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Abstract

Background: Architectural design has the potential to influence the microbiology of the built environment, with
implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains
poorly understood. In this study we combined microbiological data with information on the function, form, and
organization of spaces from a classroom and office building to understand how design choices influence the biogeography
of the built environment microbiome.

Results: Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were
extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but
most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics
related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the
structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other
rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation
or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and
low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure.

Conclusions: Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both
indirectly through the effects of architectural design on microbial community structure, and more directly through the
effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of
design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our
buildings in a way that will select for an indoor microbiome that promotes our health and well-being.
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Introduction

Biologists and designers are beginning to collaborate in a new

field focused on the microbiology of the built environment [1,2].

These collaborations, which integrate perspectives from ecology

and evolution, architecture, engineering and building science, are

driven by a number of interrelated observations. First, it is

increasingly recognized that buildings are complex ecosystems

comprised of microorganisms interacting with each other and their

environment [3–5]. Second, the built environment is the primary

habitat of humans; humans spend the majority of their lives

indoors where they are constantly coming into contact with the

built environment microbiome (the microbial communities within

buildings) [6]. Third, evidence is growing that the microbes living

in and on people, the human microbiome, play a critical role in

human health and well-being [7–9]. Together, these observations

suggest that it may be possible to influence the human microbiome

and ultimately human health, by modifying the built environment

microbiome through architectural design.

Despite this potential, we remain in the very early stages of

understanding the link between design and the microbiology of the

indoor environment. A comprehensive understanding of the

mechanisms that shape indoor ecosystems will entail disentangling

the relative contributions of biological processes including
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environmental selection, dispersal, diversification, and ecological

drift [10]. To date, most research has focused on understanding

the influence of environmental selection and dispersal on the built

environment microbiome. Environmental conditions including

humidity and air temperature have been shown to influence the

growth rate and survival of many microbial taxa [3,5,11] and

correlate with the composition of bacterial communities indoors

[4]. Many bacteria and fungi exhibit strong microhabitat

associations and increased growth under conditions of higher

humidity and in the presence of water sources, such as in kitchens

and restrooms [12,13]. The dispersal of microbes into and within

the built environment also appears to have a significant influence

on indoor ecosystems. The sources of microbes include those from

outdoor habitats such as air and soil brought into the building via

ventilation systems or carried into the building by macroorganisms

[4,14–16], microbes from indoor sources such as water, carpets

and other surfaces within a building [13,17], and microbes emitted

from macroorganisms within the building including humans, pets

and plants [18,19]. The relative importance of these different

sources of microbes indoors is not well understood, but is likely to

differ as a function of space (e.g. geographic location [20]), time

(e.g. year and season of sampling [15]), and building design and

operation [4].

The biological processes described above can be fundamentally

altered by building design. However many questions remain

unanswered regarding how design aspects – such as the function,

form and organization of a building - shape the indoor microbiome.

Function refers to the collection of activities and uses that a building

and its spaces serve. Functional requirements are translated into

the variety and number of space types within a building – for

example offices, restrooms, and hallways. Function is also a key

determinant of the design criteria for environmental conditions

including temperature, relative humidity, and light levels. Form

refers to geometry of a building and the spaces within it, while

organization refers to the spatial relationships among indoor spaces.

Form and organization are highly interrelated and both involve

design choices that influence human circulation (the source,

variation and movement of people), air circulation (the source,

variation and movement of air), and environmental conditions

throughout a building.

To understand how design choices influence the biogeography

of indoor bacterial communities, we collected microbiological,

architectural, and environmental data in 155 rooms throughout a

multi-use classroom and office building (Lillis Hall; Fig. 1). We

focus on the bacterial communities in settled dust, because it

represents an integrative record of microbial biodiversity in indoor

Figure 1. Architectural layout for two of four floors in Lillis Hall. Restrooms (brown), offices (blue) and classrooms (yellow) are shown to
illustrate space type distribution throughout Lillis. The first two floors of the building are primarily devoted to classrooms and share a similar floor-
plan. The 3rd and 4th floors contain most offices in the building and also share a similar floor-plan. The building has a basement and penthouse
spaces; these are largely building support spaces, including mechanical rooms and storage.
doi:10.1371/journal.pone.0087093.g001
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spaces [21]. Our study addresses two overarching questions. First,

at the scale of the entire building, do function, form and

organization predict variation in the built environment micro-

biome? Second, for rooms that serve the same function (rooms that

are of the same space type), which aspects of form and

organization most influence the built environment microbiome?

Methods

Study Location
We analyzed bacterial communities in dust collected from 155

spaces in the Lillis Hall, a four-story classroom and office building

on the University of Oregon campus in Eugene, Oregon, USA.

This building was chosen as a study site for several reasons.

Architecturally, Lillis Hall was designed to accommodate natural

ventilation for both fresh air and cooling; the building is thin,

allowing most rooms access to the building skin for supplying

outside air directly through windows and louvers, and it has a

central atrium used for exhausting air through stack ventilation.

From a study design perspective, diverse space types, occupancy

levels, and building management strategies were located in close

proximity within the same building, making it possible to compare

their relative influences on indoor biogeography.

Architectural Design Data
Data on architectural design attributes of each space including

function, form, and organization were obtained using architectural

plans, field observation, and a building information model (Fig. 1).

Spaces in the building were classified into one of seven space types.

This classification system was developed for the present study

based on the Oregon University System’s space type codes and

definitions [40]. These categories are based on the overall

architectural design and intended human use pattern for each

space, and include circulation (e.g. hallways, atria), classrooms,

classroom support (e.g. reading and practice rooms), offices, office

support (e.g. most storage spaces, conference rooms), building support

(e.g. mechanical equipment rooms, janitor closets), and restrooms.

We measured numerous spatial and architectural attributes of

each space including level (floor), wing (east versus west), size (net

floor area), air handling unit (AHU) (13 different AHUs supply air to

different rooms, so AHU is a categorical variable with 15 levels,

one for each AHU as well as a ‘none’ category for rooms without

mechanically supplied air, and a ‘multiple’ category for circulation

spaces fed by multiple supply sources), and a separate binary

variable denoting whether the space was only capable of being

naturally ventilated by unfiltered outside air (e.g. via windows or

louvers; 41 rooms) or by dedicated mechanical AHU supply (114

rooms).

Figure 2. Network analysis metrics used to quantify spatial arrangement of spaces within Lillis Hall. Examples in the left column follow
classic network representation, while those in the right column embody the architectural translation of networks. Shaded nodes and building spaces
correspond to centrality measures [22] of betweenness (the number of shortest paths between all pairs of spaces that pass through a given space over
the sum of all shortest paths between all pairs of spaces in the building) and degree (the number of connections a space has to other spaces);
connectance distance (the number of doors between any two spaces) is a pairwise metric, shown here as the range of connectance distance values for
each complete network/building. Since betweenness and degree strongly co-vary and are both measures of network centrality [22], they are
considered together in some analyses.
doi:10.1371/journal.pone.0087093.g002
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Metrics related to form and organization were quantified using

network analysis (Fig. 2) and information from building construc-

tion drawings. Spaces were considered to be spatially connected if

they shared a doorway or other physical connection that would

permit a person to move directly between the two spaces. The

network of spatial connections among spaces was used to calculate

two measures of network centrality [22,41] for each space in the

building: betweenness, a measure of the fraction of shortest paths

among all spaces in the building that would pass through a space,

and degree, the number of connections a space has to other spaces.

The network of spatial connections between spaces was also used

to define a connectance distance between all pairs of spaces in the

building, defined as the minimum number of spaces a person

would need to travel through to move between two spaces. We

considered using ventilation-based distance (how much duct length

separates two connected spaces) as a connectance distance,

however preliminary investigation indicated that connectance

distance and ventilation distance were strongly correlated.

Human use patterns are a product of functional classification,

but they also dictate form and organizational attributes of building

design. In this study, human use patterns for each space were

estimated based on a qualitative assessment of the expected

patterns of human diversity and annual occupied hours in each space.

Briefly, human diversity was defined on a three-point scale,

ranging from low human diversity (spaces likely to be occupied by

at most a single individual during a typical day; e.g. a closet) to

high human diversity (spaces likely to be occupied by numerous

different individuals during a typical day; e.g. a hallway). Annual

occupied hours (person-hours per year) were similarly defined

along a three-point scale from low (spaces that are typically vacant

or occupied at low density; e.g. a mechanical support space) to

high (spaces that are frequently occupied at relatively high density;

e.g. administrative offices). Both of these human occupancy

variables are explained in more detail in Table S1.

At the time of microbial community sampling, ambient air

temperature and relative humidity measurements were taken from

each space. Relative humidity measurements were detrended

using daily mean values to account for temporal changes over the

sampling period.

Figure 3. The taxonomic composition of bacterial communities sampled from dust in Lillis Hall. Samples are organized by space type,
and relative abundances are shown for groups comprising more than 1% (for phylum and class level) and 4% (for order level).
doi:10.1371/journal.pone.0087093.g003
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Biological Sampling
Sampling of dust was carried out with a Shop-VacH 9.4L Hang

Up vacuum (www.shopvac.com; #215726) fitted with a Dus-

treamTM Collector vacuum filter sampling device (www.inbio.

com/dustream.html). Dust samples were collected by vacuuming

an area of approximately 2m2 on horizontal surfaces above head

level for 2 minutes in each space. We preferentially chose these

surfaces for sampling since they minimized the frequency of

disturbance by cleaning, and thus likely serve as a long-term

sample of airborne particles in each space [21]. All samples were

collected during June 22–24, 2012. Building construction was

completed in 2003, and dust has presumably been accumulating in

some sampled spaces since that time.

Dust samples were stored at 280uC until DNA extraction. Dust

was manually extracted from filters, and used for DNA extraction.

Whole genomic DNA was isolated from samples using MO BIO

PowerLyzerTM PowerSoilH DNA Isolation Kit (MO BIO,

Carlsbad, CA) according to manufacturer’s instructions with the

following modifications: bead tubes were vortexed for 10 min;

solutions C4 and C5 were substituted for PW3 and PW4/PW5

solutions from the same manufacturer’s PowerWaterH DNA

isolation kit. Bacterial communities were profiled by sequencing

a ,420 bp fragment of the V4 region of the bacterial 16S rRNA

gene using a custom library preparation protocol [24]. Briefly, the

protocol consisted of two PCRs. The first amplified the V4/V5

region using the primers 59-AYTGGGYDTAAAGNG-39 and 59-

CCGTCAATTYYTTTRAGTTT-39 [42,43] and appended a

6 bp barcode and partial Illumina sequencing adaptor. Forward

and reverse strands were labeled with different barcodes, and the

unique combination of these barcodes was used to pool samples in

post-processing.

All extracted samples were amplified in triplicate for PCR1 and

triplicates were pooled before PCR2. PCR1 (25 mL total volume

per reaction) consisted of the following ingredients: 5 mL 5x HF

buffer (Thermo Fisher Scientific, U.S.A.), 0.5 mL dNTPs (10 mM),

0.25 mL Phusion Hotstart II polymerase (Thermo Fisher Scien-

tific, U.S.A.), 13.25 mL certified nucleic-acid free water, 0.5 mL
forward primer (10 uM), 0.5 mL reverse primer (10 uM), and 5 mL
template DNA. The PCR1 conditions were as follows: initial

denaturation for 30 s at 98uC; 20 cycles of 20 s at 98uC, 30 s at

50uC and 30 s at 72uC; and 72uC for 10 min for final extension.

After PCR1, the triplicate reactions were pooled and cleaned with

the QIAGEN Minelute PCR Purification Kit according to the

manufacturers protocol (QIAGEN, Germantown, MD). Amplified

products from PCR1 were eluted in 11.5 mL of Buffer EB. For

PCR2, a single primer pair was used to add the remaining

Illumina adaptor segments to the ends of the concentrated

amplicons of PCR1. The PCR2 (25 mL volume per reaction)

consisted of the same combination of reagents that was used in

PCR1, along with 5 mL concentrated PCR1 product as template.

The PCR 2 conditions were as follows: 30 s denaturation at 98uC;
15 cycles of 10 s at 98uC, 30 s at 64uC and 30 s at 72uC; and
10 min at 72uC for final extension.

Amplicons were size-selected by gel electrophoresis: gel bands at

c. 500bp were extracted and concentrated, using the ZR-96

Zymoclean Gel DNA Recovery Kit (ZYMO Research, Irvine,

CA), following manufacturer’s instructions, quantified using a

Qubit Fluorometer (Invitrogen, NY), and pooled in equimolar

concentrations for library preparation for sequencing. Resulting

libraries were sequenced in two multiplexed Illumina MiSeq lanes

(paired-end 150 base pair sequencing) at the Dana Farber Cancer

Institute (Boston, MA). All sequence data and metadata have been

deposited in the open-access data repository Figshare (http://

figshare.com/articles/Lillis_Dust_Sequencing_Data/709596).

Sequence Processing
We processed raw sequence data with the FastX_Toolkit (http://

hannonlab.cshl.edu/fastx_toolkit) and QIIME [44] software pipe-

lines to eliminate low-quality sequences and de-multiplex sequenc-

es into samples. Sequences were trimmed to a length of 200 bp

(100 bp from each paired end). We retained sequences with an

average quality score of 30 over 97% of the sequence length after

trimming. After trimming, quality filtering and rarefaction of each

sample to 2,100 sequences to ensure equal sampling depth across

samples, 329,700 sequences from 155 samples remained and were

included in all subsequent analyses. We binned sequences into

operational taxonomic units (OTUs) at a 97% sequence similarity

cutoff using UCLUST [45] and assigned taxonomy to each OTU

using the BLAST taxon assignment algorithm and Greengenes

version 4feb2011 core set [46] as implemented in QIIME version

1.4. We inferred phylogenetic relationships among all bacterial

OTUs using a maximum likelihood GTR+Gamma phylogenetic

model in FastTree [47].

Data Analysis
Statistical analysis was performed in R [48]. Pairwise commu-

nity dissimilarity was calculated using the quantitative, taxonomy-

based Canberra distance metric, implemented in the vegan package

Table 1. Variance in biological dissimilarity among bacterial
communities from all spaces, as well as just offices, (Canberra
distance) explained by different variables in Lillis Hall.

Room types Explanatory variable R2 P-value

all rooms Space type 0.06 0.001

Air source - air handling unit (AHU) 0.13 0.001

Building floor 0.01 0.001

Space size 0.01 0.001

Building wing - East/West 0.01 0.341

Building side - North/South 0.01 0.001

Occupant diversity 0.01 0.001

Annual occupied hours 0.01 0.015

Centrality (betweenness) 0.01 0.001

Centrality (degree) 0.01 0.001

Temperature 0.01 0.024

Relative Humidity* 0.01 0.001

Natural ventilation capability 0.01 0.001

offices Air source - air handling unit (AHU) 0.07 0.001

Building floor 0.07 0.001

Space size 0.02 0.025

Building wing - East/West 0.01 0.541

Centrality (betweenness) 0.02 0.005

Centrality (degree) 0.02 0.016

Temperature 0.02 0.002

Relative Humidity* 0.01 0.786

Natural ventilation capability 0.02 0.001

Variance explained (R2) and statistical significance (P-value) quantified with a
PERMANOVA test; since P-values are from permutational tests involving 999
permutations, they are only reported down to 0.001. All variables and their
respective units are described in the methods section and Table S1.
*detrended using daily averages.
doi:10.1371/journal.pone.0087093.t001
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[49] in R. We also assessed the consequences of beta-diversity

metric choice on our results; correlations between potential

metrics are included as Fig. S1. Constrained ordinations

(distance-based redundancy analysis; DB-RDA) were created

utilizing the capscale function in vegan. Correlations reported on

ordination axes, indicated by arrows, are based on simple linear

models of environmental variables against ordination axes.

Indicator taxa analysis [50] was performed using the indval

function in the labdsv package [51]. Mantel and partial mantel tests

were used to investigate the correlations between community and

environmental distance matrices, including a distance-decay

comparison, using the mantel function in vegan. Permutational

multivariate analysis of variance (PERMANOVA) was used to test

community differences between groups of samples as a way to

identify drivers of variation in community structure, using the

adonis function in vegan. All permutational tests were conducted

with 999 permutations, and thus p-values are reported down to, but

not below, 0.001.

Results

Building-scale Design Influences on the Built
Environment Microbiome
Bacterial communities in dust from Lillis Hall were highly

diverse. Using barcoded Illumina sequencing of 16S rRNA genes,

we detected 32,964 operational taxonomic units (OTUs; defined

at a 97% sequence similarity cut-off) in 791,192 sequences from

155 samples (19,403 OTUs and 325,500 sequences after

rarefaction to 2,100 sequences per sample). Most of these OTUs

were rare, occurring in one (49.9%) or two (13.3%) samples, and

at low relative abundance (61.1% of OTUs were singletons or

doubletons). However, OTUs from several taxonomic groups

including Alpha-, Beta-, and Gamma-Proteobacteria, Firmicutes,

and Deinococci were abundant and common in almost all dust

samples we collected (Fig. 3 and Fig. S2). There were 58 OTUs

belonging to these taxonomic groups that were present in 95% or

more of all samples we collected. These ubiquitous OTUs were

also abundant, representing 0.1% of the OTU richness but .28%

of all sequences.

Spaces differing in their architectural design characteristics

contained distinctive bacterial communities. Analysis of the

variance in bacterial community composition explained by

Figure 4. Dust communities within a building cluster by space type and are strongly correlated with building centrality and human
occupancy. Points represent centroids (6SE) from distance based redundancy analysis (DB-RDA). Space types hold significantly different
communities (P=0.005), though this is driven primarily by restrooms. Bacterial OTUs that have the strongest influence in sample dissimilarities are
shown at the margins; numbers in parentheses indicate multiple OTUs in the same genus. Centrality (along y-axis) represents network betweenness
and degree; human occupancy (along x-axis) represents annual occupied hours and human diversity. All four correlates (simple linear models as a
factor of ordination axis) are significant along their respective axes (all P,0.001).
doi:10.1371/journal.pone.0087093.g004
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different factors (Table 1; PERMANOVA on Canberra distances)

indicated that space type and air handling unit (AHU) explained

the greatest proportion of variance (R2=0.06 & 0.13, respectively;

both P=0.001). Nearly all other variables considered in this study

(Table 1) were significantly correlated with biological variation as

well, but explained a far smaller portion of the overall variance in

microbial community structure at the scale of the building. Thus

Table 1 can be seen as a potential list of building features that can,

in the future, be targeted when attempting to account for

microbiological variation in architectural design.

Restrooms explained a substantial amount of the variation

observed between space types; bacterial communities in restrooms

were compositionally distinct from other space types (R2=0.06;

P=0.001; from PERMANOVA on Canberra distances). In

addition to serving a distinct function, restrooms were character-

ized architecturally by relatively low network centrality (quantified

as network betweenness and degree [22]; network terminology

outlined in Fig. 2). This is because in Lillis hall, restrooms

generally only have a single door and are rarely or never on a path

between any two other spaces. Restrooms also had a high diversity

of human occupants (defined as a high number of different

occupants throughout the day; explicit definitions of occupancy

variables provided in Table S1). Indicator taxa analysis detected

numerous OTUs that were associated with restrooms, predomi-

nantly belonging to taxa that are commonly associated with the

human gut and skin microbiome including Lactobacillus, Staphylo-

coccus, and Streptococcus. Taxa including Lactobacillus, Staphylococcus

and Clostridiales were also more abundant in restrooms compared

with other space types, while Sphingomonas were relatively less

abundant in restrooms (Fig. 4).

Aside from restrooms, bacterial communities in Lillis hall

tended to vary with both human occupancy and room centrality

(Fig. 4). For instance hallways, which had high human occupancy

and high occupant diversity (e.g., relatively many occupants and

many different occupants throughout the day) as well as high

centrality (hallways often serve as a pathway between rooms), were

distinct from spaces such as mechanical support rooms and faculty

offices with the opposite set of attributes (Fig. 4). While there were

few statistically significant indicator taxa from individual space

types other than restrooms, there was variation in the abundance

Figure 5. Offices contain significantly different dust microbial communities depending on ventilation source. a) The first axis is
constrained by whether or not offices have operable window louvers (blue) or not (red). Taxon names on either side are grouped from the 25
strongest weighting OTUs in either direction. b) Deinococcus were 1.7 times more abundant in mechanically ventilated offices compared to window
ventilated offices. c) The opposite pattern was observed for Methylobacterium OTUs, which were 1.8 times more abundant in window ventilated
offices. Boxplots delineate (from bottom) minimum, Q1, median, Q3, and maximum values; notches indicate 95% confidence intervals. d) Cross-
sectional view of representative Lillis Hall offices. Offices on the south side of the building (left) received primarily mechanically ventilated air, while
offices on the north side of the building (right) are equipped with operable windows as a primary ventilation air source.
doi:10.1371/journal.pone.0087093.g005
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of major bacterial taxa among these spaces. Taxa including

Lactococcus, Pseudomonas, and Streptococcus were more abundant in

the centrally located and highly-occupied spaces (Fig. 4), while

Achromobacter and Methylobacterium were more abundant in the less

central and less occupied spaces. Space types did not vary

significantly in terms of their overall bacterial OTU richness or

diversity (ANOVA using rarefied OTU richness and Shannon

diversity; P=0.2 & 0.9, respectively).

Design Influences on the Built Environment Microbiome
within a Space Type
The large number of office spaces (73 offices) made it possible to

test for drivers of microbial community variation among offices.

Using a single space type also allowed us to hold relatively constant

several building parameters. Specifically, parameters including

space size, relative humidity, and occupancy varied less across

offices than across all rooms at the building-scale. Variation in

bacterial community structure among faculty offices was largely

explained by the ventilation source in offices, with mechanically

ventilated faculty offices containing a distinctive set of bacterial

taxa when compared with window ventilated faculty offices (Fig. 5;

R2=0.025; P=0.005). Taxa including Deinococcus, Achromonobacter,

and Roseomonas were associated with mechanically ventilated

faculty offices, while Methylobacterium, Sphingomonas, and Streptococcus

were more closely associated with window ventilated faculty

offices. Two of the most abundant of these strongly weighting taxa,

Deinococcus and Methylobacterium, when grouped by genus, show

consistent abundance differences between offices with different

ventilation strategies. We found a strong association between the

spatial connectance distance of offices (the number of doors

through which one must walk between any two spaces) versus the

microbial community similarity of offices (Fig. 6; R=0.19;

P=0.002; from a Mantel test of Canberra distance vs. spatial

connectance distance). This association was also significant at the

building scale, regardless of space type (R= 0.11; P=0.001).

Discussion

In this paper we first asked: at the scale of the entire building, do

function, form and organization predict variation in the built

environment microbiome? Our data suggest that the answer is

yes. In architecture, function translates to space type, which in

Lillis Hall was the strongest predictor of microbiome variation

throughout the building. Due to the integrative nature of

architectural design, function often drives patterns in the form

and organization of spaces throughout a building, and form and

organization are necessarily difficult to disentangle. Although form

and organization are distinct aspects of architectural design, we

did not attempt to draw a distinction between them in our

analyses, since nearly every building variable herein relates to

both. In Lillis Hall, design choices resulted in distinct space types

that greatly differed in terms of their architectural characteristics,

which were related to variation in microbial community compo-

sition at the building-scale. We also focused our analyses on the

most common space type in Lillis Hall: offices. Specifically, we

asked which aspects of form and organization most influenced the

built environment microbiome in offices. We found that network

betweenness, building floor, space size, and ventilation source were

the strongest predictors for microbiome variation, even after

holding function constant.

Despite the microbiome variation across space types, we

detected a core built environment microbiome [23] of bacterial

taxa that were present in nearly every indoor space we sampled.

This core microbiome was dominated by taxa including members

of the Proteobacteria and Firmicutes that are commonly found in

indoor dust [15], although other common indoor dust taxa such as

Actinobacteria were rare in this building (c. 1% of sequences).

Many of the common taxa in the indoor dust microbiome were

also detected in air and surface samples from the same building

[24], suggesting that resuspension and settling of microbes from

these pools of potential colonists are contributing to the

communities detected in dust. The synchrony among these three

microbial pools (air, surfaces and dust) within Lillis Hall suggests a

conserved core building microbiome. Likely sources of this core

microbiome include humans, soils and plants. We found that

several of the bacterial taxa most strongly associated with

restrooms as well as with high occupant diversity space types,

such as classrooms, are also known to be associated with the

human microbiome (e.g. Lactobacillus and Staphylococcus), while

bacteria in low occupant diversity space types such as faculty

offices and mechanical support spaces were more indicative of

outdoor environments such as soils and the phyllosphere (e.g.

Methylobacterium).

There has been a recent debate regarding the relative

importance of dispersal from outdoor sources versus the conditions

within buildings for determining the structure of indoor microbial

communities [16,24,25]. We found evidence for the importance of

both types of processes: the potential for dispersal from outdoor

sources (e.g. ventilation air source, natural ventilation capacity)

and conditions within the building (e.g. space type, building floor,

temperature and relative humidity) influenced microbial commu-

nity structure. This suggests that dispersal- and niche-based

explanations will be required to understand the dynamics of the

built environment microbiome. As in any ecological community,

the spatial and temporal scale used to define indoor communities

will have a large impact on the processes that give rise to patterns

Figure 6. Offices in Lillis Hall show a strong distance-decay
pattern. When only considering a single space type, biological
similarity (y-axis; 1 - Canberra distance) decreases with connectance
distance (number of intermediate space boundaries [e.g., doors] one
would walk through to travel the shortest distance between any two
spaces) (Mantel test; R= 0.189; P= 0.002). The same pattern was also
observed at the whole-building scale (not shown; Mantel test; R=0.112;
P= 0.001).
doi:10.1371/journal.pone.0087093.g006
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of diversity [26], as will the organisms being studied (e.g. bacteria

vs. fungi), and this could explain differences between our findings

and those of other recent studies [16]. For example, in a large

multi-use building with high occupant density such as Lillis Hall,

variation in human activities and uses among space types may be

the main driver of microbial community structure. In smaller

buildings with lower occupant density and stronger connections to

outdoor air sources (such as greater reliance on natural

ventilation), dispersal from outdoors may be the more important

driver of indoor microbial community structure [16].

Our study highlights network analysis as a potentially powerful

tool for applying indoor ecology and biogeography to the future of

building design. Our network analyses quantified patterns in the

form and organizations among spaces throughout Lillis Hall. From

an architectural standpoint, room arrangement within Lillis Hall

follows a double-loaded corridor design, where highly-central

circulation spaces (e.g. hallways) connect most rooms in the

building together with few intermediate spaces (radial design in

Fig. 2). This radial design strategy, compared to linear or grid

designs, reduces the range of connectance distances while

increasing the centrality (betweenness and degree) of circulation

spaces. We found that centrality was strongly correlated with

variation in microbial communities. Since increased centrality of a

space inherently increases human traffic through that space, and

both of these attributes predicted microbial community compo-

sition in the present study, our findings suggest that the

arrangement of spaces within a building is one promising way to

influence microbial community composition.

We found that design decisions can influence the ecology of

microbes within a space type - for example, in faculty offices the

source of ventilation air (window- or louver-supplied versus

mechanically-supplied ventilation) had a large impact on bacterial

community structure and the abundance of some common taxa

(e.g. Deinococcus and Methylobacterium; Fig. 5). While neither of these

genera are known to influence human health, the unusually high

abundance of the former in building dust, and particularly in

mechanically ventilated offices, gives us insight into potential

selective pressures within the built environment. Deinococcus is a

genus best known to microbiologists for the extreme oxidative

stress-, desiccation- and UV-tolerance of Deinococcus radiodurans

[27,28]. Members of this genus are commonly found in soils, on

plants, on humans, and have been detected previously in building

dust and bioaerosols, but at far lower frequency than in our study

[21,29]. It is plausible that consistently low relative humidity in

mechanically ventilated offices, as well as UV light from windows,

created indoor environmental conditions that selected for

Deinococcus in dust assemblages, while window ventilated offices

received more frequent inputs from airborne phyllosphere and soil

microbial communities, leading to higher abundances of Methylo-

bacterium.

As our understanding of the drivers of indoor microbiology

improve, it may be possible to design spaces that foster or inhibit

the growth and accumulation of different microbial taxa in order

to promote a healthier indoor microbiome. But promoting a

healthy indoor microbiome will require improved information

about the human microbiome and health. At this point our

understanding of the drivers of microbial ecology indoors has

outpaced our understanding of related health implications

[1,2,4,12,13,15,17,24,30,31]. Microbial biodiversity in the sur-

rounding environment has been linked to human health and well-

being [32–34], but for the vast majority of microbial taxa, we have

no idea if their impact on our health is positive, negative, or

neutral. Considering that the indoor microbiome represents a

major potential source of microbes colonizing the human

microbiome [1,12,13], as our knowledge about commensal

microbiota expands [35–39], it is foreseeable that we will be able

to target beneficial groups of indoor microbial taxa. Thus, while

future studies will be needed to understand the health implications

of indoor microbial communities, our results give clear evidence

that design choices can influence the biogeography of microbial

communities indoors, and thereby influence the interactions

between the human microbiome and the built environment

microbiome.

Conclusion

Churchill famously stated that ‘‘[w]e shape our buildings, and

afterwards our buildings shape us.’’ Humans help to direct microbial

biodiversity patterns in buildings – not only as building occupants,

but also through architectural design strategies. The impact of

human design decisions in structuring the indoor microbiome

offers the possibility to use ecological knowledge to shape our

buildings in a way that will select for an indoor microbiome that

promotes our health and well-being.

Supporting Information

Figure S1 High degree of correlation between three
beta-diversity metrics. Multivariate community analysis was

carried out with the Canberra taxonomic metric; this choice

results in de-emphasis of the most abundant species (as opposed to

using the Bray-Curtis dissimilarity metric), and also ignores

nuanced evolutionary relationships between bacterial OTUs (as

opposed to using the phylogenetic Weighted UniFrac distance).

While the choice of a beta-diversity metric can impact results, the

three potential candidates that we explored resulted in largely the

same distance between samples in multivariate space. All three

metrics are bounded between 0 and 1. Pearson’s correlations (r)

are given in the upper right panels.

(PNG)

Figure S2 The taxonomic composition of bacterial
communities sampled from dust in the Lillis Business
Complex. The relative abundance of sequences assigned to taxa

at different taxonomic levels is indicated by the relative width of

categories at each level. Bacterial taxonomy was visualized using

Krona (http://sourceforge.net/projects/krona/; Ondov et al.

2011).

(PDF)

Table S1 Explanation of occupancy variables.

(PDF)
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