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Abstract

Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive,
mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These
neurons establish constant communication with their targets which insures correct maturation and functioning of the
somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and
molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which
encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the
mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/
IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor
Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the
tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the
axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether,
these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling
pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.
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Introduction

Sensory modalities such as pain, touch and proprioception are

relayed from the periphery to the spinal cord by somatosensory

neurons located in the dorsal root ganglia (DRGs). These

neurons constitute a heterogeneous neuronal population based

on anatomical, functional, neurotrophin dependence and molec-

ular criteria. Their cell somas maintain constant communication

with their targets via anterograde and retrograde signals that

contribute to the maturation and functioning of the system.

Damage to the peripheral nerves interferes with this two-way

communication, resulting in stereotypic changes in the physiology

of DRG neurons, including altered electrical activity, protein

activity and gene expression. Identifying genes whose expression

is regulated by signaling pathways activated by periphery-derived

cues represents one key step toward a better understanding of the

establishment, functioning and pathologies of the somatosensory

nervous system. In a gene profiling analysis on mouse lumbar

DRGs [1], we identified the transcript encoding FXYD2, also

known as the gamma-subunit of the NaK-ATPase. The FXYD

family comprises 7 members, the main proposed function of which

is to modulate the activity of the Na,K-ATPase in different tissues

[2,3]. So far, the major site of FXYD2 expression has been

described in kidney, and human mutations of the FXYD2 gene lead

to renal hypomagnesemia [4]. Here we report the first description of

FXYD2 expression in discrete neuronal sub-populations of the adult

mouse DRGs, consisting in the TrkB-positive (+) mechanoceptors

and the Ret+/IB4+ non-peptidergic nociceptors. In the latter

population, Runx1 and Ret are required for the proper expression of

FXYD2. Moreover, we establish that FXYD2 is down-regulated in

axotomized neurons, and that in vivo application of the Ret ligands,

GDNF or Neurturin prevents this down-regulation in axotomized

IB4+ nociceptive neurons. Altogether our results reveal FXYD2 as a

new target of the Ret signaling pathway during normal maturation

of the DRG and after sciatic nerve injury in the non-peptidergic

nociceptive neurons.

Results

FXYD2 expression is induced in the DRGs at postnatal
stages and maintained in the adults

Our previous SAGE analysis of DRG transcriptional dynamics

[1] allowed the identification of the FXYD2 gene whose expression

appeared virtually absent in the prenatal stages and at birth,

peaked in the adult and decreased after axotomy (Fig. 1A). Real-

time PCR quantification paralleled the changes in tag frequencies
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observed by SAGE (Fig. 1A). So far, FXYD2 expression was well

characterized in kidneys where 2 isoforms generated by alternative

splicing (FXYD2a and FXYD2b) have been described [5].

Western blot analysis on mouse adult DRGs revealed two bands

identical to those observed in kidney protein extracts (Fig. 1B),

indicating that the two FXYD2 isoforms are also present in the

DRGs. To further confirm and extend the transcript quantifica-

tion results, in situ hybridization was carried out on DRG sections

from embryonic day 13 (E13) through adult stages (Fig. 1C–F). As

expected, no specific signal was observed at E13 (Fig. 1C) and at

birth (postnatal day zero: P0; Fig. 1D). In contrast, from P15

to adulthood, robust expression of FXYD2 persisted in 57%

of the neurons (Fig. 1E,F). Immunohistochemistry confirmed this

observation and revealed that the FXYD2 protein is located in the

cytoplasm as well as along nerve fibers exiting the ganglion

(Fig. 1G). Altogether these results show that in the DRGs, FXYD2

expression is induced at postnatal stages around P15, and is

restricted to a subpopulation of sensory neurons, suggesting that it

might identify specific functional classes.

FXYD2 expression is restricted to the TrkB+
mechanoreceptive and Ret+/IB4+ non-peptidergic
nociceptive populations

To test this hypothesis, we analyzed co-expression with TrkA,

TrkB, TrkC, Ret and the Isolectin-B4 binding molecule (IB4).

Double-labeling experiments on adult DRGs sections revealed

that virtually no TrkA+ nociceptive (Fig. 2A,B) or TrkC+

proprioceptive/mechanoceptive (Fig. 2C,D) neurons express

FXYD2. In contrast, we found that FXYD2 expression is detected

in practically all TrkB+ mechanoceptive (99%; Fig. 2E,F,K) and

Figure 1. Expression profile of FXYD2 mRNA and protein during
DRG neuron development. (A) Quantitative RT-PCR analysis of
FXYD2 expression in the developing DRGs and after axotomy. SAGE tag
frequencies for FXYD2 at equivalent stages or conditions are indicated
below. (B) Western blot using a FXYD2 antibody shows the presence of
the FXYD2 isoforms gamma-a and gamma-b in the adult DRG. Kidney
extract is a positive control. (C–F) FXYD2 in situ hybridization on mouse
DRG sections at E13, P0, P15 and adult. Arrow and arrowhead in F point
to FXYD2-positive and FXYD2-negative neurons, respectively. (G) FXYD2
immunochemistry on adult DRG sections. Arrows and Arrowheads point
respectively to positive cell bodies and nerve fibers.
doi:10.1371/journal.pone.0029852.g001

Figure 2. Restricted expression of FXYD2 in TrkB+ mechanocep-
tive and Ret+/IB4+ non-peptidergic noniceptive neurons within
the DRGs. (A–J) Double-labeling for FXYD2 and TrkA, TrkB, TrkC, Ret or IB4
on adult DRG sections. No co-localization is observed between FXYD2 and
TrkA or TrkC. Double-positive neurons are detected with TrkB+ mechan-
oceptors (arrows in E,F) and Ret+/IB4+ non-peptidergic nociceptors (arrows
in G–J). Arrowheads in G,H point to large Ret+ mechanoceptive neurons
that are FXYD2-negative. (K,L) Percentages of TrkB+ (K) or IB4+ (L) neurons
expressing FXYD2 showing that virtually all the TrkB+ mechanoceptors and
the non-peptidergic nociceptors are FXYD2+. (M) Distribution of FXYD2+
neurons in two main neuronal types: the TrkB+ (representing 13%) and the
Ret+/IB4+ (representing 85%) populations.
doi:10.1371/journal.pone.0029852.g002
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Ret+/IB4+ nociceptive populations (97%; Fig. 2G–J,L). In

addition, this analysis showed that the FXYD2+ neuronal

population mainly segregates into the TrkB+ (representing 13%

of the total number of FXYD2+ neurons), and the IB4+
(representing 85%) neurons (Fig. 2M). In keeping with published

results, the cell body diameters of TrkB expressing neurons were of

medium size and those of Ret+/IB4+ neurons were of small size.

Ret+ neurons of large cell body diameter consisting in low-

threshold mechanoreceptors [6,7], were mostly negative for

FXYD2 (red arrows in Fig. 2G,H). Thus, our expression profile

analysis establishes FXYD2 as a new specific marker of TrkB+
mechanoreceptors and non-peptidergic Ret+/IB4+ nociceptors.

Proper expression of FXYD2 in non-peptidergic
nociceptive neurons requires the transcription factor
Runx1 and Ret signalling

Recent studies have uncovered the transcription factor Runx1

and Ret signaling as key determinants involved in the differenti-

ation of the non-peptidergic nociceptive neurons [8,9]. In the

absence of Runx1, most of the nociceptor population maintains

markers of the TrkA+ peptidergic lineage and fail to up-regulate a

battery of specific non-peptidergic nociceptive markers, including

Ret [8] (see Fig. 3H,I). We thus examined P15 and adult (P90)

conditional Runx1 mutant mice in which the Runx1 gene was

invalidated in the peripheral nervous system. In these mutants

at both ages the number of FXYD2+ neurons was dramatically

reduced by 69%, with only medium sized TrkB+ neurons being

labeled (Fig. 3A–E; data not shown). In agreement with Chen et al.

(2006) [8], the IB4+ neurons were still present in Runx1 mutants

but fail to express FXYD2 (Fig. 3F,G). This shows that Runx1 in

involved in the onset of FXYD2 expression in non-peptidergic

nociceptors.

Absence of Runx1 also leads to down-regulation of Ret

expression (Fig. 3H,I; [8]). To study putative epistatic relationships

between these genes, we examined Ret conditional knock-out mice

[10] in which Ret was eliminated in neural crest derivatives [6]. In

these mutants at P15, we found a marked decrease in both the

numbers of FXYD2+ cells (230%) and the intensity of expression

(Fig. 3J,K,N), a result also visible at the protein level (Fig. 3L,M).

Because the mutants die between 2–3 weeks postnatal, we could

not study whether at later stages FXYD2 expression is completely

abolished in this genetic background. Nevertheless, this result

shows that Ret influences FXYD2 expression in the non-

peptidergic nociceptive neurons. Altogether, our data suggest that

Runx1 controls (directly or indirectly) FXYD2 expression in a Ret-

dependent and a Ret-independent manner (Fig. 3O) in the non-

peptidergic nociceptors.

FXYD2 is down-regulated after sciatic nerve axotomy
To gain further insights into the mechanisms regulating FXYD2,

we took advantage of our SAGE and real-time PCR analysis

showing a drastic reduction of FXYD2 expression after sciatic

nerve axotomy (see Fig. 1A). First, we quantified the number of

neurons expressing FXYD2 as a percentage of total neurons in L4/

L5 ganglia of normal and axotomized animals. This percentage

dropped from 57% in the normal DRG to 16% in the axotomized

DRGs, three days post-axotomy (pa) (Fig. 4A–C). Second, time-

course analysis carried out at 6 hpa, 12 hpa, 24 hpa, 2 dpa, 3 dpa

and 7 dpa (Fig. 4D,E) revealed that FXYD2+ neurons began to

diminish by 2 dpa (from 61% to 43%). At 3 dpa and 7 dpa this

percentage had fallen to 16% and 20%, respectively. The fact that

FXYD2+ neurons were still detected even after a long period after

axotomy suggested that either one population is insensitive to the

nerve injury regarding FXYD2 expression, or that the remaining

FXYD2+ neurons were not axotomized. To test this, we performed

retrograde labeling with Fluorogold from the cut end of the sciatic

nerve to unambiguously identify axotomized neurons, combined

with FXYD2 labeling (Fig. 4F). This showed that FXYD2

expression was absent in virtually all neurons that had taken up

Fluorogold (Fig. 4G–G0). Thus, FXYD2 is down-regulated

specifically in axotomized DRG neurons and this down-regulation

occurs in both the TrkB+ and IB4+ sub-populations.

Ret receptor ligands prevent the axotomy-induced
down-regulation of FXYD2 in vitro and in vivo

The down-regulation of FXYD2 in axotomized sensory neurons

suggested that peripheral signals might allow the maintenance of

its expression. According to our expression pattern and mutant

mice analyses, GDNF family ligands appeared as good candidates

notably for the IB4+/Ret+ nociceptive population. To test this, we

first cultured adult DRG neurons in the presence or absence of

GDNF and NRTN and evaluated the percentage of FXYD2+
neurons. GDNF and NRTN administered for 3 days effectively

maintained FXYD2 expression at the levels observed at one day in

culture (56% of neurons), whereas in the absence of GDNF family

ligands the levels had dropped to 33% (Fig. 5A). This prompted us

to investigate whether GDNF family ligands could also maintain

FXYD2 expression in vivo by carrying out unilateral axotomy of the

sciatic nerve of adult mice and intrathecal application of GDNF,

NRTN or saline solutions in the subarachnoidal space. Efficiency

of the injections on each animal was systematically monitored by

analyzing IB4 staining in the dorsal horn of the spinal cord, which

is normally lost after axotomy, but restored after injections of

GDNF family ligands (insets in Fig. 5C,D,E and data not shown;

[11,12]). In addition, the retrograde tracer Fluorogold was

administered to the cut stump to identify axotomized neurons.

First, we showed by QRT-PCR that subarachnoidal injections of

GDNF or NRTN reversed the decrease in FXYD2 transcripts

observed after axotomy combined with saline injection (Fig. 5B).

To follow these changes at the cellular level, we carried out co-

labeling analysis for FXYD2 and Fluorogold on sections of L4/L5

DRGs treated under the various conditions described above

(Fig. 5C–G). As expected, in DRGs from mice injected

intrathecally with saline solution alone, virtually no Fluorogold+
(i.e. axotomized) neurons contained FXYD2 mRNA (Fig. 5C–

C0,F). In contrast, application of GDNF (Fig. 5D–D0,F) or NTRN

(Fig. 5E–E0,F) resulted in the appearance of numerous double

Fluorogold+/FXYD2+ neurons (Fig. 5D–G). Moreover, by triple

labeling for FXYD2, IB4 and Fluorogold, we showed that Ret

ligands maintain the expression of FXYD2 in the IB4-lectin

binding neuronal population (Fig. 5H; data not shown). It is of

note that in our experimental paradigm, rescue of FXYD2

expression in axotomized neurons with NRTN seemed slightly

more efficient than with GDNF, the percentage of FXYD2+
neurons per DRG section increasing from 16% with saline

solution to 32% with GDNF and 44% with NRTN (Fig. 5G).

Altogether, our results show that in vivo administration of

neurotrophic factors of the GDNF family prevents the axotomy-

induced down-regulation of FXYD2 in IB4+-nociceptors and

support the view that Ret signaling is necessary for the

maintenance of FXYD2 in adult non-peptidergic nociceptors.

Discussion

Here, we uncover the Na,K-ATPase modulator FXYD2

as a novel specific marker restricted exclusively to the TrkB+
mechanoreceptors and the IB4-lectin binding non-peptidergic

Regulated Expression of FXYD2 in Sensory Neurons
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Figure 3. FXYD2 expression depends on Runx1 and Ret signaling in non-peptidergic nociceptors. (A–D) FXYD2 in situ hybridization on
adult DRG sections from control (Runx1F/F; A,C) and mutant (Runx1F/F;Wnt1Cre; B,D) animals at P15 (A,B) and P90 (C,D). Insets show higher
magnification. In control (A,C), small and larger (respectively, red and green brackets in insets) diameter neurons are detected, while in Runx1 mutants
at both stages (B,D) only the large diameter population expresses FXYD2 (green brackets in insets). (E) Quantification of the proportions of FXYD2+
neurons at P90 showing a reduction of 69% in Runx1 mutants. (F,G) Double-labeling for FXYD2 and IB4 on adult DRG sections from control and Runx1
mutant animals at P90, showing a loss of FXYD2 specifically in the IB4+ population in the mutants. Insets show higher magnifications. (H,I) Ret in situ
hybridization on DRG sections from control (H) and Runx1 mutant (I) animals at P90. Insets show higher magnification. Ret expression is lost in small
diameter nociceptors (red brackets in insets) and persists only in large diameter mechanoceptive neurons (green brackets in insets) in Runx1 mutants.
(J–M) FXYD2 in situ hybridizations (J,K) and immunochemistry (L,M) on DRG sections at P15 from control (RetF/F; J,L) and Ret mutants (RetF/F;Wnt1-Cre;
K,M) showing a reduced number of FXYD2+ neurons and expression intensity in the mutants. (N) Quantification of the relative number of FXYD2+
neurons showing a reduction of 30% in Ret mutants. (O) Epistatic relationships between Runx1, Ret and FXYD2 in non-peptidergic nociceptors. Runx1
controls (directly or indirectly) the onset of FXYD2 expression partly through Ret regulation. Ret signaling seems involved in ensuring proper levels of
FXYD2 and in its maintenance at subsequent stages (dashed arrows; see text).
doi:10.1371/journal.pone.0029852.g003
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nociceptors of primary somato-sensory neurons. Strikingly,

FXYD2 is not ubiquitous in the DRGs, suggesting that the

composition of the Na,K-ATPase complex diverges from a

sensory neuronal type to another and that the expression of the

FXYD family members is finely regulated. Our analysis reveals

some aspects of the regulatory mechanism leading to the

restricted expression of FXYD2 in the DRGs, notably in the

non-peptidergic nociceptive neurons. Indeed, in this population

our data point to roles for Runx1 and Ret in the initiation of

FXYD2 expression at early postnatal stages, and its maintenance

in the adult. A role in initiation is demonstrated by the fact that,

in P15 and adult DRGs from Runx1 mutant mice, FXYD2

expression is completely lost in the IB4+ population. In Ret

mutants at P15, however, the numbers of FXYD2+ neurons and

the intensity of expression are diminished, indicating a partial

dependence on Ret signaling at this stage. Because of the relative

early lethality of the Ret mutation used in this study, we could not

analyze whether FXYD2 expression is completely abolished at

later stages in these mutants. Nevertheless, the importance of Ret

signaling for the maintenance of FXYD2 expression is supported

by our results on axotomized neurons. Indeed, administration of

exogenous GDNF family ligands of the Ret receptor to injured

DRG efficiently restores its expression in axotomized IB4-binding

nociceptive neurons. Thus, our results show that FXYD2 belongs

to a group of genes that depend on both Runx1 and Ret signaling

for their correct expression [9].

Figure 4. Loss of FXYD2 expression in L4/L5 DRG neurons after sciatic nerve axotomy. (A, B) FXYD2 in situ hybridization on naı̈ve DRGs (A)
and injured DRGs 3 days post-axotomy (dpa) (B). (C) Quantification of the percentage of FXYD2+ neurons in naı̈ve and axotomized DRGs 3 dpa,
showing a reduction from 57% to 16% after lesion of the sciatic nerve. (D, E) Time course analysis of FXYD2 expression in the DRGs from 6 hpa to
7 dpa (D). Quantification reveals a major decrease between 2 and 3 dpa that remains stable at 7 dpa (E). (F) Scheme illustrating retrograde labeling of
axotomized DRG neurons with Fluorogold. (G–G0) Combined FXYD2 in situ hybridization and FluoroGold staining on DRG sections 3 dpa. Virtually no
double-positive cells are found. Arrows and arrowheads point to FluoroGold-negative/FXYD2+ and FluoroGold+/FXYD2-negative neurons,
respectively.
doi:10.1371/journal.pone.0029852.g004
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Our rescue experiments on axotomized neurons also further

illustrate the influence of periphery-derived cues in maintaining

the integrity of DRG neurons. Retrograde signaling by

neurotrophins controls many aspects of sensory neuron devel-

opment and adult function [13]. Similar to neurotrophins, in

adult rodents, peripherally injected I125 labeled GDNF family

ligands are internalized and retrogradely transported to the

DRG and accumulate in neurons that express the appropriate

receptors [14], and several studies have shown that exogenously-

supplied GDNF both normalizes gene expression in injured

DRG neurons and exerts analgesic effects in models of

neuropathic pain in rodents [15,16]. In this context, the

restoration of FXYD2 expression by GDNF ligands could have

therapeutic relevance.

The molecular mechanisms involved in the control of FXYD2

expression in the TrkB+ population remains to be determined.

The roles of TrkB ligands such as BDNF or NT-4 in the post-

traumatic processes in sensory neurons are much less well-defined

than those of GDNF ligands. It has been shown, for example, that

BDNF production actually increases in Schwann cells at the injury

site or in DRG neurons themselves, in several models of peripheral

nerve injury (reviewed in [17]).

The finely regulated expression pattern of FXYD2 in normal

mouse DRGs and its down-regulation after axotomy raise the

issue of its function in sensory neurons. The 7 members of the

FXYD family encode gamma-subunits of the Na,K-ATPase

which share a common function as modulators of the properties

of the pump in various tissues [2,3]. In neurons, the Na,K-

ATPase is essential for maintaining the membrane resting

potential by restoration of Na+ and K+ gradients during the

propagation of action potentials. Moreover, lesioned sensory

neurons become hyperexcitable and this ectopic activity, which

might in part reflect changes in Na,K-ATPase subunits

expression and/or regulation, may contribute to neuropathic

pain [18]. In line with this, binding of the secreted molecule

FSLT1 to the Na,K-ATPase alpha 1-subunit induces a

hyperpolarization of the membrane which in turn inhibits

synaptic transmission in sensory neurons [19]. FSTL1 is down-

regulated after axotomy which leads to neuropathic pain

hypersensitivity [20]. So far, the major site of FXYD2 expression

is the kidney where it modulates the affinity of the Na,K-ATPase

for Na+, K+ and ATP [21]. In the DRGs however, very little

information on FXYD proteins is available. Only FXYD7 has

been shown to be actually up-regulated in rat DRG neural cells

after axotomy [22]. Our results revealing the down-regulation of

FXYD2 as part of the molecular response to nerve injury support

the view that it could be one key regulator involved in the

development of neuropathic conditions affecting the somatosen-

sory nervous system.

Materials and Methods

Animals and surgery
Procedures involving animals and their care were conducted

according to the French Ministry of Agriculture and the European

Community Council Directive no. 86/609/EEC, OJL 358, 18

December 1986. The protocols were validated by the Direction

Départementale des Services Vétérinaires de l’Hérault (Certificate

of Animal Experimentation no. 34-376,17 february 2009).

Runx1F/F;Wnt1-Cre mutant animals were obtained as described

in [8]. (2006). RetF/F animals (provided by Dr. C. Baudet; [10]),

were crossed with the Wnt1-Cre mouse line [23] as described in

[6].

Axotomy was performed on adult C57BL/6 wild type mice

deeply anaesthetized by intraperitoneal injection of equithesin

[0.6% pentobarbital sodium and chloral hydrate (0.4 ml/100

gbody wt)]. The left sciatic nerve was exposed at the mid-

thighlevel and sectioned, and a 3- to 5-mm fragment of the nerve

was removed. For back labelling of axotomised DRG neurons, the

proximal portion of the sectioned nerve was immersed several

minutes in 0,9% saline solution containing 4% of Fluorogold

(Fluoro-Chrome Inc., Denver, CO, USA; Fig. 4F). Mice were kept

alive for the indicated times before sacrifice and dissection of the

DRGs. Saline solution or Neurotrophic factors (GDNF or NRTN)

were administered directly into the spinal subarachnoidal space at

the S1 level of adult mice using a 30-gauge needle (BD Micro-fine).

700 ng of GDNF or NRTN (AbCys) were injected once a day

during 5 days. Animals were then killed and lumbar DRGs were

collected and processed for immunochemistry or in situ hybrid-

ization.

Gene profiling using SAGE
SAGE libraries were made on mouse lumbar DRGs (approx-

imately 80–100,000 cells) using the I-SAGETM Kit (Invitrogen,

France) according to the manufacturer’s instructions and as

described previously [1]. Analysis of the generated data, and in

particular, sequence data analysis assessing the quality of the

library, extraction of tag sequences from concatemers, their

annotations and analysis of their distributions was carried out

using bioinformatic tools developed by Skuld-tech (http://www.

skuldtech.com) as previously described [1].

Real-time PCR
Quantitative RT-PCR was conducted as previously described

[1], by using SYBR Green I dye detection on the Light Cycler

system (Roche Molecular Biochemicals). The identity of amplified

products was confirmed by sequencing (Genome express, France).

The relative amounts of specifically amplified cDNAs were

calculated using the delta-CT method [24,25] on three indepen-

Figure 5. GDNF family ligands influence FXYD2 expression in adult DRG neurons in vitro and in vivo. (A) Quantitative analysis of FXYD2-
expressing neurons in DRG cultures in the presence or absence of GDNF/NRTN. The picture is representative of a neuronal culture stained with the
anti-FXYD2 antibody revealed with DAB as a substrate. On the graph is reported the proportion of FXYD2+ neurons after 3 h in culture, 3 days in
culture without added factors, or 3 days in culture with GDNF/NRTN (10 ng/ml each). FXYD2 expression was efficiently maintained by addition of
factors. (B) QRT-PCR for FXYD2 on L4/5 DRGs dissected from control animals or mice axotomized and injected intrathecally either with saline, GDNF or
NRTN solutions. (C–E0) Combined FXYD2 in situ hybridization and FluoroGold staining on adult DRG sections from mice axotomized and injected
either with saline (C–C0), GDNF (D–D0) or NRTN (E–E0) solutions during 3 days. Double-labeled neurons are virtually absent with saline injection, while
they are numerous after GDNF and NRTN treatments. Insets in C0, D0 and E0 show higher magnifications. Insets in C, D and E represent injection
quality controls showing IB4 staining on hemisections of the dorsal spinal cord (brackets) ipsilateral to the axotomy, that is normally lost after
axotomy and saline injection, but rescued with GDNF or NRTN [11,12]. (F) Quantification of FluoroGold+/FXYD2+ neurons in the indicated conditions,
showing that GDNF family ligands efficiently maintain FXYD2 in injured neurons. (G) Quantification of the proportion of FXYD2+ neurons per DRG
section in naı̈ve animals (Ctrl) or in axotomized mice injected either with saline, GDNF or NRTN solutions. FXYD2 is normally expressed in 57% of the
DRG neurons and in 16% after axotomy and saline injection. In GDNF and NRTN injected mice, this proportion reaches 32% and 44%, respectively. (H)
Triple-labeling for FXYD2, IB4 and FluoroGold (FG) on adult DRG sections from axotomized mice treated with NRTN. Presence of triple-labeled cells
(white arrows) shows that FluoroGold+/FXYD2+ neurons are IB4+ nociceptors. Inset show higher magnification.
doi:10.1371/journal.pone.0029852.g005
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dent experimental replicates, after normalisation by two stable

control genes (polymerase (RNA) II (DNA directed) polypeptide J

(polr2j) and DEAD box polypeptide 48 (Ddx48)). The Mann

Whitney U-test was used for comparison between groups. p

value,0,05 were considered statistically significant.

The following primer pairs were used to generate the PCR

products:

Polr2j [GenBank:NM_011293]:

s- ACCACACTCTGGGGAACATC; as- CTCGCTGATGA-

GGTCTGTGA

Ddx48 [GenBank:NM_138669]:

s- GGAGTTAGCGGTGCAGATTC; as- AGCATCTTGA-

TAGCCCGTGT

The FXYD2 primers amplify a region common to the 2 known

FXYD2 transcript variants; FXYD2a [Genbank: NM_007503]

and FXYD2b [Genbank:NM_052823] [26]:

s- GGACAGAGAATCCCTTCGAG; as- CCGATTTCAT-

TGGCAGTTG

Western blot
Western blots on DRG or kidney protein extracts were done as

described in [27] using the rabbit anti-C-terminal FXYD2

antibody diluted 1/10000 [28,29].

Cell Culture
Adult DRG neurons from wild type animals were dissociated

and plated at a density of 15000 neurons per well, on 4-well plates

(Nunc) with glass coverslips (CML) precoated with D,L-poly-

ornithine (5 mg/ml) and laminin (5 mg/ml), in a defined culture

medium consisting of Neurobasal supplemented with 200 mM

glutamine (GIBCO), and 2% B27 (GIBCO). GDNF and NRTN

(Abcys) were used at a concentration of 10 ng/ml. The primary

cultures were maintained at 37uC in a humidified incubator under

5% CO2 during 3 days and then processed for immunochemistry

(see below).

In Situ Hybridization, Double In Situ Hybridization and
Immunhistochemistry

TrkA and FXYD2 antisense RNA probes were generated from

cDNA sequences that were PCR-amplified from reverse-tran-

scribed total RNA isolated from wild-type adult mouse DRG using

the following primers:

TrkA s- TGGCAGTTCTCTTTCCCCTA; as- AAAGCTC-

CACACATCGCTCT

FXYD2s- GGACAGAGAATCCCTTCGAG; as- CCGATTT-

CATTGGCAGTTG

Amplified fragments were cloned into the pGEM-T easy vector

using the TA cloning kit (Promega).

Probes for TrkB, TrkC and Ret were kindly provided by Dr. E.

Castren, Dr. F. Lamballe and Dr. V. Pachnis, respectively.

Digoxigenin(DIG)- or Fluorescein-labeled RNA probes were

synthesized using the DIG- or Fluorescein-labelling kit (Roche),

respectively, according to the manufacturer’s instructions.

Simple and double in situ hybridization, and in situ hybridiza-

tion combined with immunohistochemistry were performed as

previously described [30].

For simple staining with isolectin B4, cryosections of spinal cord

tissue were blocked in 1% BSA, 0.1% Triton in PBS for 1 h, and

then incubated with IB4-Biotin (10 mg/ml, Sigma) and FITC-

conjugated ExtrAvidin (Sigma, diluted 1/400). For in situ

hybridization combined with IB4-labeling, cryosections were first

hybridized with the FXYD2 DIG-labeled probe and processed for

IB4 staining as above. Slides were temporarily mounted in 90%

glycerol in PBS and fluorescent images of IB4 labeling were taken.

Slides were then washed in PBS, blocked in 20% sheep serum,

incubated with an alkaline phosphatase (AP)-conjugated sheep

anti-DIG antibody (Roche), and then with a solution of NBT/

BCIP (Roche, diluted 1/2000), substrate of the AP, to reveal the

FXYD2 staining. In situ hybridization signals were photographed

under transluminescent light and converted into red pseudo-

fluorescent color. Pictures of the same sections were overlaid to

reveal co-labeled cells.

Immunofluorescent staining on frozen sections were performed

as previously described [31]. Antibodies used were as follows: goat

anti-Ret (R&D Systems, diluted 1:20) and rabbit anti-C-terminal

FXYD2 (diluted 1:1000; see [28]). Alexa Fluor-594-or Alexa

Fluor-488-conjugated secondary antibodies were used (Molecular

Probes, diluted 1:1000 and 1:500, respectively). For Ret

immunostaining, an epitope retrieval step was carried out by

immersion of the sections for 15 min at 68uC in sodium citrate

buffer (10 mM Sodium Citrate, 0.05% Tween 20 [pH 6]).

Immunohistochemistry on adult DRG neuronal cell cultures

was conducted as described [27]. Briefly, fixed cell cultures were

incubated 1 hr at RT with the rabbit anti-C-terminal FXYD2

antibody (diluted 1/1500). After several washing steps, the

antibody was revealed using the Vectastain ABC kit (Vector).

Colour reaction was performed using diaminobenzidine (DAB;

Sigma) as substrate.

Cell counting
The number of neurons expressing the various molecular

markers was determined by counting cells with neuronal

morphology and clearly identifiable nuclei. A minimum of 4

sections from DRGs were counted from at least 3 animals. The

average number of positive neurons per section was determined.

When indicated on the graphs, the percentage of neurons

expressing a given marker either over the total number of DRG

neurons, or over the total number of a defined population, was

calculated.
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