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Abstract

Recent studies have shown a genetic influence on gene expression variation, chromatin, and DNA methylation. However,
the effects of genetic background and tissue types on DNA methylation at the genome-wide level have not been
characterized extensively. To study the effect of genetic background and tissue types on global DNA methylation, we
performed DNA methylation analysis using the Affymetrix 500K SNP array on tumor, adjacent normal tissue, and blood DNA
from 30 patients with esophageal squamous cell carcinoma (ESCC). The use of multiple tissues from 30 individuals allowed
us to evaluate variation of DNA methylation states across tissues and individuals. Our results demonstrate that blood and
esophageal tissues shared similar DNA methylation patterns within the same individual, suggesting an influence of genetic
background on DNA methylation. Furthermore, we showed that tissue types are important contributors of DNA methylation
states.
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Introduction

Epigenetic information is contained within DNA and protein

components of chromatin; the former is represented mainly by 5-

methylcytosine modification of DNA [1], whereas the latter has

more complex constituents consisting of histone and non-histone

proteins as well as their post-translational modifications [2]. Gene

expression patterns are established and maintained by epigenetic

information in the chromatin during the development of an

organism. Epigenetic plasticity provides the mechanism for tissue

differentiation and physiological response to the changing environ-

ment; abnormal regulation of epigenetic information is involved in

many human diseases including cancer. Epigenetic alterations are

hallmarks of human cancer (for reviews see [3,4]). Global DNA

hypomethylation was first observed in human cancer nearly 25

years ago [5,6]. Subsequently, increased DNA methylation in the

promoter region was found to be a common mechanism by which

tumor suppressor genes are inactivated in human cancer [7,8,9].

The hypermethyation often occurred in CpG islands near the

transcription start site (TSS) of the inactivated genes. The

annotation of CpG islands for the entire human genome is available

in public databases such as the NCBI and UCSC databases. In

addition to altered DNA methylation, an array of histone post-

translational modifications is often abnormal in human cancer, and

proteins responsible for modifying chromatin are similarly altered

[10,11,12]. Recently, epigenetic investigation has shifted to the

genome-wide scale using high throughput technology, and a

number of methods have been developed to study DNA

methylation at this level. [13,14,15,16,17].

The DNA methylation state in blood, tumor, and adjacent

normal tissue can provide an insight into epigenetic mechanisms

that contribute to carcinogenesis [18,19,20,21]. DNA methylation

patterns from white blood cells (designated as ‘‘blood’’) can

potentially be used to diagnose cancer early, assess prognosis, and

monitor response to chemotherapy and radiation therapy. We

previously demonstrated that genetic background influenced

global epigenetic states characterized by histone H3 lysine 9/14

acetylation and lysine 4/9/27 methylation [22]. A recent paper

reported that DNA sequences determine allele-specific DNA

methylation [23]. A longitudinal family-based study indicated that

global DNA methylation changed over time and displayed familial

clustering [24]. Furthermore, a comparison of MZ (monozygotic)

and DZ (dizygotic) twins showed that DNA methylation

differences in the buccal cells of DZ twins were higher than those

of MZ twins [25], suggesting that heritability may include DNA

methylation in addition to DNA sequences.

Esophageal squamous cell carcinoma (ESCC) is one of the most

common malignancies in China. Incidence rates of ESCC vary

widely in different geographic regions. Shanxi Province in north

central China is a region that has a very high esophageal cancer

rate. Within high-risk regions, there is a strong tendency toward

familial aggregation, suggesting that genetic susceptibility, in

conjunction with environmental exposures, plays a role in the

etiology of ESCC [26,27]. Previously, we identified several
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chromosomal regions of loss of heterozygosity (LOH) and copy

number (CN) alterations in ESCC using microsatellite markers

and the Affymetrix 10K SNP array [28,29]. More recently we

mapped many genomic regions that showed copy number gain or

loss, thus paving the way for identifying oncogenes and tumor

suppressor genes in the future [30]. Despite progress in the

genomic analysis of ESCC, we know little about global DNA

methylation level in normal or tumor cells in esophageal tissue. In

this study, we set out to characterize global DNA methylation in

three different tissues, blood, normal, and ESCC, from 30

individuals. We found that both genetic background and tissue

types impact global DNA methylation.

Results and Discussion

Our study design had three samples in each set; the samples

consisted of DNA from blood, tumor, and adjacent normal tissue

from the same individual. We analyzed 90 samples (30 sets, 3

samples in each set). Global DNA methylation was determined

using methylation-sensitive Hpa II digestion followed by hybrid-

ization to Affymetrix 500K SNP arrays [31]. Because our goal was

to assess methylation in a quantitative manner, it was necessary to

factor the underlying variation inherent in the DNA among tested

individuals into the methylation score. Conventional genotyping

without Hpa II digestion on the 90 samples supplied the baseline

DNA variation information. To evaluate the quality of genotype

experiments, we compared genotype calls that were generated

using the Affymetrix Gtype 4.0 software between blood and

normal experiments. The genotype call rates generally exceeded

99% for blood and normal esophageal DNA, and the concor-

dances between the genotype calls of the two tissues were in the

range of 98.8%–99.8%, demonstrating high quality of the

genotype data. For quantitative evaluation of DNA methylation

data, we applied a method that we previously developed to analyze

chromatin immunoprecipitation (ChIP) data generated using the

Affymetrix SNP array experiments [22]. This method is briefly

summarized in the Materials and Methods section.

To explore the variation of DNA methylation patterns in relation

to tissue types and genetic background, we performed principal

components analysis (PCA) to visualize DNA methylation patterns

among samples in reduced dimension space (see Materials and

Methods for details about PCA analysis). We projected the samples

using the first two principal components (PC1 and PC2). Each

principal component (PC) is a linear combination of DNA

methylation scores measured from SNPs across the whole genome

with certain attributes. The Sty I Affymetrix SNP chip contains

238,304 SNPs. Of these SNPs, 62,765 were contained within

Affymetrix probes homologous to regions in the sample DNA with

the attributes required for our methylation analysis: (1) the Sty I

fragment has at least one Hpa II site; (2) the SNP within the fragment

does not overlap an Hpa II site; and (3) the SNP is located on an

autosome. The results of PCA using data from these 62,765 SNPs

are shown in Figure 1A (note: a similar result was observed using the

data from the Nsp I chip). In this study PC1 and PC2 provided an

efficient way to visualize relationships among the samples in two-

dimension space. Two sample clusters were evident, which

corresponded to the blood and normal samples, supporting the idea

that DNA methylation is dependent on tissue types. Although PC1

and PC2 captured only 24% of the total variation, they grasped the

biological variation due to different tissues and different individuals.

Analyses involving additional principal components didn’t yield any

new insight into the nature of DNA methylation.

A unique feature of our study design was the comparison of

DNA methylation among multiple tissues from a single individual.

Of particular interest was the comparison of DNA methylation in

blood versus normal tissue. We wanted to know whether DNA

methylation from blood and esophageal tissues from the same

individual shared a similar pattern. This central question addresses

the potential role of genetics in determining tissue methylation

[22,23,25,32]. In the graph shown in Figure 1A, we noted that

blood and normal esophageal samples from a single individual had

similar scores in PC1 (paired samples are connected by dotted lines

in Figure 1A), indicating that these two samples from an individual

had a similar DNA methylation level as measured by the PC1

score. To illustrate that the two tissues from the same individual

had similar PC1 scores, we generated a plot using a unit length

arrow that emanated from the normal sample and pointed to the

paired blood sample in the direction corresponding the line shown

in Figure 1A for each individual (Figure 1B). These arrows clearly

point in the same direction, indicating similar PC1 scores for the

paired samples from the same individual. Our data showed a

greater similarity in methylation between the two tissues from a

single individual, as demonstrated by similar methylation in PC1

score. One interpretation of this result is that genetic background

can influence DNA methylation, as we have also previously

demonstrated at the level of chromatin modifications [22]. To

evaluate whether DNA sequences alone could explain this pattern

of PCA, we also performed similar analyses using the measure-

ments of genomic DNA from the genotyping experiments (Sty

experiment without Hpa II digestion). PCA was also performed

using quantitative values of the hybridization signals [22] rather

than the conventional interpretative approach, i.e. using genotyp-

ing calls generated according to a calling algorithm. Comparing

the results from DNA methylation and genomic DNA, we found

two important differences: (i) The clusters in the projection of

genomic DNA were not well separated (Figure 1C); and (ii) The

arrows in Figure 1D and Figure 2D were more randomly

distributed than those in Figure 1B and Figure 2B. In the DNA

analysis, blood and normal esophageal samples from a single

individual produced very different scores in PC1 (Figure 1C and

1D). Thus, the similarities of PC1 scores in DNA methylation from

two different tissues of a single individual are specific. To

understand the distribution of the arrows, we generated an angle

plot (Figure S1). The angles are more uniform and have smaller

standard deviations in the methylation data than the DNA data

(Figure S1A and Figure S1B, also see Table S1). We conclude that

global DNA methylation is affected by the genetic background.

The two clusters of samples correspond to the two tissue types

(Figure 1A), indicating that tissue type is an important determinant

of DNA methylation.

To further characterize the relationship among different

individuals and tissues, we performed pair wise correlation

analyses and displayed the results of methylation in Figure 3A

and DNA in Figure 3B. The results from these analyses support

our interpretation of PCA. Specifically, correlations between 3

tissues are apparent in Figure 3B (DNA) revealed by the 3 yellow

diagonal lines. The correlations between blood and tumor samples

are least because the presence of genomic instability in tumors and

some cross-contamination between normal and tumor samples.

Correlations in methylation analyses are generally less compared

to the DNA analysis. However, the 3 yellow diagonal lines remain,

suggesting that DNA methylation is similar among different tissues

from the same individual. The main conclusion that genetic

background influences methylation is supported by correlation

analysis.

We extended the DNA methylation analysis to include tumors

from the same individuals. As shown in Figure 2A, three clusters

are evident, which correspond to the blood, normal, and tumor

Global DNA Methylation
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samples. PC1 and PC2 capture 23% of the variance in these data.

Furthermore, all three tissues from the same individual shared

similar DNA methyation angle signature, as demonstrated by a

similar direction of the arrows shown in Figure 2B (green arrows

point from normal to blood; red arrows point from tumor to

blood). As a control, PCA projection using data from DNA

analysis showed random distribution of samples (Figure 2C and

2D). Similarly, the angle plots showed narrower distribution and

smaller standard deviation from methylation data than DNA data

(Figure S1c vs. Figure S1d and Figure S1e vs. Figure S1f, also see

Table S1). Thus, global DNA methylation angle signatures in

different tissues, including both normal and tumor tissues, are

similar in the same individual, indicating a strong influence of

genetic background on DNA methylation.

To further analyze genetic influence on DNA methylation, the

differences between blood and normal tissue for the same

Figure 1. Analysis of DNA methylation patterns in blood and esophageal tissue from 30 ESCC patients. Figure 1A shows the PCA using
methylation measurements. Two clusters are evident, corresponding to blood and normal samples. Samples are labeled with blue (patient blood,
letter B) and green (patient normal, letter N). The numbers indicate patients. Blood and normal samples from a single patient are connected by a
dashed line. The dashed lines are mostly parallel to PC2 axis due to nearly identical PC1 scores between blood and normal esophageal tissue from a
single individual. Figure 1B shows unit length direction arrows of the same data as Figure 1A. An arrow emanates from a normal sample and points to
blood. The direction of the arrow is identical to that of the dashed line in Figure 1A. Figure 1C shows similar PCA using quantitative DNA
measurements. Data processing and analysis is similar to Figure 1A. The DNA measurements serve as a control for variation in the samples. Figure 1D
shows the plot of arrows using the data from Figure 1C. It is evident that the arrows in Figure 1D (for DNA) are randomly orientated due to different
PC1 scores between the two tissues from the same single individual.
doi:10.1371/journal.pone.0009355.g001

Global DNA Methylation
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individual and different individuals are shown in Figure 4A for ten

selected SNP-marked fragments within the indicated genes. Each

circle represents the difference in methylation measurements

between blood and normal tissue (blue, from the same individual,

labeled as Hpa2.paired; red, from two different individuals,

labeled as Hpa2.unpaired) or the difference in DNA analysis

(green, from the same individual labeled as gDNA.paired; pink,

from two different individuals, labeled as gDNA.unpaired). The

absolute difference in methylation is smaller in the two tissues from

the same individual in these graphs (blue circles, labeled as

Hpa2.paired) than in the two tissues from two different individuals

(red circles, labeled as Hpa2.unpaired). To understand the overall

distribution of the quantitative effect of genetic influence on DNA

methylation across SNPs, we applied the Ansari-Bradley two-

sample test, a non-parametric method, to compare the scale

parameters for two sets of differences between blood and normal

assays: the first set contains 30 differences with one for each

individual; the second set contains 870 differences with one for

each pair of two different individuals. The method tests the ratio of

the scales for the two sets of the differences. The alternative

Figure 2. Analysis of DNA methylation patterns in blood, normal esophageal tissue, and tumors. The analysis is similar to Figure 1
except that we include 30 tumors from the same individuals. Figure 2A shows the PCA using methylation measurements. Three clusters are evident,
corresponding to blood, normal, and tumor samples. Samples are labeled with blue (patient blood, letter B), green (patient normal, letter N), and red
(patient tumor, letter T). Figure 2B shows unit length direction arrows of the same data as Figure 2A. The green arrows emanate from normal and
point to blood samples whereas the red arrows start from tumors and point to blood samples. Figure 2C shows similar PCA using quantitative DNA
measurements. Data processing and analysis is similar to Figure 2A. The DNA measurements serve as a control for variation in the samples. Figure 2D
shows the plot of arrows using the data from Figure 2C. It is evident that the arrows in Figure 2D (for DNA) are randomly orientated due to different
PC1 and PC2 scores between different tissues from a single individual.
doi:10.1371/journal.pone.0009355.g002

Global DNA Methylation

PLoS ONE | www.plosone.org 4 February 2010 | Volume 5 | Issue 2 | e9355



Figure 3. Heat map displays pair wise correlation results for methylation and genomic DNA data. Figure 3A contains methylation data.
We have 90 microarray data generated from samples consisting of 3 tissues (blood, normal, and ESCC) from 30 individuals. All pair wise comparisons
were analyzed, and Pearson correlation coefficients were plotted in the heat map. Figure 3B has genomic DNA data. Analyses are similar to Figure 3A
except for the use of quantitative values from the genotype experiments.
doi:10.1371/journal.pone.0009355.g003

Global DNA Methylation
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Figure 4. Analyses of DNA methylation difference between blood and normal esophageal tissue for single individuals. Figure 4A
displays the genes that exhibit similar methylation measurements between blood and normal esophageal tissue for single individuals relative to the
differences between blood and normal tissue for different individuals. Each circle represents a comparison of: (1) methylation measurements
between blood and normal tissue (blue from the same individual labeled as Hpa2.paired, 30 data points per gene; red from two different individuals
labeled as Hpa2.unpaired, 870 data points) or (2) DNA analysis (green from the same individual labeled as gDNA.paired, 30 data points; pink from two
different individuals labeled as gDNA.unpaired, 870 data points). These calculations were carried out for the genes indicated on the x-axis. The SNPs
marking the individual genes are rs7203335 (SNX29), rs8190404 (DIA1), rs12780199 (INPP5A), rs3760220 (DKFZP586L0724), rs3768723 (PIGF),
rs7605146 (DNAPTP6), rs11254 (ETS2), rs6464151 (PRKAG2), rs2302592 (TTLL5), and rs1265074 (CCHCR1). Figure 4B shows the histogram of p-values
in the Ansari-Bradley two-sample test for methylation (red bars, labeled with Hpa2) and DNA (green bars, labeled with gDNA) measurements. For
each SNP, the ratio of scales was tested for two samples: one is the methylation differences between blood and normal tissue from 30 pairs of
individuals and another is the methylation differences between the two tissues from two different individuals from the 870 pairs resulting from
selecting 2 out 30 individuals in all combinations. As a control, we performed similar analyses using data from DNA array experiments. The histogram
summarizes the distribution of the negative log10pvalues from the analyses of the methylation and DNA data.
doi:10.1371/journal.pone.0009355.g004

Global DNA Methylation
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hypothesis is that a ratio less than one means that the scale for the

paired differences is less than the scale for unpaired differences. As

a control, we performed similar analyses using data from DNA

measurements. The ratio of the scales is significantly less than one

for many of the tested SNPs (Figure 4B, red bars, labeled as Hpa2,

indicate methylation data), showing greater similarity of methyl-

ation in two different tissues from the same individual. Some SNPs

also showed smaller p-values for DNA measurements (Figure 4B,

green bars, labeled as gDNA), reflecting DNA differences in the

genetic background of different individuals. Nevertheless, the

distribution is clearly shifted to the right (smaller p-value,

indicating a smaller ratio of the scales) for the methylation data

(Figure 4B, red bars). A non-parametric method was used instead

of an F-test because the Shapiro-Wilk normality test showed that

the differences were not normal for 65% of SNPs in the

methylation data and 70% of SNPs in the genomic DNA data.

In conclusion, we found that DNA methylation characteristics

in normal esophageal tissue and blood from the same individual

were remarkably similar. Our results indicate that genetic

background as well as tissue environment can influence global

DNA methyation patterns. This conclusion is consistent with

previous studies that showed genetic background affected global

chromatin modifications [22,23,24,25,32].

Materials and Methods

Patient Selection
The study was approved by the Institutional Review Boards of

the Shanxi Cancer Hospital and the U.S National Cancer Institute

(NCI). Written informed consents were obtained for all partici-

pants of this study. Patients diagnosed with ESCC between 1998

and 2001 in the Shanxi Cancer Hospital in Taiyuan, Shanxi

Province, People’s Republic of China, and considered candidates

for curative surgical resection were identified and recruited to

participate in this study. None of the patients had prior therapy

and Shanxi was the ancestral home for all.

DNA Isolation
Venous blood (10 ml) was taken from each patient prior to

surgery and germ-line DNA from whole blood was extracted and

purified using the standard phenol/chloroform method. Tumor

and adjacent normal tissues were dissected at the time of surgery

and stored in liquid nitrogen until use. One 5-micron section was

H&E stained and reviewed by a pathologist from NCI as the guide

for micro-dissection. Five to ten consecutive 8-micron sections

were cut from fresh frozen tumor tissues. Tumor cells were

manually micro-dissected under light microscope visualization.

DNA was extracted from micro-dissected tumor as previously

described [29] using the protocol from Puregene DNA Purification

Tissue Kit (Gentra Systems, Inc., Minneapolis, MN).

Microarray Experiment
We performed genotyping and methylation experiments using

the Affymetrix Mapping 500K array set (Nsp I array and Sty I

array). The detailed protocol for genotyping can be found at

http://www.affymetrix.com/support/downloads/manuals/500k_

assay_manual.pdf. Methylation experiments were carried out

essentially in the same manner as conventional genotyping assays

except for pre-digestion of genomic DNA with Hpa II restriction as

described [31]. http://www.affymetrix.com/support/technical/

manual/expression_manual.affx

The Gene Expression Omnibus (GEO) accession number for

these array data is GSE20123.

Data Analysis
All statistical analyses were developed using R packages. The

analytic method to extract quantitative values from methylation

and genotyping experiments was essentially identical to our

previous published work [22]. Briefly, the probe level measure-

ments were generated using Affymetrix Gtype software. Micro-

array data were normalized using a modified RMA method [22].

We used the probe level measurements from standard genotyping

experiments that contained 144 case-control blood DNA samples

as a reference set to normalize the data. After the normalization

process, we obtained measurements at the probeset level for all

microarray data, for both DNA and methylation. The correlation

data used in the analyses described in this manuscript are included

in Table S2 and Table S3.

We used principal component analysis (PCA) to analyze

variation among the samples for DNA methylation and genotype

data. The PCA method transforms the raw data into a more

interpretable form. The raw data are generated as a matrix, in

which each column represents one sample and each row, one

probeset. The probeset is specific for methylation or genomic

signal, depending on the laboratory assay. The PCA method

works by rotating this system of matrix coordinates (i.e. probesets

or SNPs) in such way that a new set of variables are generated;

these new variables are called the ‘‘principal components’’. A

principal component is actually a linear combination of the

original variables, each of which is weighted by a different

coefficient. The weight represented in each coefficient reflects the

degree of contribution that the corresponding SNP makes to the

principal component. The resulting principal components are

ordered, i.e. numbered, so that PC1 accounts for the largest

variance in the data and is followed by PC2, PC3, etc. PC1 and

PC2 are the only principal components that are displayed in our 2-

dimensional analysis. A major value of the PCA method is

reduction in the number of dimensions inherent in the huge

amount of microarray data. This allows visualization of the data in

two dimensions.

To analyze methylation differences between blood and normal,

we compared paired (2 tissues from a single individual) versus

unpaired methylation measurements (2 tissues from different

individuals). For each SNP, the Ansari-Bradley two-sample test

was applied to the comparison in the scale of 30 paired differences

and the scale of 870 unpaired differences. As a control, the same

test was conducted for DNA measurements. To compare the p-

values from the Ansari-Bradley tests for methylation with those for

DNA, we included only those SNPs for which paired scale was

significantly less than the unpaired scale at the p-value level of 0.05

for either methylation or genomic DNA or both.

Supporting Information

Figure S1 Angle plot of blood, normal, and tumor samples

based on methylation measurements by principal component

analysis (PCA). Plots are labeled with green (normal) and red

(tumor). The angle plots in Figures S1a and S1b were generated

from PCA projects in Figures 1b and 1d. The angle plots in

Figures S1c and S1d were generated from PCA projects in

Figures 2b and 2d, and contain the arrows from normal to blood.

The angle plots in Figures S1e and S1f were also generated from

PCA projects in Figures 2b and 2d, but contain the arrows from

tumor to blood.

Found at: doi:10.1371/journal.pone.0009355.s001 (0.01 MB

PDF)

Table S1 Statistical analysis of data in Figure S1. B, N and T

are abbreviations for blood, normal and tumor samples. B-N-T

Global DNA Methylation
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represents all samples. The arrows in Figure S1 are defined in the

first column of the table. The variances of the angles in the

methylation data are significantly smaller than those in the DNA

data based on the F-test.

Found at: doi:10.1371/journal.pone.0009355.s002 (0.02 MB

XLS)

Table S2 Correlation coefficients for methylation experiments.

Data are described in Results and Discussion as well as Materials

and Methods.

Found at: doi:10.1371/journal.pone.0009355.s003 (0.16 MB

XLS)

Table S3 Correlation coefficients for DNA experiments. Data

are described in Results and Discussion as well as Materials and

Methods.

Found at: doi:10.1371/journal.pone.0009355.s004 (0.16 MB

XLS)
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