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Abstract

A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage
named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaAl is a linear,
double-stranded DNA molecule with 3’ protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-
coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In
two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes
involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination
genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a
distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar
monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of
other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage
genome in the genome of other phages apparently has not been described previously and might represent a ‘fast track’
route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also
including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B.
thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of
them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained
in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S.

pasteuri.
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Introduction

Viruses are the most abundant entities in the biosphere. In
marine and soil habitats, the number of virus particles exceeds the
number of cells by at least an order of magnitude [1-3]. Numerous
viruses infect organisms from all branches of cellular life. However,
virus research has traditionally focused on viruses that infect
humans, other vertebrates and plants due to the obvious medical
and agricultural importance of these viruses. In addition, viruses
infecting several model bacteria (bacteriophages) have been
studied in detail thanks primarily to their utility as tools of
molecular biology. Viruses from diverse environments are
incomparably less thoroughly characterized but recently environ-
mental genomics and metagenomics of viruses have become
rapidly growing research areas [4-7].

A total of about 2300 viruses are recognized by the Interna-
tional Committee on Taxonomy of Viruses [8] but this is likely to
be a gross underestimate because of the enormous diversity of
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viruses in unsampled or poorly investigated habitats (see for
example, [9], [10]. Virus particles are abundant in air, water and
soils [1], [5], [11-15]. Recent metagenomic analyses have revealed
hitherto unknown diverse assemblages of wviruses in these
environments [6], [9], [10], [16], [17]. For example, Fierer et al.
[10] reported that the majority of the 4577 virus-related nucleotide
sequences found in soils from different ecosystems showed no
similarity to previously described sequences. Analysis of metage-
nomic data suggests novel patterns of virus evolution and reveals
new groups of viruses providing unprecedented insights into the
composition and dynamics of the virus world [7]. Viruses, in
particular transducing bacteriophages, have been long known to
make major contributions to gene exchange between bacteria
[18]. Recently, a distinct class of defective bacteriophages, the
Gene Transfer Agents (GTAs) [19], have been characterized as
apparent dedicated vehicles for horizontal gene transfer that might
account for extensive gene flow in bacterial and archaeal
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communities [19], [20]. Furthermore, viruses have emerged as a
major force shaping the geochemistry and ecology of diverse
environmental ecosystems [3], [21-23].

Tailed dsDNA bacteriophages account for 95% of all known
bacterial viruses, and possibly make up the majority of phages on
the planet [24]. They belong to the order Caudovirales which
consists of three families: Myoviridae (long rigid contractile tails),
Siphoviridae (long flexible non-contractile tails) and Podoviridae (short
contractile tails) [8], [25-27]. One of the key features of the
genomes of Caudovirales is their apparent mosaic architecture; in
essence, each genome is a unique set of modules with different
evolutionary histories that have been horizontally exchanged
among phages [28-30].

In this work we describe a novel phage genome architecture
where one phage genome nestles inside the genome of another
phage, similar to a “Russian Doll” arrangement. We show that
bacteriophages SpaAl and BceAl, obtained from the bacterium
Staphylococus pasteuri and a bacterium belonging to the Bacillus
cereus/ B. thuringiensis group respectively, and isolated from a soil
sample from the Garwood Valley, Southern Victoria Land,
Antarctica, harbor almost the complete sequence of the bacterio-
phage MZTP02 that had been identified previously in China [31].

Results

Isolation and Morphology of SpaA1

A novel temperate bacteriophage, named SpaAl, was isolated
from Staphylococus pasteuri recovered from soils of the Garwood
Valley, Southern Victoria Land, Antarctica. Bacterial cultures
were grown from single colonies in liquid nutrient medium in the
presence of mitomycin C to induce prophages from lysogenic
bacteria. SpaAl was isolated from the growth medium and
examined by transmission electron microscopy (TEM) (Figure 1A).
The morphology of SpaAl is typical of the Siphoviridae tamily of
phages. SpaAl virions have isometric heads (Bl morphotype) with
a diameter of ~63 nm. The virion tails are ~210 nm long and
appear to be flexible and non-contractile.

Russian Doll Phages

General Features of the SpaA1 Genome

The genome of phage SpaAl consists of 42,784 bp flanked by
complementary 9-bp single stranded cohesive (cos) ends (5'-
...TGGAGGAGG -3’ and 3'-CCTCCTCCA...-5"). Using Gen-
eMark.hmm [32], 63 open reading frames (ORFs) were identified
as probable protein-coding genes. The predicted proteins encoded
by these 63 ORF's were compared to the non-redundant protein
sequence database (National Center for Biotechnology Informa-
tion, NIH, Bethesda) using PSI-BLAST [33] and the Conserved
Domain Database using RPS-BLAST [34]. Analysis of the most
similar proteins (best hits) for all predicted gene products of SpaAl
reveals three major regions of apparent different origins suggesting
a modular architecture of the genome (Figure 2; Table 1).

The nucleotide sequence of the first module (left and coloured
red in Figure 2) of the SpaAl genome is almost identical to the
sequence of the entire 15,717 bp genome of another bacterio-
phage, MZTP02 (apart from its 5" - and 3’- terminal regions of
41 bp and ~370 bp long, respectively) that was isolated from
Bacillus thuringiensis, strain MZ1 in China [31] (Figure 2). Unlike
SpaAl DNA which contains terminal cos ends, MZTP02 DNA
contains 40-bp terminal inverted repeats and its 5'-terminus is
covalently bound to a terminal protein presumably encoded by
ORI (according to our annotation; [31]). Interestingly, an almost
identical sequence is present as a prophage in the genome of B.
thuringiensis var. monterrey BGSC 4AJ1 (locus IDs: bthur0007_34460
to bthur0007_34660, accession no. NZ_CMO000752.1) and B.
cereus Rock4-2 (locus IDs: beere0023_35280 to beere0023_35430,
accession no. NZ_ACMMO01000283.1). The 19 potential ORFs
located in this region encode predicted structural proteins and
proteins involved in assembly of SpaAl and thus form the
“structural” module of the genome. The architecture of this
module in SpaAl shows features that are typical of other
bacteriophages of the family Siphoviridae. In particular, there is
clear synteny among genes encoding virion subunits and proteins
involved in virion assembly [29]. The genes for head and tail
assembly are encoded in the same transcriptional orientation, with
the head genes located upstream of the tail genes (Figure 2 and

Figure 1. Transmission electron micrographs of phage virions showing their isometric heads and long non-contractile tails. Panel A
shows multiple SpaA1 virions and panel B shows a single Bce A1 (B) virions. All scale bars represent 100 nm.

doi:10.1371/journal.pone.0040683.g001
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Figure 2. Architectures of SpaA1, BceA1 and MZTP02 genomes: comparison with BLAST protein matches to phage proteins in four
Bacillus genomes. The horizontal bars represent DNA sequences (all to scale) with annotated CDS on the forward (upper) or reverse (lower) strand
shown as pointed boxes, generally in alternating blue and purple. The red, green and yellow shading indicates the three functional modules of
phages SpaA1 and BceA1 (center) which are 100% identical except for the area around ORF47 (bright red), and the 99% nucleotide identical
matching region in module | with phage MZTP02 (second row from top). Rather than the original annotation for MZTP02, annotation based on
SpaA1/BceA1 genome analysis (Table 1) is shown, with grey colouring for partial sequences (1 and 19), and genes with frame shifts (12, 13, 17, 18).
The bottom three bars represent complete contigs from three separate Bacillus genomes, with red/yellow highlighting top BLAST matches from
SpaA1/BceA1 module | and Ill proteins, showing synteny visually. The top row of bars represents seven contigs from another Bacillus draft genome
with green highlighting for BLAST protein matches from SpaA1/BceA1 module Il proteins. Three of these contigs have been truncated for display. For
clarity, additional BLAST matches to other contigs from these bacterial genomes are not shown (e.g. SpaA1/BceA1 ORF37 matches another contig in
B. thuringiensis var. monterrey BGSC A4J1). This figure was drawn using GenomeDiagram [61] and Biopython [62].
doi:10.1371/journal.pone.0040683.9g002

Table 1). The predicted head genes include the large and small Table 1). The longest conserved gene array (locus_ID:
terminase subunits (ORF3 and ORF4, respectively), the portal bthur0006_5910  to  bthur0006_6000;  accession  no.
protein (ORF5), the minor capsid subunit (ORF6), the scaffold NZ_CMO000751.1) contains the first 10 ORFs in this region. In
protein (ORF8), gp-like tail connector (ORF1) and head-tail particular, the replication module encompasses five predicted
adapter (ORF11); the tail genes include the major tail subunit transcriptional regulators (ORFs 25, 33-35 and 45) and four
(ORF12) and the tape measure protein (ORF17), followed by the putative DNA-binding proteins (ORFs 24, 28, 31, and 46). Other
tail fiber protein (ORF18) and the minor tail protein (ORF19) ORFs related to replication in this module include ones encoding
(Table 1). The length of the tape measure protein gene a FtsK/SpolllE- like protein (ORF27), and three proteins
corresponds to the length of the phage tail and is thus commonly containing HTH and DnaB domains (ORF29), a DnaD domain
the largest gene in the genome [29]. In SpaAl, however, the tape (ORF41) and a predicted ATPase related to DnaCG (ORF42). The

measure protein (979 aa) is only the second largest protein, the module also encodes an antirepressor (ORF37), two proteins
largest being the minor tail structural protein (1569 aa). Bacillus involved in cell lysis (ORFs 22 and 23) and two integrases, ORF20
phage TP21-L also has a minor structural protein that is larger which shows 95% amino acid sequence identity with the integrase
than the tape measure protein [35]. For most of the known phages, of prophage lamdaBa02 (accession number EEM54966.1), and
the size of the tape measure protein corresponds to a fairly ORF'30 which shows 80% amino acid sequence identity with an
constant 0.15 nm of tail length per amino acid residue [36]. integrase from B. thuringiensis (accession number EAO53934.1).
However, the tail length-to-amino acid ratio for SpaAl is The third genomic module (coloured yellow in Figure 2) of
~0.20 nm per amino acid residue, suggesting that this protein SpaAl is similar to a portion of B.cereus AH676 prophage and
might be somewhat more extended than those in other known contains additional regulatory and recombination related genes
phages. including a potential recombination protein U (ORF53) and a
The gene arrangement in the second SpaAl genome module potential DNA-binding protein (ORF54). ORFs 55 and 56 are
(coloured green in Figure 2), which consists of genes with functions similar to the N-terminal and C-terminal parts of an RNA
in DNA integration, replication, transcription, cell entry and exit polymerase sigma 70 factor, respectively. The last nucleotide of the

(ORF20-ORF46), and may be denoted the ‘replication module’, is TAA termination codon of ORF55 is also the first nucleotide of
very similar to the organization of the corresponding regions in the ATG initiation codon of ORF56 within a TAATG sequence.
several prophages of B. thuringiensis Kurstaki strain (Figure 2, However, the reading frame of ORF56 extends 5’ without an
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Initiation codon to nucleotide 39374 in SpaAl, and a -1 frameshift
in the region of nucleotides 39385-39390 during translation of
ORF55 could result in a single protein of 206 amino acids which is
similar to an intact RNA polymerase sigma factor from B. cereus
(accession number ACMI16007.1). Interestingly, approximately
70% of dsDNA long-tailed phages including siphoviruses exploit
the programmed frameshift mechanism for gene expression and the
majority of frameshift candidates appear to use a -1 frameshift [37].
However, no canonical -1 frameshift signal has been detected by
KnotlnFrame, a tool for the prediction of ribosomal frameshift
events [38]. Alternatively, ORF55 and ORF56 might encode two
distinct proteins possibly forming a two-subunit complex. ORF40 of
SpaAl encodes a second RNA polymerase sigma 70 factor that is
not closely related to the ORF55/56 sigma factor and is most
similar to a homolog from B. thuringiensis (accession number
EEM99580.1). The longest region of synteny conservation between
SpaAl and AH676 contains 6 ORFs (locus_ID: beere0027_53380
to beere0027_53450; accession no. NZ_CMO000738.1).

Phage terminase genes can be used to construct phylogenetic
trees which correlate with the structure of the phage DNA termini
[39]. However, we have detected evidence of recombination in the
MZTPO02 region that encompasses at least the gene for the large
terminase subunit of SpaAl. The majority of the ORFs within the
ORF1-ORF18 region (the MZTP02sequence) show best hits into
several Bacilli genomes (Figure 3A), and the tree for phage portal
protein SPPI1, taken as a typical example, clearly demonstrates
clustering with sequences from these organisms (Figure 3B). In
contrast, the tree for ORF4, the large subunit of phage terminase,
shows very different topology (Figure 3C), suggesting that
notwithstanding the synteny in this region (Figure 2), ORF4
appears to have been acquired from a different, unknown source.
The topology of the tree for ORF3, the small subunit of phage
terminase, was compatible with the typical, SPP1-like topology
(Figure 3B and 3D). Thus, the large subunit gene apparently was
displaced via ‘in situ’ recombination [40], an observation that
further emphasizes the mosaicism in the phage genomes.

Neither the second nor the third genomic modules of SpaAl
completely match any known prophages or phages. Even with the
most closely related phages, such as Cherry [41], EJ [42],
phBC6A51 [43] and the deep-sea thermophilic phage D6E, [44]
there are only a few significantly similar predicted proteins
(Figure 3A and Table 1) indicating that SpaAl represents a novel
group of tailed phages.

The overall G + C content of the phage is 35.63% strongly
resembling its host S. pasteurs (35%, [45]) as well as the host for
MZTPO2 (B. thuringiensis, 35.3%, [46]). No significant differences
in the GC content were detected among the three genomic
modules of SpaAl.

The BceA1 Bacteriophage

A further search and characterization of bacteriophages from
Antarctic soils identified another temperate bacteriophage, named
BeeAl, from a bacterium of the B. cereus/ B. thuringiensis group. The
morphology of BceAl is very similar to that of SpaAl and hence is
typical of the Siphoviridae family. BeeAl virions also had isometric
heads with a diameter of ~63 nm and flexible tails of ~210 nm in
length (Figure 1B). The genome of phage BceAl consists of
42,932 bp and like SpaAl encompasses 63 ORFs. These two
phages are identical apart from ORF47 and the immediate
surrounding area; the SpaAl ORF47 encodes a protein of 84 aa
and BceAl a protein of 156 aa. These two proteins have non-
overlapping sets of homologs and hence appear to be unrelated
(Figure 2, Table 1 and data not shown). Although the functions of
both these proteins are unknown, it seems plausible that they are
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directly involved in the control of the host range as both SpaAl
and BceAl could infect B. cereus but only SpaAl could infect S.
pasteuri (Table 2).

Host Ranges of SpaA1 and BceAl

SpaAl and BceAl inocula were used to infect B. cereus and S.
pasteur: in a plaque assay. BceAl produced plaques with a titre of
greater than 107 plaque forming units (pfu)/ml on both bacterial
species but SpaAl produced plaques with a high titre only on S.
pasteurt (Table 2).

Discussion

The Entire MZTP02 Genome is a Potentially Independent
Mobile Element

As pointed out above, the nucleotide sequence of the
“structural” module of the SpaAl and BceAl genomes is 99%
identical to the sequence of the entire genome of another
bacteriophage, MZTP02 (apart from short 5" - and 3'- terminal
regions) [31]; (Figure 2). SpaAl and BceAl are similar in this
respect to phage N15 which acquired a module encoding head
and tail protein genes from a lambda-like phage [47]. However
SpaAl is the first finding of an almost complete phage genome
within the genome of another phage. The presence of similar
mserts in the genomes of B. thuringiensis var. monterrey BGSC 4AJ1
and B. cereus Rock4-2 in the form of a prophage (Figure 2) suggests
that the (nearly) complete MZTP02 genome can travel between
genomes as a distinct entity. The MZTP02 genome does not
contain any identifiable integrase genes so a question arises as to
how it became integrated into these genomes. It is possible that
MZ'TP02 does not integrate on its own but rather exists as a linear
prophage in the same way as GILO1 [48]. The MZTP02 and
GILOl genomes are both ~15 kbp long and contain inverted
terminal repeats and 5’ terminal genome-linked proteins [31],
[48]. MZTP02 could then possibly recombine with a separate co-
infecting phage and this could have led to the integration of the
resulting composite phage genomes into the bacterial chromo-
some. Alternatively, the integrase of a co-infecting phage could
facilitate integration of MZTP02. The MZTP02 genome encodes
only virion subunits as well as proteins involved in DNA packaging
and capsid assembly (Table 1). We hypothesise that MZTPO2 is
likely to be a satellite virus as it does not encode proteins required
for DNA replication and transcription, and more importantly,
proteins involved in cell entry and exit. If this is the case then
MZTPO2 probably is unable to infect and replicate in a host
bacterium by itself, but rather depends on co-infection of the host
with a helper virus that remains to be identified. MZTP02 infected
six different B. thuringiensis strains [31] suggesting that such a
putative helper phage must be fairly ubiquitous among B.
thuringiensis  strains, possibly as an integrated prophage. A
thoroughly studied satellite bacteriophage is P4, also regarded as
a natural phasmid (phage-plasmid), which depends on phage P2
for reproduction in Escherichia coli [49]. However, in contrast to
MZTPO02, P4 possesses genes essential for DNA replication, but
depends on P2 helper genes for the head and tail morphogenesis
and for lysis of the host cell [50]. The size of the head of SpaAl is
~63 nm which contrasts with the size of 84 nm reported for
MZTPO02 [31]. In the P2/P4 helper virus system, two different
capsid sizes are produced from proteins encoded by P2 and a size-
determining protein encoded by P4 produces smaller capsids to
package the smaller P4 DNA [51]. SpaAl might encode an
unidentified size-determining protein that produces smaller
capsids. A capsid of ~84 nm in size might seem large to
encapsidate the 15.7 kb genome of MZTP02 but it is conceivable
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Figure 3. Phylogenetic analysis of selected SpaA1 genes. A. Bacterial and phage genomes sorted by the number of ORFs matching the
SpaA1/MZTP02 region (based on the up to 200 best hits in NR database). On the left, the actual number of hits is indicated. Color code: three
bacterial genomes with the 17-15 ORFs matching the SpaA1/MZTP02 region:purple; three bacterial genomes with the 13-12 matching ORFs: light
blue; the phage with the largest number of hits matching the SpaA1/MZTP02 region:orange. B, C, D. Unrooted maximum likelihood trees for three
ORFs the SpaA1/MZTPO02 region. Each terminal tree node is labelled with GenBank Identifier (GI) number and full systematic name of an organism.
Color code is the same as in the Figure 3A. The SpaA1 phage sequences are shown in red. Bootstrap support (percentage) are indicated for selected

internal branches.
doi:10.1371/journal.pone.0040683.g003

that multiple copies of its genome are encapsidated in such capsids
in a similar way in which three copies of the P4 genome can be

encapsidated in P2 size heads [52].
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Evolutionary Relationships between SpaA1/BceA1 and

MZTP02
The 99% sequence identity over 15 kbp in the SpaAl/BceAl
and MZTP02 genomes obviously points to an evolutionary link
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Table 2. SpaA1 and BceA1 host specificities on S. pasteuri
and B. cereus.

Bacterium SpaA1 titer® BceA1 titer®
S. pasteuri 1.4x108 1.7x107
B. cereus <10 5.0x107

*Titers are expressed in PFU per milliliter. Means were determined on the basis
of the results of three different infections.
doi:10.1371/journal.pone.0040683.t002

between these bacteriophages. However, the precise nature of this
link remains unclear given that, firstly, these phages were isolated
from geographically distant regions; SpaAl and BceAl in
Antarctica and MZTP02 in China, and secondly, SpaAl and
MZTP02 were isolated from different host species; Staphylococcus
and Bacillus, respectively. The presence of a sequence identical to
the nearly complete genome of MZTP02 in the genome of SpaAl
suggests the existence of a common host and a common habitat for
the two viruses in the recent past. It seems likely that this common
host is a bacterium of the genus Bacillus. Indeed, BceAl which is
nearly identical in sequence to SpaAl and also includes the almost
complete MZTP02 genome within its own genome, was isolated
from a bacterium of the B. cereus/B. thuringiensis group. The
discovery of identical phage sequences in habitats as geographi-
cally and ecologically distant as Antarctica and China might seem
puzzling. However, numerous studies have reported global
distribution of at least some bacteriophages [9], [53] and the
present results suggest that MZTP02 belongs to this class of
ubiquitous phages. There are two alternative evolutionary
scenarios to account for the relationship between MZTP02 and
SpaAl. Firstly, an ancestor of SpaAl might have possessed a
structural module homologous to MZTP02, and MZTP02 arose
as a result of excision from the ancestral SpaAl/BceAl-like phage.
Alternatively MZTP02 might have evolved elsewhere with
subsequent recombination leading to the integration of MZ'TP02
into the genome of an ancestor of BceAl/SpaAl and replacement
of the original structural module of that ancestral phage with the
structural module of MZTPO2. Our experiments showed that both
SpaAl and BceAl phages can infect B. cereus, but only one of
them, SpaAl, is able to infect S. Pasteur.. These findings are best
compatible with a scenario in which MZTP02 and BceAl first
evolved in Bacillus spp, the common hosts for these two phages,
whereas SpaAl evolved later, after ORF47 was replaced in BceAl
by an unrelated gene.

The findings reported here indicate that MZTP02 is not only a
satellite phage but also an independent mobile module that occurs
in the genomes of phages and prophages, resulting in chimeric
viral genomes. To our knowledge, such nested architecture of a
phage genome has not been described previously and seems to
indicate that complete viral genomes could play an even greater
role in genetic exchanges in the prokaryote world than previously
suspected.

Materials and Methods

Ethics Statement

All necessary permits were obtained for the described field
studies. The Garwood Valley falls within the McMurdo dry valleys
Antarctic specially managed area (ASMA) no. 2 designated under
the Protocol on Environmental Protection to the International
Antarctic Treaty. Entry to and field operations in the ASMA
(including sampling and removal of soils, rocks, organisms and
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water) for the research described here is regulated by a permit
issued to field party K052, which included D.W. Hopkins, by
Antarctica New Zealand, The International Antarctic Centre,
Orchard Road, Christchurch, New Zealand.

Isolation of Bacteria from Antarctic Soil

A soil sample was collected in the Garwood Valley, Antarctica
(78'01°S, 163'53°E; Ross Dependency Ross Sea region; [54]) in
January 2006, at the site of a soil ecological experiment [55]. The
samples were transported to the UK frozen and stored at 4°C. 1 g
of soil was mixed with 100 ml sterile 0.01 x nutrient broth (102
dilution) and stirred at room temperature for 1 h. Serial dilutions
to 107> were made in 0.01 X nutrient broth and 200 pl of each
dilution was plated onto LB Agar plates and incubated at 20°C.
Bacterial colonies of different appearance were chosen and sub-
cultured three times on LB Agar plates.

Induction and Isolation of Bacteriophages

A single colony of the bacterium was grown up overnight in
10 ml LB in a shaking incubator at 28°C. Cells were then
centrifuged for five minutes at 3,000 x g; the cell pellet was drained
and resuspended in 2.5 ml 0.01 M Mgy,SO, and 20 ul of
mitomycin ¢ (20 pg/ml) added. Cell suspensions were then shaken
at 28°C for 1 h and washed twice with 2.5 ml 0.01 M Mg,SOy,
Cells were finally resuspended in 10 ml LB and shaken at 28°C
overnight. Bacteria were centrifuged as before and the supernatant
was filtered through 0.45 pm syringe filters (Millipore Corpora-
tion, Billerica, MA 01821). Filtrate was centrifuged through a CsCl
step gradient containing 1 ml of each of 1.3 g/ml, 1.5 g/ml and
1.7 g/ml CsCl in an SW41 rotor at 83,000 g for two hours at
10°C in an Optima ™ L-80 XP ultracentrifuge (Beckman Coulter
Inc.). The middle density layer was collected, diluted at least 1:5 in
SM  medium (0.05 M Tris-HCl  pH 7.5, 0.1 M NaCl,
0,01 M MgS0O,.7H20) and centrifuged in an R90 Ti rotor for
1.5 hours at 214,000 x g. Pelleted bacteriophage particles were
resuspended in a small volume of SM medium.

Transmission Electron Microscopy (TEM)

TEM analysis of virus particles was done as follows: carbon-
coated copper grids were floated for five minutes on 10 pl drops of
samples on wax slides. Grids were then removed from the drops
and excess sample was drained from the grids using filter paper.
Then 10 pl drops of 1% (w/v) phosphotungstic acid pH 6.0-7.0
were put on the grids, left for 30 seconds and then drained from
the grids using filter paper. Grids were examined in a Jeol 100 S
Electron Microscope at 80 kV. Measurements of virus particles
dimensions were done using Adobe Photoshop CS2.

Identification of Bacterial Species

Bacterial hosts of isolated bacteriophages were identified by
amplifying their 16 Sribosomal RNA genes by PCR and comparing
these sequences to the GenBank database using the BLAST
program available at the National Center for Biotechnology
Information (http://www.ncbinlm.nih.gov). A single colony from
a plate was mixed with 50 ul dH;O and heated at 95°C for 4
minutes and 2 pl was then used for PCR. PCR was carried out using
Phusion DNA polymerase (Finnzymes) and primers 63F (CAG-
GCCTAACACATGCAAGTC) and 1387R (GGGCGGTGTG-
TACAAGGC). The PCR products were cut out from 1% agarose
gels and purified using QIAquick gel extraction kit (Qiagen) and
sequenced by Sanger capillary method using primers 63F, 1387R,
V2F (GAGTGGCGGACGGGTGAGTAAT), V3R (CGTAT-
TACCGCGGCTG), V6F (TCGATGCAACGCGAAGAA) and
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V7R (ACATTTCACAACACGAGCTGACGA). The bacterial
host of SpeAl was identified as Staphylococcus pasteurt with which it
had a greater than 99% identity. The bacterial host of BceAl was
identified as a member of the Bacullus cereus/Bacillus thuringiensis group
which share greater than 99% identity in the 16 .S ribosomal RNA
gene.

Virus Host Range Determination

The SpaAl and BceAl phages were propagated in LB broth on
S. pasteurt and B. cereus, respectively. Phage preparations were
added to an equivalent volume of mid-log-phase bacteria and
incubated at 30°C with agitation for 24 h. Phage supernatants
were recovered, and this process was repeated until a sufficiently
high-titer phage stock was obtained (>10%/ml). All phage
preparations were filter sterilized prior to use. 0.1-ml aliquots of
an overnight LB broth culture were added separately to 0.1 ml of
undiluted phage and each of three 100-fold serial dilutions, in four
sterile, 10-ml, round-bottom polypropylene tubes. After incuba-
tion at 37°C for 15 min, 3 ml of soft LB agar was added to each
tube, gently mixed by inversion, and poured over the surface of a
pre-warmed LB agar plate. Plates were incubated for 24 h at
30°C, and plaques were enumerated to determine the number of
PFU per milliliter.

Isolation of Nucleic Acid from Bacteriophage Particles

Suspensions of bacteriophage particles were treated with DNase
(Promega) and RNase (Promega) and incubated at 37°C for 30
minutes. The reaction was stopped by adding Stop buffer (10% (v/
v) 0.02 M EGTA) and incubating at 65°C for 10 minutes. The
samples were then incubated with 1/10™ volume of 2 M Tris-HCl
pH8.5, 0.2 M EDTA, 1/20" volume 0.5 M EDTA pHS8 and an
equal volume of formamide at room temperature for 30 minutes.
Two volumes of 100% ethanol were then added and the samples
kept at —20°C overnight. Samples were then centrifuged at
13,000x g 8°C in a bench-top Eppendorf 5415R for 20 minutes
and the pellets washed with 70% ethanol, air-dried and resuspended
in TE buffer (0.01 M Tris-HCI1 pHS, 0.001 M EDTA).

454 Sequencing of Nucleic Acids

Roche 454 sequencing was performed by GenePool (University
of Edinburgh) using 2/16 of a PicoTiterPlate for each phage. For
SpaAl the FLX platform was used and gave 29338 reads with
median read length 247 bp and an approximate coverage of 106 X
The later sample for BeeAl used the “Titanium” upgrade and
gave 51597 reads with median read length 320 bp and an
approximate coverage of 18x; however this was variable with
regions that had no coverage and gaps were filled in by Sanger
capillary sequencing (see below).

Assembly of 454 Sequence

The 454 reads for SpaAl were initially assembled with Roche
“Newbler” gsAssembler v1.1, later v2.0, however this required
manual intervention to cope with the high coverage. SpaAl was
then assembled with MIRA v3.2 [56], additional Sanger capillary
sequencing done, and a hybrid assembly performed with MIRA.
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This gave one large contig whose ends repeated, giving a
circularised sequence of approximately 43 kb, with no marked
coverage variation to suggest possible end points of the phage’s
linear form (visualized using Tablet, [57]). For BceAl, despite
having more 454 data, de novo assembly was unsuccessful as the
proportion of viral reads was lower. A MIRA reference guided
assembly using the completed SpaAl sequence suggested the
phage were highly similar, and PCR primers were designed to
close the gaps with additional Sanger capillary sequencing to
confirm this. The final BceAl assembly was completed manually.
Sequences of the viruses have been submitted to the EMBL
European Nucleotide Archive with accession numbers HE614281
(SpaAl) and HE614282 (BceAl).

Cohesive Ends

To determine the sequences of the SpaAl genome termini,
PCR with primers annealing close to and directed towards
genome ends was performed using SpaAl DNA as a template.
The appearance of a distinct PCR product was observed.
Sequence analysis of the PCR product and the SpeAl genome
end sequences determined by primer walking revealed that the
PCR product contained nine extra base-pairs at the junction site
between the viral DNA ends. The presence of these extra base-
pairs indicates that the ends of the SpeAl genome form cohesive
3" overhangs.

Annotation and Comparison of the Genomes and

Phylogenetic Tree Reconstruction

An initial set of gene predictions was generated using Gene-
Mark.hmm [Version 2.8] [32]. These predictions were then refined
and annotated manually using results of searches against the non-
redundant protein sequence database (NCBI, NIH, Bethesda) using
PSI-BLAST [33] and the Conserved Domain Database using RPS-
BLAST [34]. For each ORF within the OFR1-ORF18 region, up to
200 best PSI-BLAST hits were collected and the taxonomic
distribution of the best hits was generated. The MUSCLE program
[58] was used for construction of multiple amino acid sequence
alignments. Maximum likelihood (ML) phylogenetic trees were
constructed using the MOLPHY program [59] with the JTT
substitution matrix to perform local rearrangement of an original
Fitch tree [60]. MOLPHY was used also to calculate bootstrap
probability which was estimated for each internal branch by using
the resampling of estimated log-likelithoods (RELL) method with
10,000 bootstrap replications. Figure 2 was drawn using Genome-
Diagram [61] and Biopython [62].
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