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Abstract

Objective: We examined body mass index (BMI) across place and time to determine the pattern of BMI mean and standard
deviation trajectories.

Methods: We included participants in the Framingham Heart Study (FHS) Offspring Cohort over eight waves of follow-up,
from 1971 to 2008. After exclusions, the final sample size was 4569 subjects with 28,625 observations. We used multi-level
models to examine population means and variation at the individual and neighborhood (census tracts) levels across time
with measured BMI as the outcome, controlling for individual demographics and behaviors and neighborhood poverty.
Because neighborhoods accounted for limited BMI variance, we removed this level as a source of variation in final models.
We examined sex-stratified models with all subjects and models stratified by sex and baseline weight classification.

Results: Mean BMI increased from 24.0 kg/m2 at Wave 1 to 27.7 at Wave 8 for women and from 26.6 kg/m2 to 29.0 for men.
In final models, BMI variation also increased from Waves 1 to 8, with the standard deviation increasing from 4.18 kg/m2 to
6.15 for women and 3.31 kg/m2 to 4.73 for men. BMI means increased in parallel across most baseline BMI weight
classifications, except for more rapid increases through middle-age for obese women followed by declines in the last wave.
BMI standard deviations also increased in parallel across baseline BMI classifications for women, with greater divergence of
BMI variance for obese men compared to other weight classifications.

Conclusion: Over nearly 40 years, BMI mean and variation increased in parallel across most baseline weight classifications in
our sample. Individual-level characteristics, especially baseline BMI, were the primary factors in rising BMI. These findings
have important implications not only for understanding the sources of the obesity epidemic in the United States but also for
the targeting of interventions to address the epidemic.
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Introduction

The obesity epidemic has progressed rapidly in the United

States over the last several decades. The mean body mass index

(BMI) of US adults has increased from 25.7 kg/m2 to 28.7 for men

and 25.1 kg/m2 to 28.7 for women from the 1960s to 2000s

[1,2,3]. The prevalence of obesity (BMI$30 kg/m2) among adults

20 to 74 years of age has increased nearly threefold [2,4,5]. These

average trends, however, fail to capture potential heterogeneous

patterns in body weight over time. For example, studies have

found a prominent rightward skewing of the BMI distribution over

time, contributing to a larger rise in mean BMI than might be seen

if the mean was the only component of the BMI distribution to

change over time [2,6,7]. Other studies have demonstrated

variability in the prevalence of overweight and obese individuals

by neighborhood of residence, with greater increases in those

neighborhoods with lower socioeconomic status [8,9,10,11,12].

Properly accounting for heterogeneity at both the individual

and neighborhood levels using longitudinal data may determine

true underlying patterns of population weight change over time

with possible implications for interventions [13,14,15,16]. The use

of longitudinal data provides the unique opportunity to examine

trajectories in BMI means and standard deviations over time and

by baseline weight classification to determine what groups are at

greatest risk for weight gain or have greater variability in weight

gain over time.
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Here, using data from the Framingham Heart Study (FHS)

Offspring Cohort over 37 years, including a large number of

individuals who moved great distances, we examined longitudinal

trends in BMI between individuals and neighborhoods. The use of

this cohort, linked together by common characteristics of their

parents (or in-laws), enabled us to more confidently examine

complex associations between BMI and social and geographic

factors prone to endogeneity.

Methods

Ethics Statement
The Institutional Review Board of Harvard Medical School

approved this study. The Framingham Heart Study undertook a

detailed written consent process for all aspects of data collection

[17].

Sample
Our sample came from the Framingham Heart Study (FHS)

Offspring Cohort, which started in 1971 and enrolled 5124

subjects who were either the children of subjects enrolled in the

FHS Original Cohort or their spouses. The FHS Original Cohort

included a random sample of residents of Framingham, Massa-

chusetts, in the 1940s. Offspring Cohort subjects have been

examined and surveyed up to eight times from enrollment through

2008, roughly every four years. Our final sample included all FHS

Offspring Cohort subjects excluding observations with missing

BMI, smoking status, alcohol intake, or census tract of residence;

we also excluded subjects at any time points if they were living in a

nursing home or were less than 21 years old.

For analyses, we intended to use three-level multi-level random

effects models to account for BMI clustering by neighborhood and

individual with an additional pure error variance term. However,

contrary to our a priori hypothesis that we would find notable

variance at the neighborhood level, we found that the neighbor-

hood level contributed near zero variance in cross-sectional

models for most of the eight waves (Table S1 in Appendix S1).

Among women, the proportion of the variance contributed by the

neighborhood level, calculated as the intra-class correlation

coefficient (ICC) [neighborhood-level variance/(neighborhood-

level variance+individual-level variance)], was less than 0.6% for

five waves, and 1.5%, 1.1%, and 3.3% in Waves 5, 6 and 7,

respectively. Among men, the ICC at the neighborhood level was

less than 0.7% at each wave. To create the most parsimonious

final models, we used only two-level multilevel models accounting

for the individual-level variance and pure error variance. We

included a random intercept at the individual level as well as

random slopes for both time and the natural log of time. Including

both fixed effects and random slopes for linear time and the

natural log of time accounted for non-linearity in population-

average and individual-specific BMI growth trajectories and

allowed different amounts of heterogeneity between the linear

and nonlinear components of individuals’ trajectories. We

required subjects to have at least two observations so that each

individual contributed direct information about intra-individual

change in BMI across time (Figure 1). Our final sample size was

4569 subjects with 28,625 observations.

Variables
Time-varying individual-level BMI was the outcome variable,

objectively calculated using in person measured weight and

standing height at each wave [18]. Individual-level covariates

included the time-varying variables age, marital status, employ-

ment status, smoking status, and alcohol consumption, and also
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the time-invariant education (only available in Waves 2 and 3).

Despite not allowing neighborhood-level variance in the final

model, we did include a covariate for census tract poverty. This

measure is the percent of census tract residents with family

incomes below the US poverty line, and we obtained the measure

from the US Census for 1970, 1980, 1990, and 2000. Its effect

represents the extent to which the average neighborhood BMI

covaries with the poverty level of the neighborhood after adjusting

for the other characteristics of the individuals in the neighborhood.

Because of changing census tract borders over time, we used data

from the commercial vendor Geolytics which adjusted all census

data to the 2000 tract boundaries. We assigned census data to

subjects by waves according to their census tract of residence and

the date of their study examination, selecting the Census closest to

the examination date. Residential addresses for subjects were

collected at each of the eight waves of follow-up and were

subsequently geocoded using ArcGIS, Version 9.3 (Redlands, CA).

Model Building and Analysis
Our models were two-level multilevel models accounting for

between-individual and within-individual (or pure ‘‘error’’) vari-

ance. When determining how best to account for individual-level

variance, we explored several modeling strategies. In our data, the

longitudinal trajectory in BMI appeared nonlinear with some

evidence of nonlinear changes in the variance over time (Figure S1

in Appendix S1; Table S2 in Appendix S1); therefore, we chose

models that included fixed effects and random slopes for both

linear time and the natural log of time (see Figure S2 in Appendix

S1 for model specification) to account for non-linearity. The

variable time represented the wave of follow-up, with values from

1 to 8.

We first generated descriptive results using SAS statistical

software, Version 9.1 (Cary, North Carolina). Using MLWin

Version 2.24 (Bristol, United Kingdom) [19], we then examined

the population means and the individual-level and pure error

variation in BMI, controlling for individual- and neighborhood-

level covariates (Methods Note S1 in Appendix S1 for details).

Because of prior studies showing differential variation in BMI by

gender, we ran sex-stratified models [8,10,12].

To determine how much of the unexplained individual-level

variation in BMI was accounted for by baseline BMI, we

subsequently fit separate models for Waves 2 through 8 with each

model fit two ways: with Wave 1 BMI as a predictor and without.

These models included all of the same covariates previously

specified but had smaller sample sizes because we included

outcomes only for Waves 2 through 8 (4569 subjects, 24,467

observations). We also included wave by age interactions to help

differentiate temporal trends in BMI from aging trends.

Further, to determine whether BMI mean and standard

deviation trajectories differed by baseline weight classification,

we fit four models for each gender corresponding to the four

categories of baseline BMI: underweight (BMI ,18.5 kg/m2),

normal weight (BMI 18.5 to 24.9 kg/m2), overweight (BMI 25 to

29.9 kg/m2), and obese (BMI $30 kg/m2). Our a priori

hypothesis was that mean BMI increased more rapidly for

overweight and obese participants [2]. In each case, a single

longitudinal model was fit to BMI in Waves 2 through 8 with the

same covariates, including Wave 1 BMI and wave by age

interactions.

For all models, we used Markov Chain Monte Carlo (MCMC)

analyses to generate multiple iterative samples from the joint

posterior distribution of the parameters, from which parameter

estimates could be constructed [20]. We used 10,000 iterative

samples as a burn-in with 100,000 samples to generate final

parameter estimates. We report posterior means and associated

95% credible intervals as point and interval estimates of the true

model parameters. Significant findings are adjudicated to those

predictors with estimated parameters whose 95% credible intervals

excluded 0.

Results

The mean number of observations per subject was 6.3 with a

range of 2 to 8 observations (by construction, the lower limit was 2

not 1). The mean BMI increased from 24.0 kg/m2 at Wave 1 to

27.7 at Wave 8 for women and from 26.6 kg/m2 to 29.0 for men

(Table 1, Figure S1 in Appendix S1).

In addition to the increase in mean BMI, the variation in BMI

increased substantially over time (Table S2 in Appendix S1, Figure

S3 in Appendix S1), with higher variability at each wave for

women than for men. For women, the unadjusted standard

deviation increased from 4.55 kg/m2 in Wave 1 to 5.86 in Wave 8,

and for men from 3.55 kg/m2 to 4.67; the values of the coefficient

of variation confirm the increase in BMI variability over time and

the greater variability for women. Thus, the weight diversity of the

population grew across time compared to a system where the

standard deviation was proportional to the mean.

The pattern of BMI distribution also changed over time, with

less skewness for both women (0.04 to 0.01) and no change for

men (0.02 to 0.02), indicating a more normal distribution of BMI

by Wave 8 for women. Consistent with the foregoing, kurtosis, a

measure of the presence of outliers, declined quite substantially

over time for women (5.62 to 1.52) with a slight increase for men

(1.12 to 1.76). Overall, the distribution of BMI over time

maintained a similar shape for men (slightly skewed and with

thicker tails than the normal distribution) but became substantially

more normal for women.

The final models included all individual-level covariates as well

as neighborhood poverty (Table 2). For women and men, as

expected, the covariates that were positively associated with BMI

were time, increasing age, increasing alcohol consumption, and

being married. Mean BMI increased in a non-linear pattern for

women but not for men; the natural log of time for women was

significantly positively associated with BMI. Smoking and higher

education (. high school vs. # high school) were negatively

associated with BMI for both women and men. Neighborhood

poverty was not associated with BMI. For men, being employed

was positively associated with BMI. Model fit did not improve with

the addition of demographic variables (age, marital status,

employment status, education) or with the addition of census tract

poverty; however, model fit did improve with the addition of

behavioral variables (alcohol consumption and smoking status)

(Table S3 in Appendix S1).

As we found for the unadjusted BMI variance, the individual-

level random slopes for time and the natural log of time in fully-

adjusted models revealed increasing heterogeneity in BMI across

time for women and men (Table 2, Figure 2). The adjusted

standard deviation in BMI increased more than the unadjusted,

from 4.18 kg/m2 at Wave 1 to 6.15 at Wave 8 for women and

from 3.31 kg/m2 to 4.73 for men (Figure 2). Thus, similar to

Figure 1. Flow Diagram for Framingham Heart Study Offspring
Cohort Subjects and Observations Included in Analyses. The
final sample size for this study included 4569 subjects with 28,625
observations over a nearly 40 year period.
doi:10.1371/journal.pone.0063217.g001
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unadjusted BMI, we found a greater increase in the BMI variance

than the BMI mean after controlling for covariates and clustering.

To determine how much of the between-individual variation in

BMI was accounted for by baseline BMI at Wave 1, we ran two

sets of models restricted to observations from Waves 2 to 8, with

baseline BMI and without, including all of the same covariates as

for the prior models. In models without baseline BMI, the

standard deviation in BMI at Wave 2 was 4.63 kg/m2 for women

and 3.46 for men (variance 21.5 kg/m2 and 12.0). The addition of

baseline BMI decreased standard deviations at Wave 2 to 1.95 kg/

m2 for women and 1.42 for men (variance 3.80 kg/m2 and 2.01).

The baseline BMI, thus, accounted for 82% and 83% of the

between-individual variance in BMI, respectively, for women and

men (data not shown in tables).

To assess the impact of baseline weight on the trajectories of

BMI mean and variance, we then fit four models for each sex,

stratified by baseline BMI classification – underweight, normal

weight, overweight, obese - including BMI in Waves 2 to 8 as the

outcome. These models also included wave by age interactions

and Wave 1 BMI as predictors (Table S4 in Appendix S1, Table

S5 in Appendix S1, Table S6 in Appendix S1, Table S7 in

Appendix S1). In these models, being married was associated with

higher BMI for normal weight and overweight women and men as

well as obese women. Smoking was negatively associated with

BMI in nearly all models, showing its strong negative effect on

weight gain over time. Alcohol consumption was associated with

higher weight only among overweight women and men and

normal weight men. Higher baseline BMI was associated with

higher subsequent BMI except among underweight women and

men. The interaction effects between age and wave were negative

and significant in nearly all models, suggesting that age became an

increasingly protective factor against weight gain over time. This

trend likely represents the transition from being young adults

(when metabolic rate and exercise levels may decline with age) to

elderly (when reduced muscle mass and frailty may overpower

reductions in metabolic rate).

In these models, mean BMI among men had parallel increases

across baseline weight classifications with a plateau in BMI evident

by Wave 8 (Figure 3B). Women had similar patterns except for

obese women, who demonstrated somewhat more rapid weight

gain in initial waves, followed by a partial reversal by Wave 8

(Figure 3A). Among women, standard deviation was proportion to

baseline weight, with highest standard deviations for obese women

over time and lowest for underweight women (Figure 4A). For

men, underweight, normal weight, and overweight subjects at

baseline had very similar standard deviations over time (Figure 4B).

Obese men had substantially higher standard deviations with

continued divergence of these values from other weight classes

over time.

Discussion

Using data from the Framingham Heart Study Offspring

Cohort over a nearly 40 year period, we show that factors intrinsic

to individuals accounted for the overwhelming proportion of the

variation in BMI over time. We also found increasing population

means and variation for BMI over time. For both men and

women, baseline BMI accounted for most of the unexplained

individual-level variation in BMI, demonstrating that BMI

reached by the late 30 s (mean age at Wave 1 was 38 years for

men, 37 for women), determined BMI until their late 60 s (mean

age at Wave 8 was 67 years for both men and women). The

rapidity of weight gain was similar across all baseline weight

classifications except for women who were obese at baseline.

Obese women gained weight somewhat more rapidly than women

with lower baseline BMIs until they were in their early 50 s with

an abatement of this trend thereafter. BMI variation increased

over time for participants in all baseline weight categories.

Variation was greatest for obese female and male subjects,

demonstrating a more heterogeneous population across time.

The parallel increases in weight gain across baseline weight

classifications calls for a relatively uniform population-targeted

strategy to decrease risk for weight gain. Further, because weight

Table 1. Characteristics of Sample, Framingham Heart Study Offspring Cohort, 1971 to 2008.

Mean Across Waves
Wave 1 Mean,
Wave 8 Mean Mean Across Waves

Wave 1 Mean,
Wave 8 Mean

Female
N=2366*
Observations =15,016

Male
N=2203*
Observations =13,609

BMI – kg/m2 26.1 24.0, 27.7 27.7 26.6, 29.0

Age – yr 52.4 37.3, 66.9 52.6 38.4, 67.0

Education – % # High school 44.1 45.6, 35.3 37.4 39.0, 26.5

. High School 51.8 46.9, 65.7 58.4 53.4, 73.4

Missing Education 4.1 7.5, 0 4.3 7.6, 0.1

Married – % 75.4 86.2, 65.0 85.4 88.6, 84.0

Employed – % 60.0 53.3, 39.4 77.3 95.6, 46.1

Current Smoker – % 24.8 43.0, 8.2 24.8 45.0, 7.5

Alcohol Intake – % 0 drinks/day 35.8 16.6, 52.0 23.8 8.8, 38.0

1–2 drinks/day 59.0 77.4, 44.9 55.2 63.9, 48.4

.2 drinks/day 5.2 6.0, 3.0 21.0 27.3, 13.6

Neighborhood Poverty 5.4 6.0, 5.6 5.3 6.1, 5.4

*The number of female subjects was 2148 in Wave 1 and 1518 in Wave 8. The number of male subjects was 2010 in Wave 1 and 1261 in Wave 8. The total number of
subjects is greater than subjects in Wave 1 because some observations did not meet inclusion criteria (e.g., a subject had missing BMI in Wave 1 but available BMI in
subsequent waves).
doi:10.1371/journal.pone.0063217.t001
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trajectories appear to be set by the late 30 s, strategies focused on

children and young adults might be most effective [21]. The more

rapid increases in BMI through middle age among obese women

call for somewhat varied strategies to address risk for weight gain

by age. Obese women may benefit from more aggressive

interventions to counter risk for weight gain during middle age,

with less need for interventions in the mid-to-late 60 s due to a

typical regression of weight gain by that point. Men have similar

BMI increases across time irrespective of baseline BMI; however,

the more rapid increase in variance among obese men also calls for

somewhat more targeted approaches for this group.

These results, showing increasing variation in BMI but a more

uniform distribution over time, contrasts somewhat with recent

data from Flegal, et al. [2]. That study used data from the

National Health and Nutrition Examination Survey (NHANES), a

repeated cross-sectional survey of a representative sample of US

adults, and found an increase in BMI mean and variation as well

as a rightward skewing of the distribution of BMI over time for

both women and men. Using our large longitudinal database, and

accounting for both aging and secular trends, we find an increase

in BMI mean and variation, with a more normal distribution of

BMI emerging across time, especially for women.

Finally, our analyses shed light on the possible role of

neighborhood of residence in the growth of obesity over the past

four decades. In contrast to prior longitudinal studies, in our study,

neighborhood of residence accounted for a very small proportion

of BMI variance, and neighborhood poverty was unrelated to BMI

[11,22]. Because of the very small variance contributed by the

neighborhood level in cross sectional models in most waves, we did

not include neighborhood as a level in final models. We did find

that census tracts accounted for 1% or more of the total variation

in BMI for women during three waves; however, in the other five

waves, neighborhoods accounted for less than 0.6% of the total

BMI variation. Finding these differences across time highlights the

importance of having longitudinal data for a cohort over a long

period of time. Our study may differ from prior studies because of

the characteristics of our sample, which included racially

homogeneous subjects mostly living in smaller towns where public

transportation is limited, typically requiring use of cars for

transportation.

Table 2. Parameter Estimates from Final Models, Framingham Heart Study Offspring Cohort, 1971 to 2008.

Female
N=2366
Obs =15,016

Male
N=2203
Obs=13,609

Variable b 95% Credible Interval b 95% Credible Interval

Intercept 24.4 24.0, 24.9* 26.4 26.0, 26.8*

Time/Wave of Observation (1 to 8) 0.26 0.17, 0.34* 0.31 0.24, 0.38*

Natural Log of Time 0.61 0.38, 0.84* 0.02 20.16, 0.21

Age 0.04 0.03–0.06* 0.02 0.003, 0.03*

Education # high school Ref Ref

. high school 20.61 20.85, 20.36* 20.48 20.69, 20.27*

Missing education 0.37 20.06, 0.79 0.25 20.10, 0.60

Married 0.47 0.34, 0.60* 0.26 0.14, 0.37*

Employed 0.12 0.03, 0.20 0.19 0.10, 0.28*

Smoker 20.90 21.0, 20.77* 20.73 20.84, 20.62*

Alcohol Consumption 0 drinks/day Ref Ref

1–2 drinks/day 0.19 0.10, 0.27* 0.22 0.13, 0.31*

.2 drinks/day 0.29 0.10, 0.48* 0.32 0.20, 0.44*

Neighborhood poverty{ 0.002 20.01, 0.02 20.006 20.02, 0.004

Variance Components

Level Standard Deviation 95% Credible Interval Standard Deviation 95% Credible Interval

Individual Level Random Intercept 4.61 4.46, 4.75* 3.41 3.30, 3.52*

Random Slope for Time 1.18 1.12, 1.24* 0.87 0.81, 0.93*

Random Slope for
Natural Log of Time

3.42 3.22, 3.62* 2.42 2.24, 2.61*

Pure Error Variance 1.49 1.46, 1.51* 1.25 1.23, 1.27*

Deviance Information Criteria (DIC) for model fit 59,538 49,167

*95% credible interval does not cross 0.
{Census tract information was unavailable for some tracts. Almost all of this missing data was from 1970 when some land areas were not yet assigned a census tract. For
this analysis, we had census tract poverty data for 14,355 of the 15,016 observations among women and 12,989 of the 13,609 included observations among men. To
ensure comparability across models, we included a dummy variable accounting for the availability of census tract poverty data along with a modified poverty variable
(missing poverty data set to 0 rather than missing) in the final model. This did not change results for census tract poverty but did allow us to include all observations in
the analyses that included this variable.
doi:10.1371/journal.pone.0063217.t002
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Our study has limitations. First, we could not measure

characteristics of neighborhoods where subjects work, a possible

source of unmeasured confounding between BMI and neigh-

borhood characteristics. Second, we could more effectively

determine the age at which BMI trajectories are established if

we had measurements prior to the 1970s. Third, our sample

Figure 2. Adjusted Standard Deviation in Body Mass Index, Framingham Heart Study Offspring Cohort, 1971–2008. In the fully
adjusted models, the total unexplained variation in BMI attributed to individuals across time (individual-level standard deviation) steadily increased
from 1971 to 2008 for both women and men. The error standard deviation represents the idiosyncratic pure error variance. We accounted for non-
linear increases in between-individual BMI standard deviation by including a random intercept at the individual level and random slopes for time and
the natural log of time.
doi:10.1371/journal.pone.0063217.g002

Figure 3. Body Mass Index Trajectories by Baseline Weight Classification, Framingham Heart Study Offspring Cohort, 1979–2008.
Using results from the fully-adjusted models, we plotted the BMI trajectory for women (A) and men (B) based on their weight classification at baseline
(during Wave 1, 1971–1975), controlling for covariates including baseline BMI. Weight classifications were underweight (BMI ,18.5 kg/m2), normal
weight (18.5 to 24.9), overweight (25 to 29.9), and obese ($30). Lines represent trajectories for the typical male or female (mean age at each wave,
married, employed,.high school education, non-smoker, consuming 1–2 alcoholic drinks daily, living in a census tract at mean poverty level, with
mean baseline BMI for that weight classification).
doi:10.1371/journal.pone.0063217.g003
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lacks racial diversity, an unavoidable limitation of research with

the FHS Offspring Cohort. However, this limitation in

generalizability also could strengthen the plausibility of our

findings. All subjects had some similar characteristics because

they are the offspring (or an offspring’s spouse) of the FHS

Original Cohort, a random sampling of Framingham, Massa-

chusetts, in the 1940s. One could argue that with fewer

differences between individuals on observables, such as race,

that it is reasonable to assume there are also fewer differences

on unobservables and thus less impact from unmeasured

confounding. Further, subjects were socioeconomically quite

diverse. For example, in Wave 8, the mean census tract poverty

for male subjects was 5.4% (SD 4.3%, Range 0.3% –31.0%).

Fourth, we had a large number of census tracts in our sample,

frequently with a small number of observations per tract. Our

sample included participants from 2095 different census tracts

over time, with a mean of 13.7 observations per tract (SD 79.8,

range 1 to 1638). Multilevel models, by design, shrink the

variance estimates toward the null for higher level units (tracts)

with few observations and, therefore, may underestimate the

ICC at the tract level in the cross-sectional models that we ran.

Yet, shrunken residuals have the benefit of helping to avoid

over-interpretation of random variation in the data as true

neighborhood-level variation.

In sum, over nearly 40 years, BMI mean and variation

increased in parallel across most baseline weight classifications in

our sample. Individual-level characteristics, especially baseline

BMI, were the primary factors in rising BMI. These findings have

important implications not only for understanding the sources of

the obesity epidemic in the United States but also for the targeting

of interventions to address the epidemic.
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Baseline (1971 to 75) Followed from 1979 to 2008 to Examine

BMI Trajectories, Framingham Heart Study Offspring Cohort.

Figure S1, Mean Body Mass Index for Women and Men,

Framingham Heart Study Offspring Study, 1971 to 2008. Mean

unadjusted BMI increased for both women and men over the

course of follow-up with a more steep trajectory for women than

men. Figure S2, Model for Primary Analyses Examining Body

Mass Index, Framingham Heart Study Offspring Cohort Study,

1971 to 2008. We generated this screen shot from MLWin to

display the model we ran for our primary analyses, demonstrating

both the fixed and random effects included. This example is for

our full sample of women, but the models were equivalent for men.

In these models, we include a fixed and random effect for linear

time (linear time from 1 to 8, based on wave of observation (time)),

Figure 4. Individual-Level Standard Deviation in Body Mass Index by Baseline Weight Classification, Framingham Heart Study
Offspring Cohort, 1979–2008. In the fully adjusted models, the individual-level standard deviation of BMI steadily increased from 1971 to 2008 for
both women (A) and men (B) in all baseline weight classifications. Standard deviation increases were similar across most weight classifications with
larger standard deviations for both obese women and men, and larger increases across time for obese men. We accounted for non-linear increases in
between-individual BMI standard deviation by including a random intercept at the individual level and random slopes for time and the natural log of
time.
doi:10.1371/journal.pone.0063217.g004
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the natural log of time (lntime), age (a linear variable centered on

its mean (age-gm)), marital status (binary: unmarried as reference,

married (married_1)), education (categorical: #high school as

reference, .high school (educat_1), missing education (educat_2)),

employment status (binary: unemployed as reference, employed

(employed_1)), smoking status (binary: non-smoker as reference,

smoker (smokes_1)), alcohol consumption (categorical: 0 as

reference, 1–2 daily (alcgrp_1), .2 daily (alcgrp_2)), census tract

poverty (linear variable centered on its mean (newpov-gm)), and

whether census tract poverty was available (binary: not available as

reference, available (povavail_1)). We included this last variable to

allow us to have equal subjects in models with census tract poverty

in the model and those without it. Models that we stratified by

baseline BMI classification were similar, but the outcome in these

models was BMI from Waves 2 through 8 (rather than 1 through

8) and included baseline BMI and age by time interactions as

additional covariates. Figure S3, Histogram of Unadjusted BMI

Distribution for Subjects in Wave 1 (1971 to 1975, Diagonal

Stripes) and Wave 8 (2005 to 2008, Open Bars). These histograms

represent the distribution of BMI values for Wave 1 versus Wave

8, demonstrating an increase in BMI mean and variance for both

women (A) and men (B). Methods Note S1.

(DOC)
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