enrich any of these YKL40

promoter regions demonstrating the specificity for P65 or CEBPa.
No amplification of DNA was observed in PCR reactions

performed with primers specific for ACTIN promoter.

Binding of both CEBPa and P65 to the YKL40 promoter in

adjacent DNA binding sites suggests the possibility that they

interact with each other. To test this, crude lysates from TNFa
treated hepatocytes were prepared and subjected to immunopre-

cipitation with either isotype control IgG or anti-P65 followed by

immunoblotting with anti-CEBPa. CEBPa was co-immunopreci-

pitated with endogenous P65 whereas no CEBPa was observed

with the control IgG (Figure 4C). To confirm the interaction

a reverse co-immunoprecipitaion was done by immunoprecipita-

tion with either isotype control IgG or anti-CEBPa followed by

immunoblotting with anti-P65 (Figure S1). To further demonstrate

the interaction between P65 and CEBPa, HEPG2 cells were

treated with or without TNFa and co-immunostained with anti-

CEBPa and anti-P65. CEBPa primarily localized to the nucleus in

both TNFa treated and untreated cells. P65 remained exclusively

cytoplasmic in the untreated cells with little to no nuclear

localization. In the TNFa treated cells, a significant amount of

P65 translocated into the nucleus and co-localized with CEBPa
(Figure 4D).

Immunoprecipitation and co-localization analyses indicated

that both P65 and CEBPa interact with each other and bind to

their consensus sites on the YKL40 promoter. To determine their

role in transcriptional regulation from the YKL40 promoter,

hepatocytes were co-transfected with a luciferase reporter

construct driven by the YKL40 promoter (23000 bp) with P65

or CEBPa or both. Overexpression of both P65 and CEBPa
resulted in significant increase in transcriptional activation of the

reporter construct compared to either alone (Figure 4E, upper

panel). Immunoblotting of the cell lysates with anti-P65 and anti-

CEBPa confirmed the elevated expression levels of these factors

compared to endogenous levels (Figure 4E, lower panel). This

demonstrates that CEBPa cooperates with NFKB to regulate

expression from the YKL40 promoter.

NOTCH1 Regulates Nuclear Retention of NFKB/P65 in
Response to TNFa
Results presented clearly demonstrates that TNFa mediated

regulation of YKL40 is dependent on the NFKB subunit P65. To

demonstrate nuclear translocation of P65 in response to TNFa in

hepatocytes, cells were treated with or without TNFa and

cytoplasmic and nuclear extracts were prepared. Whole cell

lysates, the cytoplasmic fraction and the nuclear fraction were

subjected to immunoblotting with anti-P65. The expression of P65

was not affected by TNFa as no difference was observed in the

whole cell lysate (Figure 5A, left panel). However, significant

cytoplasmic exclusion and nuclear enrichment of P65 was

observed in TNFa treated cells compared to untreated cells.

One of the essential upstream regulators of NFKB complex is

NOTCH1 [11,12]. To analyze the role of NOTCH1, an upstream

factor required for TNFa mediated nuclear localization of P65,

and its functionality in facilitating downstream gene regulation,

hepatocytes were transfected either with scrambled siRNA or

siRNA specific for human NOTCH1 and subjected to TNFa
treatment. The siRNA mediated knockdown of NOTCH1 was

confirmed by immunoblotting with anti-Notch1 (Figure S2A).

Immunoblot using anti-P65 demonstrated that knockdown of

NOTCH1 resulted in impairment of TNFa mediated cytoplasmic

exclusion and nuclear translocation of P65 (Figure 5A, right

panel).

To further demonstrate that NOTCH1 is required for TNFa
mediated translocation of P65, HEPG2 cells were treated with or

Figure 4. CEBPa interacts with NFKB/P65 to bind YKL40 promoter and cooperates to activate transcription in hepatocytes. A. YKL40
promoter showing binding sites for P65 and CEBPa. The black horizontal bars represent regions amplified by the PCR primers. B. Chromatin was
immunoprecipitated with anti-P65 or anti-CEBPa or isotype control IgG from hepatocytes. Segments of the YKL40 promoter (indicated in 4A) were
amplified by PCR. The first three lanes show immunoprecipitated chromatin (IP) and the fourth lane show input chromatin (Input). ACTIN promoter
amplification is shown as the negative control. C. Co-immunoprecipitation of P65 with CEBPa in hepatocytes. Whole cell lysates were subjected to
immunoprecipitation with either rabbit IgG or anti-P65. CEBPa in the cell lysates (Input) and immunoprecipitated complexes (IP) was detected by
immunoblotting with anti-CEBPa. P65 was detected by immunoblotting with anti-P65. D. HEPG2 cells were treated with (+) or without (2) TNFa and
co-immunostained with anti-CEBPa and anti-P65. E. Hepatocytes were transfected with a luciferase construct driven by the 23000 bp YKL40
promoter in addition to the control vector or vector expressing P65 or CEBPa or both. Firefly luciferase activity was measured 48 hours after
transfection and normalized to a Renilla luciferase internal control. The numbers represent fold-change over the control empty vector (average of
three independent experiments); error bars represent SD. Bottom panel, expression of P65 and CEBPa was verified by immunoblotting with anti-P65
and anti-CEBPa respectively.
doi:10.1371/journal.pone.0050826.g004
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without TNFa and probed for P65 localization by immunostaining

with anti-P65 (Figure 5B). In the untreated cells P65 remained

exclusively cytoplasmic with little to no nuclear localization

observed. In the TNFa treated cells, a significant amount of P65

Figure 5. Notch1 regulates nuclear retention of NFKB/P65 in response to TNFa. A. (Right panel) Hepatocytes were treated with (+) or
without (2) TNFa and cytoplasmic and nuclear fractions were extracted. (Left panel) hepatocytes were transfected with either non-specific siRNA or
siRNA specific for NOTCH1 and treated with TNFa and cytoplasmic and nuclear fractions were extracted. Whole cell lysates, cytoplasmic and nuclear
extracts were subjected to immunoblotting with anti-P65. B. HEPG2 cells were treated with (+) or without (2) TNFa and immunostained with anti-
P65. The arrows indicate nuclear localization of P65. C. Quantification of the P65 immunostaining signal in HEPG2 cells (5B). The numbers represent
the average fluorescence intensity of P65 (n = 100). D. HEPG2 cells were transfected with either non-specific siRNA or siRNA specific for NOTCH1 and
treated with TNFa. The arrows indicate nuclear localization of P65. E. Quantification of the P65 immunostaining signal in HEPG2 cells (5D). The
numbers represent the average fluorescence intensity of P65 (n = 100). The ‘*’ represents p value,0.05 obtained by a two-tailed t test.
doi:10.1371/journal.pone.0050826.g005

Figure 6. microRNA 449a regulates YKL40 expression by targeting NOTCH1 for silencing. A & B. Hepatocytes were transfected with an
empty vector (2) or vector expressing miRNA-449a (+) and expression of NOTCH1 (6A) and miRNA-449a (6B) were determined by Q-PCR. The DDCT
value was calculated by normalizing the threshold (CT) values with GAPDH and expression of NOTCH1 and miRNA-449a respectively in controls. The ‘*’
represents p value,0.05 obtained by a two-tailed t test. C. (Upper panel) hepatocytes were transfected with a luciferase construct driven by the YKL40
promoter in addition to the control vector or vector expressing miRNA-449a or non-specific siRNA or siRNA specific for NOTCH1 or siRNA specific for
P65 in the presence of TNFa. Firefly luciferase activity was measured 48 hours after transfection and normalized to a Renilla luciferase internal control.
The numbers represent fold-change over the control vector (average of three independent experiments); error bars represent SD. (Lower panel)
Downregulation of YKL40, NOTCH1 and P65 is verified by immunoblotting with anti-YKL40 or anti-NOTCH1 or anti-P65 respectively. ACTIN is shown
as the loading control. D. Hepatocytes were transfected with a luciferase construct driven by the YKL40 promoter in addition to the control vector or
vector expressing miRNA-449a construct with (+) or without (2) TNFa. Firefly luciferase activity was measured 48 hours after transfection and
normalized to a Renilla luciferase internal control. The numbers represent fold-change over the control vector without TNFa (average of three
independent experiments); error bars represent SD. The ‘*’ represents p value,0.01 obtained by a two-tailed t test.
doi:10.1371/journal.pone.0050826.g006
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translocated into the nucleus and quantification showed more than

three fold nuclear abundance of P65 compared to the untreated

cells (Figure 5C). Next, the HEPG2 cells were transfected with

either scrambled siRNA or siRNA specific for human NOTCH1

and subjected to TNFa treatment. Immunostaining with anti-

Notch1 showed more than four fold knockdown of NOTCH1 by

siRNA (Figure S2B, C). Knockdown of NOTCH1 resulted in

impairment of TNFa mediated nuclear translocation of P65 by

two fold (Figures 5D and E). TNFa mediated nuclear localization

of P65 in cells transfected with scrambled siRNA was not affected.

This finding indicates that NOTCH1 acts as an upstream

regulatory factor and controls TNFa mediated nuclear trans-

location of P65.

miRNA-449a Regulates YKL40 Expression by Modulating
NOTCH1 Expression
Genomewide microarray analysis in our laboratory followed by

miRNA gene expression analysis showed that miRNA-449a is

downregulated more than two fold in HCV patients compared to

non-HCV liver diseases and normals (Figure 1A). Computational

target prediction of miRNA-449a using Targetscan (Targetsca-

n.org) identified NOTCH1 to be a putative target for translational

silencing. To test this, hepatocytes were transfected with either

empty vector of vector expressing miRNA-449a and expression of

both miRNA-449a and NOTCH1 were determined by qPCR.

The results were normalized to GAPDH expression. Increased

expression of miRNA-449a resulted in more than two fold

downregulation of NOTCH1 (Figure 6A and B).

Earlier we have shown that NFKB component P65, a protein

regulated by NOTCH1, activates YKL40 expression through

sequence specific promoter interaction (Figures 3 and 4). It is likely

that downregulation of miRNA-449a in HCV infected patients

(Figure 1A) results in activation of NOTCH1/NFKB signaling

that leads to upregulation of YKL40 expression. To test whether

miRNA-449a regulates YKL40 expression, hepatocytes were

transfected with either a control vector or vector expressing

miRNA-449a along with an YKL40 promoter-driven luciferase

reporter construct. In TNFa treated cells expression of YKL40 is

reduced by more than two fold in the presence of miRNA-449a

(Figure 6C, upper panel). qPCR analysis also showed down-

regulation of YKL40 by increased expression of miRNA-449a

(Figure S3).

Since, computational target analysis did not identify YKL40 to

be a direct target for miRNA-449a; results obtained from

promoter based reporter analysis suggest that miRNA-449a

regulates the expression of YKL40 by silencing components of

upstream transcriptional regulatory complexes such as

NOTCH1/NFKB. To demonstrate that downregulation of

YKL40 expression by miRNA-449a is mediated by silencing

NOTCH1, hepatocytes were transfected with either scrambled

siRNA or siRNA specific for NOTCH1 along with an YKL40-

driven luciferase reporter construct and cells were treated with

TNFa. siRNA mediated knockdown of NOTCH1 impaired

expression from the YKL40 promoter (Figure 6C, upper panel).

We have demonstrated that nuclear P65, regulated by NOTCH1,

activates YKL40 expression in response to TNFa. siRNA mediated

knockdown of P65 also impaired expression from the YKL40

Figure 7. NOTCH1 expression is upregulated in HCV patients.
Total RNA was isolated from liver biopsies obtained from 10 chronic
HCV patients, 10 alcoholic hepatitis patients, 10 NASH patients and 10
normal donor livers (control). Expression of NOTCH1 was determined by
Q-PCR. The DDCT value was calculated by normalizing the threshold
(CT) values with GAPDH expression and expression of NOTCH1 in
controls. The ‘*’ represents p value,0.01 obtained by a two-tailed t test.
Error bars represent SD.
doi:10.1371/journal.pone.0050826.g007

Figure 8. Schematic representation of HCV mediated role of
miRNA-449a in YKL40 expression. HCV infection results in down-
regulation of miRNA-449a that leads to upregulation of NOTCH1
eventually results in nuclear stabilization of P65. P65 upregulates YKL40
expression in co-operation with CEBPa in response to TNFa.
doi:10.1371/journal.pone.0050826.g008
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promoter (Figure 6C, upper panel). Western blot analysis using

anti-YKL40 showed downregulation of YKL40 by expression of

miRNA-449a or siRNA mediated knockdown of NOTCH1 or P65

in hepatocytes (Figure 6C, lower panels). qPCR analysis also

confirmed downregulation of YKL40 by miRNA-449a (Figure S3).

Immunoblot analysis using anti-NOTCH1 demonstrated that

expression of miRNA-449a resulted in downregulation of

NOTCH1. Since, P65 is a downstream factor for NOTCH1,

knockdown of P65 did not affect its expression (Figure 6C, lower

panels). This suggests that miRNA-449a regulates expression of

YKL40 by modulating the NOTCH1 signaling pathway.

To further determine if TNFa mediated activation of YKL40 is

regulated by miRNA-449a, hepatocytes were transfected with

either a control vector or vector expressing miRNA-449a along

with an YKL40-driven luciferase reporter construct (23000 bp)

and cells were treated with or without TNFa. In the cells

expressing the empty vector, TNFa induced expression from the

YKL40 promoter (Figure 6D). However, in presence of miRNA-

449a this TNFa mediated upregulation of YKL40 was impaired.

NOTCH1 Expression is Upregulated in HCV Patients
To determine whether downregulation of miRNA-449a in

HCV infection is accompanied by upregulation of its target

NOTCH1, biopsies were obtained from 10 chronic HCV patients,

10 alcoholic hepatitis patients, 10 NASH patients and 10 control

normal donor livers at the time of liver transplant. Total RNA

isolation followed by qPCR demonstrated NOTCH1 to be

significantly upregulated in livers obtained from HCV patients.

However, no significant difference in the expression of NOTCH1

was observed in alcoholic hepatitis patients, NASH patients and

normal livers (Figure 7). Based on our in-vitro results obtained with

hepatocytes, upregulation of NOTCH1 and YKL40 (Figure 1) in

HCV patients can be attributed to downregulation of miRNA-

449a.

Discussion

YKL40, a member of the mammalian chitinase-like protein, has

been shown to be elevated in patients with chronic liver diseases

with fibrosis and cirrhosis (Figure 1) [5,6]. In chronic liver disease

patients, YKL40 expression has been shown to have a strong

correlation with degree of fibrosis progression, extracellular matrix

(ECM) synthesis, and serves an early indicator of liver fibrosis

[23,24]. In HCC patients, YKL40 expression is highly elevated in

both serum and liver tissue [25]. Here we demonstrate that YKL40

expression in human livers is regulated by co-operative action of

several promoter-bound transcription factors. By computational

analysis and subsequent in vitro studies we have defined putative

binding sites for NFKB subunit P65 and CEBPa in the YKL40

promoter (Figure 3A). The NFKB pathway plays an important

role in liver fibrosis, as its activation in hepatocytes can lead to

activation of surrounding tissue macrophages and thus leading to

fibrosis [26]. We demonstrated that TNFa mediated YKL40

expression is regulated by P65, a component of the NOTCH/

NFKB signaling pathway (Figures 2 and 3). Additionally our study

demonstrates that NOTCH1 is essential for nuclear retention of

P65 in human liver cells (Figure 5). Studies in animal models have

shown that knockdown of NOTCH1 resulted in impairment of

DNA binding and transcriptional activation ability of P65 and

impacted dendritic cell differentiation [12]. We have shown for the

first time that the NFKB subunit P65 cooperates with CEBPa to

regulate expression of YKL40 through direct DNA binding in

hepatocytes (Figures 3 and 4). Several studies have shown that

CEBPa regulates activation of hepatic stellate cells which play key

roles in hepatic fibrosis [27,28]. Differential modulation of CEBPa
has been shown in HCC patients [17,29]. Our analysis on the

regulation of the inflammatory biomarker YKL40 expression at the

transcriptional level provides new insight into role of components

of the NOTCH and NFKB signaling pathways in HCV induced

hepatic fibrosis and HCC. It is of interest that HCV core protein

NS3 can activate the NOTCH signaling pathway resulting in

development of HCV-induced HCC [30]. Activation of NOTCH

signaling also promotes TGFb1 induced epithelial-mesenchymal

transition, an initial step in the development of fibrosis, by directly

interacting with the transcriptional machinery [31,32,33]. Mod-

ulation of both NOTCH1 and NFKB pathways have also been

implicated in several cancers including HCC [34,35,36,37].

In addition to demonstrating the interaction of NOTCH,

CEBPa and NFKB pathways in YKL40 expression, we determined

an important role for modulation of miRNA by HCV. The

understanding of the complex role of miRNAs in the various

physiological and pathological processes is still emerging. miRNAs

have been implicated in regulation of pro-inflammatory cytokines,

anti-inflammatory cytokines, and interferons [38]. miRNA-21 has

been shown to regulate chronic rejection and has been implicated

in the development of fibrosis following liver transplantation

[39,40]. miRNA-21 modulates resident fibroblasts, epithelial cells

and lymphocytes to produce pro-fibrotic cytokines resulting in

deposition of ECM components [39,41]. It has been shown that

several liver specific miRNAs including miRNA-122, miRNA-148,

miRNA-194 are sensitive biomarkers for hepatocyte injury and

rejection after liver transplantation [42]. In this study we identified

a novel miRNA (miRNA-449a) that is modulated in HCV

infection. Further, we have shown that miRNA-449a regulates

HCV induced inflammatory responses (YKL40) implicated in

allograft liver fibrosis.

Previous studies in our laboratory have demonstrated an

upregulation of autoimmune Th17 inflammatory cascade leading

to liver fibrosis in HCV infection, particularly in recurrent HCV

following orthotopic liver transplantation [43]. Viral modulations

of miRNA have been well known to influence transcriptional

regulation in T cell responses, inflammation and fibrosis [44].

Although suggested in literature, a direct effect of HCV mediated

modulation of cellular inflammatory responses and fibrosis is yet to

be determined. In our current study using promoter analyses

techniques we provide direct evidence for the role of miRNA-

449a, which is down regulated in HCV infection (Figure 1), in the

upregulation pro-inflammatory YKL40 fibrotic cascade. miRNA-

449a has been implicated transcriptional dysregulation affecting

cell proliferation in several human diseases including cancers

[45,46]. In vitro studies have also shown that miRNA-449a can

arrest cell proliferation and induce apoptosis [46,47]. Thus, HCV

induced down regulation of miRNA-449a in human livers can

upregulate transcriptional factors leading to increased inflamma-

tory response; promoting cell proliferation that can result in HCC.

We have also demonstrated by in vitro analysis that miRNA-

449a regulates TNFa mediated induction of YKL40 by targeting

components of the NOTCH signaling pathway (NOTCH1)

(Figure 6). We have shown for the first time in human hepatocytes

that miRNA-449a targets NOTCH1 for translational silencing.

Studies have shown that miRNA-34a is downregulated in patients

with chronic hypoxia kidney diseases and promotes epithelial-

mesenchymal transition by targeting components of the NOTCH

signaling pathway [48]. In HCV infected patients expression of

miRNA-449a was significantly downregulated (Figure 1A). In

consistence with our in vitro results, in the same HCV patients

downregulation of miRNA-449a was accompanied by significant

upregulation of NOTCH1 (Figure 7). Thus, results obtained from
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patient samples and our in vitro analysis using hepatocytes indicate

that upregulation of NOTCH1 resulting from downregulation of

miRNA-449a stabilizes nuclear P65 to activate YKL40 expression

in patients with HCV mediated hepatic fibrosis (Figure 1). The

increased expression of YKL40 in patients with HCV mediated

liver fibrosis [5,6] can be attributed to this novel pathway

(Figure 8). Since, YKL40 is elevated in patients with multiple

liver diseases (Figure 1B); it is likely that other parallel pathways for

its transcriptional regulation may exist in non-HCV mediated liver

fibrosis.

Taken together our results provide new insight into the

mechanisms by which miRNAs mediate changes in the in-

flammatory process by modulating components of the transcrip-

tional machinery. The results from this study should assist in the

development of novel strategies for identifying non-invasive

biomarkers that can prognosticate patients and monitor those at

increased risk for development of cirrhosis and HCC following

HCV infection.

Supporting Information

Figure S1 CEBPa interacts with P65. Co-immunoprecipi-

tation of CEBPa with P65 in hepatocytes. Whole cell lysates were

subjected to immunoprecipitation with either mouse IgG or anti-

CEBPa. P65 in the cell lysates (Input) and immunoprecipitated

complexes (IP) was detected by immunoblotting with anti-P65.

CEBPa was detected by immunoblotting with anti- CEBPa.
(TIF)

Figure S2 siRNA mediated knockdown of NOTCH1. A.

Hepatocytes were transfected with either non-specific siRNA or

siRNA specific for NOTCH1 and treated with TNFa. Lysates
were subjected to immunoblotting with anti-NOTCH1. B.

HEPG2 cells were transfected with either non-specific siRNA or

siRNA specific for NOTCH1, treated with TNFa and immunos-

tained with anti-NOTCH1. C. Quantification of the NOTCH1

immunostaining signal in HEPG2 cells (S2B). The numbers

represent the average fluorescence intensity of P65 (n= 100).

(TIF)

Figure S3 miRNA-449a regulates YKL40 expression.
Hepatocytes were transfected with an empty vector (-) or vector

expressing miRNA-449a (+) and expression of YKL40 was

determined by Q-PCR. The DDCT value was calculated by

normalizing the threshold (CT) values with GAPDH and

expression of YKL40 in controls. The ‘*’ represents p value,0.05

obtained by a two-tailed t-test.

(TIF)
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