
Assessing the Performance of a Computer-Based Policy
Model of HIV and AIDS
Chara E. Rydzak1,2, Kara L. Cotich2, Paul E. Sax3, Heather E. Hsu1,4, Bingxia Wang4, Elena Losina4,5,6,

Kenneth A. Freedberg1,2,4,6,7, Milton C. Weinstein2, Sue J. Goldie2*, for the CEPAC Investigators"

1 Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of Health Policy and Management, Harvard School of Public Health, Boston,

Massachusetts, United States of America, 3 Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States

of America, 4 Division of General Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 5 Department of

Orthopedic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 6 Departments of Biostatistics and Epidemiology, Boston University

School of Public Health, Boston, Massachusetts, United States of America, 7 Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital,

Boston, Massachusetts, United States of America

Abstract

Background: Model-based analyses, conducted within a decision analytic framework, provide a systematic way to combine
information about the natural history of disease and effectiveness of clinical management strategies with demographic and
epidemiological characteristics of the population. Among the challenges with disease-specific modeling include the need to
identify influential assumptions and to assess the face validity and internal consistency of the model.

Methods and Findings: We describe a series of exercises involved in adapting a computer-based simulation model of HIV
disease to the Women’s Interagency HIV Study (WIHS) cohort and assess model performance as we re-parameterized the
model to address policy questions in the U.S. relevant to HIV-infected women using data from the WIHS. Empiric calibration
targets included 24-month survival curves stratified by treatment status and CD4 cell count. The most influential
assumptions in untreated women included chronic HIV-associated mortality following an opportunistic infection, and in
treated women, the ‘clinical effectiveness’ of HAART and the ability of HAART to prevent HIV complications independent of
virologic suppression. Good-fitting parameter sets required reductions in the clinical effectiveness of 1st and 2nd line HAART
and improvements in 3rd and 4th line regimens. Projected rates of treatment regimen switching using the calibrated cohort-
specific model closely approximated independent analyses published using data from the WIHS.

Conclusions: The model demonstrated good internal consistency and face validity, and supported cohort heterogeneities
that have been reported in the literature. Iterative assessment of model performance can provide information about the
relative influence of uncertain assumptions and provide insight into heterogeneities within and between cohorts.
Description of calibration exercises can enhance the transparency of disease-specific models.
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Introduction

Over the past fifteen years there has been remarkable progress

in the treatment of HIV-1 infection.[1–4] Where highly potent

combination antiretroviral therapy (HAART) is accessible, HIV

has become a chronic treatable disease, albeit complex and costly,

requiring lifelong management.[1,5] There are a number of

clinical and policy questions that remain to be addressed in HIV,

ranging from the optimal time to begin antiretroviral treatment to

how best to increase access to care and improve adherence to

antiretroviral therapy. Unfortunately, no single study can include

all possible strategies, and the rapid evolution in treatment options

poses a challenge for trial-based investigations to keep pace with

the questions to be answered. Even when clinical trials are

conducted, they are often limited in their length of follow-up and

rely on intermediate outcomes.[6–14]

Model-based analyses, conducted within a decision analytic

framework, provide a systematic way to combine information

about the natural history of disease, efficacy of different treatment

regimens, and effectiveness of clinical management strategies with

other relevant demographic and epidemiological characteristics of

the target population.[15–17] When used within a decision-

analytic framework, models can extend knowledge from empirical

studies to other situations and can be used to evaluate alternative

strategies not feasible to explore in a clinical trial. When the data

are insufficient to support traditional forms of investigation,

models offer a practical framework for managing uncertainty via

sensitivity and ‘‘what-if’’ analysis.
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Over the past 10 years, the ‘‘Cost-effectiveness of Preventing

AIDS Complications (CEPAC)’’ model has been used to conduct

analyses intended to guide HIV clinical decision-making and policy

formulation in a variety of settings.[18–30] The model has been

iteratively revised as new data become available, both about the

disease itself, and the wide array of new treatment options. Persistent

challenges with any simulation model of a complex disease include

the detail required to reflect a realistic representation of the disease

process, the pace at which data become available, and the need to

continuously revisit assumptions in the context of new information.

As the complexity of a model increases, so will the requirements for

parameters. Input values are almost never available for all

parameters, and analysts rely on approaches ranging from expert

assumptions with careful sensitivity analyses to conducting calibra-

tion exercises that involve fitting model output to epidemiological

data in order to inform uncertain parameter estimates. Regardless of

the method used to parameterize the model, decision analysts seek to

assess parameter uncertainty and to explore the relative influence of

uncertain assumptions made. While sensitivity analyses to address

parameter uncertainty are included in most decision analyses,

analysts often conduct many exploratory analyses to assess the

influence of model assumptions. When data are available to allow for

such exercises, they provide an opportunity to assess the model’s face

validity and internal consistency. However, even when conducted,

often these exercises are unable to be included in peer-reviewed

publications due to space limitations.

In this paper, we describe a series of exercises that were

conducted as we re-parameterized the CEPAC model to address

clinical and policy questions in the United States relevant to HIV-

infected women. This process required that data be extracted from

the Women’s Interagency HIV Study (WIHS) and adapted to a

format required by the model.[31–34] We used this effort to assess

the internal consistency of the model, identify influential

assumptions on model outcomes, and assess the external

consistency of the model with independent published analyses.

This paper describes the process and steps taken to do so.

Methods

The Cost-Effectiveness of Preventing AIDS Complications

(CEPAC) model is a 1st-order (i.e., patient level) Monte Carlo

simulation model of HIV disease, and has been previously

described.[18–30] Disease progression in the model is characterized

as a sequence of monthly transitions from one ‘‘health state’’ to

another. Health states, descriptive of each patient’s true underlying

health, are defined by current and maximum HIV RNA, current

and lowest CD4 lymphocyte count, and current and prior

opportunistic infections. Drawing from an initial distribution of

specified demographic (age, sex) and clinical characteristics (CD4

count, HIV RNA level, history of opportunistic infection), the

model simulates a cohort of individual patients whose clinical course

is tracked from model entry until death. A random number

generator and a set of estimated probabilities are used to determine

the sequence of clinical pathways that a given patient follows, while

a running tally is maintained of all acute clinical events, the length of

time spent in each health state, and the cost associated with each

health state. Upon the patient’s death, summary statistics for that

individual are recorded. One million patients are simulated, one at a

time, in order to provide stable estimates of long-term outcomes for

each strategy. Model outcomes include intermediate outcomes such

as number and type of opportunistic infections, time spent on

treatment, and proportion alive each month, as well as long-term

aggregate outcomes such as life expectancy, quality-adjusted life

expectancy, and lifetime costs.

The progression of underlying HIV disease is modeled as a

function of both HIV RNA and CD4 cell counts. Opportunistic

infections are based on previous analyses of primary and published

data, and are differentiated according to severity as previously

described.[28,31–35] Treatment with HAART and successful

HIV RNA suppression result in a CD4 cell count rise, which in

turn produces a reduction in the risk of acute opportunistic

infections and death. HAART efficacy is modeled as an initial

probability of virologic suppression and subsequent monthly

probability of failure. For individuals on HAART who experience

virologic failure, the CD4 cell count remains stable for a specified

number of months, after which the CD4 cell count declines at a

monthly rate governed by the current viral load. An independent

protective effect of HAART is modeled as a multiplier which

decreases the incidence of opportunistic infections and AIDS-

related mortality in patients with virologic failure who remain on

HAART (herein referred to as the ART effect).[36,37]

Details regarding the analysis of data used in the CEPAC model

may be found in prior publications [2–4,18–30,36–38]; in most of

these analyses the natural history of disease progression in the

absence of treatment was based on data from the Multicenter AIDS

Cohort Study (MACS)—a longitudinal study of HIV/AIDS in gay

and bisexual men initiated in 1984 and consisting of a cohort of over

5,600 men.[2–4,35,38–40] To address clinical and policy questions

in the U.S. relevant to HIV-infected women, we extracted data

from the Women’s Interagency HIV Study (WIHS), a longitudinal

study of HIV disease begun in 1993 and consisting of data from

approximately 3,000 HIV-infected women and 1,000 uninfected

women.[31–34] Using survival data from the WIHS, we established

empiric calibration targets that included 24-month survival curves

based on untreated HIV-infected women, according to starting

CD4 cell count. These served as a comparison against which model-

generated survival curves could be evaluated.

Comparison of Natural History Model Projected Survival
to Empiric Data

To compare natural history model projected survival with

empiric data, we first generated Kaplan-Meier survival curves

using the natural history model parameterized with data from the

MACS. Second, we generated survival curves using the natural

history model parameterized with new data from the WIHS. Third,

we identified several uncertain assumptions relevant to natural

history, which were varied extensively in sensitivity analysis. These

assumptions, listed in order of subjective uncertainty, included the

following: (a) the probability of ‘‘chronic AIDS’’ death (i.e., deaths

occurring after 30 days of an OI diagnosis) is higher compared to

the probability of AIDS death given no OI history (herein referred

to as attribution); (b) the incidence of OIs and the probability of OI-

related mortality change over time with disease progression (as

defined by CD4 cell count and viral load) and differ by gender; (c) in

the absence of HAART, the rate of CD4 decline is conditional on

HIV RNA, and differs by gender. The parameters governing these

assumptions were systematically varied and model-projected

survival was compared with empiric 24-month survival from the

WIHS. Consistency between model projections and empiric data

was assessed by visually comparing the average model outcomes

with the means and the 95% confidence intervals (CI) of the empiric

survival data.

Comparison of Treatment Model Projected Survival to
Empiric Data

Survival data were obtained from women in the WIHS who

initiated HAART between 1998 and 2002 and were followed for

HIV Policy Model Performance
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24 months.[31–34] We assumed that HAART was not initiated

until a woman’s CD4 count reached 200/ml or less, and that 4

distinct HAART regimens were available.[41] We assumed that

women who survived over the long-term would have had access to

more recent regimens as they became available during their

treatment, but would likely have experienced decreased efficacy

due to previous exposure to other earlier HAART regimens. We

explored a variety of scenarios designed to capture the

heterogeneities of treatment response given different levels of

previous exposure to non-HAART monotherapy or combination

antiretroviral therapy for women in the WIHS cohort, as well as

differences in adherence and loss to follow-up. Kaplan-Meier

survival curves were constructed from model simulation outputs

and visually compared to WIHS empirical survival curves for

HIV-infected women receiving HAART. In addition, the

goodness of fit was quantitatively evaluated by comparing the

sum of the absolute differences between model estimates at 6, 12,

18 and 24 months with the mean empiric data at the same time

points. Parameter sets were then ranked based on the value of the

sum of the absolute differences for all of the time points; those

parameter sets with the lowest values (i.e., smallest difference

compared to the empiric data) were considered to be more

consistent with the empiric survival data.

We explored the influences of changes in assumptions and

treatment parameter values on the consistency between the model-

projected survival and the empiric data. We identified several key

uncertain treatment-related parameters and assumptions which we

varied systematically, first one at a time and then in combination,

to assess their impact on model-projected survival (Table 1).

These included: (a) ‘clinical effectiveness’ of HAART (a function of

regimen efficacy, tolerance without major toxicity, adherence, and

personal choice to remain on treatment); (b) the magnitude of an

independent protective effect of HAART on opportunistic

infection incidence and AIDS mortality in patients with virologic

failure (herein referred to as the ART effect); (c) monthly CD4 cell

gains while on effective HAART; (d) the risk of early and late

treatment failure (where ‘‘early treatment failure’’ is defined as

regimen failure within the first 6 months of treatment with a

Table 1. Summary of selected treatment parameter values.

Variable or Assumption Initial Value Exploratory Range

HAART Efficacy (% Viral Load Suppression at 24 weeks)

EFV + AZT + 3TC 75% +/2 10% to 90%*

IDV + AZT (or d4T) + 3TC 60% (10% increments)

LPV/r + TDF + FTC + AZT 61%

ENF + OBR 32.7%

OBR (2 PIs + 2 NRTIs) 15%

Mean CD4 Gain/ml on Successful Treatment over first 12 months (SD)

Time Period 1 (months 1–2)

EFV + AZT + 3TC 68.81 (17.20) +/2 20% to 50%

IDV + AZT (or d4T) + 3TC 25.02 (6.26)

LPV/r + TDF + FTC + AZT 68.71 (17.18)

ENF + OBR 75.63 (18.91)

OBR (2 PIs + 2 NRTIs) 26.04 (6.51)

Time Period 2 (months 3–12)

EFV + AZT + 3TC 3.60 (0.90) +/2 20% to 50%

IDV + AZT (or d4T) + 3TC 1.31 (0.33)

LPV/r + TDF + FTC + AZT 3.60 (0.90)

ENF + OBR 3.96 (0.99)

OBR (2 PIs + 2 NRTIs) 1.36 (0.34)

Late Treatment Failure*

Pooled Monthly Probability 0.021099 None, 50% decrease to 200% increase

ART Effect{

CD4 ,50/ml 0.78 No ART effect, 0.78, 0.66, 0.54, 0.25

CD4 .50/ml 0.66 No ART effect, 0.78, 0.66, 0.54, 0.25

Assumptions

Delay in CD4 decline 1 year None, 2 years

Force failure 10 years 5, 15 and 20 years, Never

3TC = lamivudine; ART = antiretroviral therapy; AZT = zidovudine; ddI = didanosine; d4T = stavudine; EFV = efavirenz; ENF = enfuvirtide; FTC = emtricitabine;
HAART = highly active antiretroviral therapy; IDV = indinavir; LPV/r = lopinavir/ritonavir; NRTI = nucleoside reverse transcriptase inhibitors; NNRTI = non-nucleoside
reverse transcriptase inhibitors; OBR = optimized background antiretroviral regimen; SD = standard deviation; TDF = tenofovir.
*Note that treatment efficacy was capped at a maximum of 95% and a minimum of 5% regardless of regimen; in some instances this resulted in a percent change in
efficacy that was less than the original stated change.
{The ART effect is defined as an independent protective effect of HAART and is modeled as a multiplier which decreases the incidence of opportunistic infections and
AIDS-related mortality in patients with virologic failure who remain on HAART.

doi:10.1371/journal.pone.0012647.t001
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specific regimen while, ‘‘late treatment failure’’ is defined as the

monthly probability of treatment failure after initially successful

virologic suppression after the first 6 months of treatment); (e)

estimates of the delay in CD4 count decline following virologic

rebound associated with HAART failure; and (f) the maximum

duration of treatment efficacy in patients who did not experience

virologic failure.

Assessment of Consistency with Independent Analyses of
Data from the WIHS

By calibrating to cohort-specific data, we implicitly assumed the

‘clinical effectiveness’ of HAART reflects several factors (e.g.,

regimen efficacy, tolerance, and adherence). We assessed the

consistency of the calibrated model to independent analyses that

used a distinct subset of data from the WIHS not used in the initial

parameterization. We identified a published analysis[34] that

provided estimates of time on treatment and time to regimen

switch from women treated with HAART in the WIHS cohort; in

that study, ‘switching’ was defined to include participants who

discontinued or switched to a less intense regimen as well as those

switching to a different HAART regimen for any reason.[34]

Using the calibrated model we then conducted simulations with

the 50 best-fitting parameter sets to compare the estimated median

time on treatment and time to regimen switch with these published

cohort-specific data.[34]

Finally, to gain insight into the nature of the differences between

the WIHS cohort[34] and the clinical trials from which we obtain

treatment efficacy data to use in contemporary analyses, we

conducted simulations using the baseline model prior to

calibration, and tracked all women who switched from a given

regimen due to virologic failure as well as women who experienced

either minor or nonfatal major toxicity. We compared the model-

generated estimated ‘switching’ (from either virologic failure or

single drug switch due to intolerance or toxicity) to the published

estimates of time on treatment and time to regimen switch

reported from the WIHS (Kirstein et al.),[34] after removing

women who discontinued HAART, to make the model-generated

estimate of ‘switching’ more comparable. For this exercise we

assumed that approximately 1 in 4 women with minor toxicity

would discontinue treatment.[42]

Influential Factors on Projection of Long-Term Out-

comes. We compared the differences between estimates of life

expectancy derived from the model calibrated to the 24-month

short-term data (using the mean of the 50 best-fitting sets) to those

generated using the original model parameters prior to calibra-

tion. We also explored uncertain variables hypothesized to be

influential on long-term outcomes, including probability of late

treatment failure (defined as the monthly probability of treat-

ment failure after initially successful virologic suppression), an

independent protective effect of HAART on mortality in patients

with virologic failure (i.e., ART effect), delay in CD4 decline

following virologic rebound associated with HAART failure,

availability of 5 sequential lines of HAART rather than 4 lines,

and major HAART toxicity.

Data
Cohort characteristics and natural history parameter values for

HIV-infected women in the WIHS cohort who did not receive

HAART are provided in Supporting Information S1.[31]

Natural history inputs estimated from the WIHS dataset were

derived using similar linear interpolation methods as those used to

develop analogous estimates for the MACS dataset.[31–34]

Corresponding data are provided for the MACS cohort in

Supporting Information S1.[2–4,35,38–40]

The definition of HAART was based on guidelines from the

Department of Health and Human Services/Kaiser and the

International AIDS Society—USA Panel guidelines.[1,34,41]

Women were considered to be on HAART if their regimen

consisted of one of the following: ‘‘two or more nucleoside reverse

transcriptase inhibitors (NRTIs) in combination with at least one

protease inhibitor (PI) or one non-nucleoside reverse transcriptase

inhibitor (NNRTI); one NRTI in combination with at least one PI

and at least one NNRTI; a regimen containing ritonavir and

saquinavir in combination with one NRTI and no NNRTIs; or an

abacavir-containing regimen of three or more NRTIs in the

absence of both PIs and NNRTIs.’’ [1,34,41]

HAART regimens used in this analysis are representative of

those available during the treatment era between 1998 and 2002

during which a subset of women in the WIHS initiated treatment;

these regimens are based on those described by Walensky and

colleagues.[43] HAART efficacy estimates were based on a

threshold of suppression of HIV RNA ,400 copies/ml at 24

weeks after initiation of a given HAART regimen. A threshold of

,400 copies/ml was used, as this reflected the minimum threshold

level of virus detectable by most tests used during that time-

frame.[38,44,45] Efficacy estimates used intent-to-treat data for all

regimens.[42,46–49] Estimates of total mean CD4 count gains

while on specific HAART regimens incorporated loss-to-follow up

in the cohort.[42,46–49] Supporting Information S1 provides

assumptions about HAART efficacy, OI prophylaxis efficacy and

risk of toxicity. [33,42,46–58]

Estimates of regimen-specific monthly probabilities of late

failure after initial successful virologic suppression were calculated

using efficacy estimates for 24 weeks and the percent suppressed at

the furthest reported time point after 24 weeks (usually 48 or 96

weeks). Regimen-specific late failure probabilities were then used

to calculate the pooled probability of late regimen failure after

initial successful suppression.[42,46–49] Estimates of the ART

effect were based on values reported by Kousignian and

colleagues.[50] Individuals with a CD4 count ,50/ml had an

ART effect value of 0.78 while those with a CD4 count $50/ml

had an ART effect value of 0.66; these amounted to a decrease in

the magnitude of risk of 22% and 34%, respectively.[50] The

plausible range explored included no ART effect (no risk

reduction), an ART effect of 0.54 based on a study by Cole et

al. (46% reduction in the probability of OI’s and chronic AIDS

death), and an ART effect of 0.25 (75% reduction in risk).[51]

Results

Performance of the Natural History Model
Figure 1, Part A, shows the model-estimated survival of those

members of the WIHS cohort who did not receive HAART, using

natural history input parameters derived from the MACS. With

the exception of the highest CD4 stratum (CD4 $350/ml), the

model underestimated survival for individuals with initial CD4 cell

counts ,350/ml, particularly as follow-up time increased.

Figure 1, Part B, shows the model-estimated survival using

natural history input parameters derived from the WIHS. The re-

parameterized model more closely approximates the empiric data

for the three lowest CD4 strata (generally within the 95% CI)

although the model continues to marginally underestimate mean

survival in CD4 strata 50–199/ml and 200–349/ml. Model-

projected survival in the highest CD4 stratum ($350/ml) is more

significantly underestimated, with a better visual fit achieved using

natural history inputs derived from the MACS.

Better consistency between model-projected survival and

empiric data was achieved with adjustment of CD4 stratum-
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specific attribution. Specifically, incrementally reducing the

probability of AIDS-related mortality in patients with a history

of previous opportunistic infections (attribution) by 25% for CD4

50–199/ml and 50% for CD4 $200/ml resulted in better

estimation of the empiric survival data (Figure 1, Part C). These

adjusted values for attribution remained within 95% CI of the

original estimates. Enhanced consistency between model-projected

survival and empiric survival was not achieved with only changes

in OI incidence or plausible changes in CD4 cell decline.

Performance of the Treatment Model
For members of the WIHS cohort who received HAART,

model-projected survival over 12 months and at 24 months was

higher than the mean empiric survival. An initial exploratory set of

one-way sensitivity analyses were conducted to provide insight into

the magnitude of influence of each uncertain assumption. The

most influential of these one-way sensitivity analyses included

reductions in the (1) ‘clinical effectiveness’ of HAART (a function

of regimen efficacy, tolerance, adherence, and personal choice to

remain on treatment); (2) CD4 cell gain on HAART; and (3) ART

effect. None of the one-way sensitivity analyses achieved

simultaneous consistency with both 12- and 24-month outcomes

(Supporting Information S1 provides a summary of changes in

‘clinical effectiveness’). In general, scenarios most consistent with

the empiric data at 12 months underestimated survival at 24

months, while those most consistent with the empiric data at 24

months overestimated survival at 12 months.

Using insights from the one-way sensitivity analyses, a series of

additional multi-way sensitivity analyses allowed assumptions to

vary by regimen (e.g., 50% decrease in CD4 cell gain on 1st and

2nd line HAART but an increase in CD4 cell gain for 3rd and 4th

line HAART) and also allowed changes in two or more variables

simultaneously (e.g., 50% reduction in ‘clinical effectiveness’ of

HAART and 50% decrease in CD4 gain). Selected results are

shown in Supporting Information S1. In general, multi-way

sensitivity analyses allowed less extreme (and more plausible

changes) in individual variables while providing better visual fits to

the data.

Varying each of the uncertain assumptions individually, in

combination, and according to HAART regimen, generated more

than 1500 unique combinations of parameters for each CD4

stratum. Including all 1500 unique combinations, we calculated

the absolute difference between the mean 6, 12, 18 and 24 month

model-projected and empiric survival. For each of the CD4 strata,

we selected the 50 parameter sets with the smallest absolute

difference between the mean of the empiric data and the mean of

the projected model outcomes at 6, 12, 18 and 24 months. Herein

we refer to these 50 parameter sets as the ‘‘best-fitting’’ parameter

sets. Figure 2 shows the model-projected 24-month survival for

the best-fitting sets versus the empiric data for CD4 50–199/ml

(Figure 2, Part A) and CD4 ,50/ml (Figure 2, Part B).

For CD4 50–199/ml (Figure 2, Part A), the 50 best-fitting

parameter combinations that produced the best estimates of 6, 12,

18 and 24 month survival (i.e., minimized the difference between

model output and empiric survival across all four time points) were

similar, in that the ‘clinical effectiveness’ of 1st and 2nd line

HAART was reduced, while that of 3rd and 4th line HAART was

increased in combination with similar directional changes in CD4

gain estimates. Specifically, across the 50 best-fitting parameter

sets, there was a 2- to 3-fold increase in failure or discontinuation

rate for HAART lines 1 and 2, corresponding to a 70% reduction

in the average overall virologic suppression in the cohort. Note

that this average overall virologic suppression corresponds to that

of a heterogeneous cohort; there are some members who are non-

adherent, some who elect to change to a less efficacious non-

HAART regimen, and some who discontinue HAART. In

contrast, across the 50 best-fitting parameter sets, the clinical

effectiveness of 3rd and 4th line HAART was increased by 40% to

75%. In the majority of best-fitting parameter sets, CD4 gain was

reduced by 20% to 50% for 1st and 2nd line HAART, while CD4

gain was increased by 20% to 50% for lines 3 and 4. Compared to

previous one-way analyses, runs using combinations of less

extreme value changes across multiple parameters provided

improved fits of the empiric data. For CD4 ,50/ml (Figure 2,

Part B) the 50 best-fitting parameter combinations that produced

the best estimates of 6, 12, 18 and 24 month survival were similar

to those in the higher CD4 strata.

Assessment of Consistency with Independent Analyses of
Data from the WIHS

Using the model calibrated to the WIHS cohort, we estimated

percentage who switched from their initial 1st and 2nd line

HAART regimens within one year and the estimated median time

to 3rd line HAART; using the 50 best-fitting parameter sets.

Model-projected ‘switching’ (1st or 2nd line HAART) was 65.8% in

the first year, and the estimated median time to 3rd line HAART

was 28.3 months. In comparison, Kirstein et al.[34] reported that

among women initiating HAART in the WIHS cohort, 65% (95%

confidence interval [CI]: 62%, 68%) ‘switched’ (for any reason)

their initial HAART regimen within one year of initiation, and

that the median time on 1st and 2nd line HAART was 26 months

(Table 2, left side).[34,42]

Using the baseline model prior to calibration, the estimated

switching as a result of virologic failure with 1st and 2nd line

HAART was 25% to 40%; if we assumed 25% of women who

experienced minor toxicity and all women with nonfatal major

toxicity required a single drug change, the model-generated

‘‘estimated switching’’ ranged from 28.25% to 45.25%. These

results were consistent with the published data; when we excluded

women who discontinued HAART, Kirstein reported between

21.4% and 45.6% experienced a ‘switch’ in their HAART

regimen (Table 2, right side).[34,42]

Figure 1. Base case natural history data with WIHS cohort characteristics. Part A of Figure 1 shows the model-estimated survival of the
WIHS cohort using natural history input parameters derived from the MACS. With the exception of the highest CD4 stratum (CD4 $350/ml), the model
underestimates survival for individuals with initial CD4 cell counts ,350/ml, particularly as follow-up time increased. Part B of Figure 1 shows the
base-case model-estimated survival using natural history input parameters derived from the WIHS. The re-parameterized model more closely
approximates the empiric data for the three lowest CD4 strata (generally within the 95% CI), although the model continues to marginally
underestimate mean survival in CD4 strata CD4 50–199/ml and CD4 200–349/ml. Model-projected survival in the highest CD4 stratum ($350/ml) is
more significantly underestimated, with a better visual fit achieved using natural history inputs derived from the MACS (Figure 1, Part A). Part C of
Figure 1 shows the impact of adjustment of CD4-specific attribution on model-projected survival. Part C of Figure 1 demonstrates that better
consistency between model-projected survival and empiric data was best achieved with adjustment of CD4 stratum-specific attribution. Specifically,
reduction of the incrementally increased probability of AIDS-related mortality in patients with a history of previous opportunistic infections
(attribution) by 25% for CD4 50–199/ml and 50% for CD4 strata $200/ml resulted in better estimation of the empiric survival data.
doi:10.1371/journal.pone.0012647.g001
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Figure 2. Top 50 best fits of WIHS empiric survival for CD4 50–199/ml and CD4 ,50/ml. Part A of Figure 2 illustrates the top 50 best fits of
the empiric survival data for CD4 50–199/ml. Nearly all runs in the top 50 combined changes in both ‘clinical effectiveness’ of HAART (a function of
regimen efficacy, side effects or toxicity, adherence, and personal choice to remain on HAART) and estimates of CD4 gains while on effective HAART.
The majority of the 50 best fits had a 2- to 3-fold increase in the rates of failure/switching/discontinuation of early lines of HAART in combination with
an increase of 40%–75% in treatment efficacy in later lines of HAART. Part B of Figure 2 illustrates the top 50 best fits of the empiric survival data for
CD4 ,50/ml. Nearly all runs in the top 50 combined changes in both ‘clinical effectiveness’ of treatment (a function of regimen efficacy, side effects or
toxicity, adherence, and personal choice to remain on HAART) and estimates of CD4 gains while on effective HAART. The majority of the 50 best fits
had a 2- to 3-fold increase in the rates of failure/switching/discontinuation of early lines of HAART in combination with an increase of 30%–75% in
treatment efficacy in later lines of HAART.
doi:10.1371/journal.pone.0012647.g002
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Projected Long-Term Outcomes
The life expectancy projected by the cohort-specific model

calibrated to the 24-month short-term data (using the mean of the

50 best-fitting sets) was 140.9 months (range, 130.5–148.4) among

the patients with CD4 50–199/ml and 80.1 months (range, 65.9–

87.3) among those with CD4 ,50/ml assuming a mean cohort age

of 34 years. The most influential variable on long-term outcomes

in our simulation of the WIHS cohort was the probability of ‘‘late

treatment failure,’’ defined as the monthly probability of treatment

failure after initially successful virologic suppression. Figure 3,

Part A, shows the impact of varying our base case assumptions

(probability of late failure, 0.021) from no late failure to a 2-fold

increase in late failure. Depending on the baseline CD4 cell count,

life expectancy was increased by 14.8 to 30.9 months with no late

failure, and was decreased by 2.8 to 6.6 months with a 1.5-fold

increase in late failure, and by 5.1 to 11.0 months with a 2-fold

increase in late failure.

Figure 3, Part B, shows that when simulating the WIHS

cohort, the incremental gains provided by 5 lines of HAART

compared to 4 lines were greater using the calibrated model. To

estimate the life expectancy that would be expected in HIV-

infected women today in the U.S., we used the calibrated natural

history model to superimpose contemporary treatment strategies

utilizing sequential lines of highly efficacious HAART. Assump-

tions made about efficacy and tolerability of contemporary

HAART are provided in Supporting Information S1.

[46–48,52–55,59–63] Projected life-expectancy in HIV-infected

women on contemporary regimens that are currently available

ranged from 133.1 to 188.7 months given 4 lines of therapy, and

137.3 to 196.4 months given 5 lines of therapy, depending on the

CD4 cell count and assuming a mean cohort age of 34 years

(Figure 3, Part B, embedded table).

Discussion

This paper provides a description of the initial iterative process

we utilized to assess model performance and gain insight about the

generalizability of analyses relying on data derived from particular

study cohorts.

Model-estimated survival of the WIHS all-female cohort using

natural history input parameters derived from the MACS all-male

cohort underestimated survival for individuals with initial CD4 cell

counts ,350/ml, particularly as follow-up time increased. Using

data from the WIHS, coupled with moderate changes in mortality

for those with a history of OI for the two highest CD4 strata, the

re-parameterized model closely approximated the empiric data,

demonstrating good internal consistency. While the differences

between model survival estimates using MACS versus WIHS-

derived parameter values could theoretically reflect gender

differences in natural history, prior data suggests that cohort

differences distinct from gender, such as underlying differences in

general health status and co-morbidities are more likely to explain

differences in estimates.[2–4,31–35,38–40]

Comparison of model-estimated survival of women on HAART

with empiric WIHS survival data showed the model overestimated

short-term survival. Adjustment of influential treatment assump-

tions (e.g., ‘clinical effectiveness’, the ART effect and the CD4 gain

on treatment) individually across all lines of HAART did not

produce a good fit to either 12- or 24-month survival. In contrast,

scenarios that reduced the ‘clinical effectiveness’ of earlier

treatment regimens and increased that of later regimens (e.g.,

3rd and 4th line HAART), more closely approximated the empiric

published data. Further, multi-way sensitivity analyses that

simultaneously varied these assumptions allowed less extreme

(and more plausible) changes in individual variables while

providing better visual fits to the published data.

Examination of the good-fitting parameter sets to the empiric

data revealed several interesting observations. First, for both CD4

count strata, good fits to the data required that the ‘clinical

effectiveness’ of 1st and 2nd line HAART be reduced such that the

‘‘implied failure rates’’ were 2.0 to 3.5 fold higher. Importantly, as

described above, we considered ‘clinical effectiveness’ as a proxy

for the net impact of regimen efficacy, tolerance without major

toxicity, adherence, and personal choice to remain on treatment.

Accordingly, the ‘‘implied failure rate’’ associated with the model

calibrated to the WIHS cohort serves as a proxy for virologic

failure, toxicity or side effects leading to a change in regimen, and

discontinuation of HAART for undocumented reasons. In

contrast, for both CD4 count strata, best fits to the data were

obtained with a 40% to 60% increase in the effectiveness of 3rd

and 4th line HAART, with analogously lower failure/discontin-

uation rates.

The more than 50% reduction in ‘clinical effectiveness’ that

characterized the best fitting parameter sets is inconsistent with the

higher treatment efficacy documented in more recent studies,

[46–48,52–55,59–63] the data used in this exercise were based on

a specific cohort from 1998 and 2002 and would not be expected

to reflect more recent care patterns and improved outcomes.

Further, while we used intention to treat efficacy data from clinical

trials for our initial parameterization, the proportion who choose

Table 2. Comparison of model-generated estimates of HAART regimen ‘switching’ versus published data.

Estimated ‘‘switching’’ in the model calibrated to
the WIHS cohort

Estimated ‘‘switching’’ in the baseline
model

Functional definition of ‘‘switching’’ Switch to a different HAART regimen, any drug change,
discontinuation, or switch to a less intense therapy

Switch to a different HAART regimen or any single
drug change in current HAART regimen

Kirstein et al* Model{ Kirstein et al* Model{

Percent switched in 1 year 65% 65.8% 21.4%–45.6% 25%–45.25%

HAART = highly active antiretroviral therapy; WIHS = Women’s Interagency HIV Study.
*Extracted from ‘‘Timing and Characteristics of Switching HAART Regimens in WIHS between 1994 and 2000’’ (Kirstein et al. JAIDS 2002).[34]
{Average of 50 best-fitting parameter sets weighted by CD4 cell distribution.
{Lower bound of 20% represents proportion switching 1st line HAART due to virologic failure; upper bound of 45.25% represents proportion switching 2nd line HAART
due to virologic failure plus an assumption that 25% of women with minor toxicity and all women with nonfatal major toxicity require a single drug switch. This
estimate is based on data from Staszewski et al showing that of the 43% who discontinued indinavir plus two nucleoside reverse transcriptase inhibitors for any reason,
11% was due to symptoms such as gastrointestinal effects.[42]

doi:10.1371/journal.pone.0012647.t002
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to change regimens or stop therapy in clinical trials may be lower

than in cohort studies such as this one.[42,46–49]

Recognizing that newer data show better tolerated regimens

and higher treatment efficacy, the necessity for such high failure

rates in initial regimens to calibrate the model prompted us to

consider the particularities of this specific cohort, their clinical

histories and past ART experience, as well as their behaviors

including adherence, discontinuation of HAART, and choices

about continued treatment following HAART toxicity. We

concluded that the substantial reduction in ‘clinical effectiveness’

with 1st and 2nd line HAART regimens in this historical simulation

could very well be plausible, given that only 16% to 20% of

women were completely ART naı̈ve prior to HAART initiation;

approximately 80% had some previous exposure to ART through

mono- or combination therapy.[33,34] Furthermore, 44%–48%

of women who initiated treatment had a diagnosis of AIDS,

suggesting very advanced disease. In contrast to the reduction in

‘clinical effectiveness’ for 1st and 2nd line HAART required to

calibrate the model to the WIHS, the efficacy of 3rd and 4th line

HAART required an increase that ranged from 30% to 75%; this

considerable increase in efficacy is likely attributable to both the

availability of new and more effective treatment regimens and an

increasingly homogeneous group of women more likely to pursue,

adhere to, and continue treatment.

It is notable, although not unusual for the time period, that a

sizable proportion of women in the cohort elected to discontinue

HAART. For example, between April 1997 and September 1997,

when many women had initiated HAART, 45.6% of these women

switched regimens and 18% reported discontinuing HAART (13%

switched to a less intensive regimen and 5% discontinued therapy

completely).[34] By three years later, in September 2000, the

percentage discontinuing therapy completely increased from 5%

to 11.4%.[34] Similar rates of discontinuation have been seen in

both clinical trials and in cohort studies. For example, Staszewski

et al reported 27%–43% discontinuation of HAART unrelated to

efficacy in a clinical trial of indinavir plus two nucleoside reverse

transcriptase inhibitors versus efavirenz plus two nucleoside

reverse transcriptase inhibitors.[42] Hammer reported that the

overall rate of premature discontinuation was 20% in a clinical

trial comparing zidovudine (or stavudine) and lamivudine (28%)

versus indinavir, zidovudine (or stavudine), and lamivudine

(12%).[49] Several cohort studies described a high rate of

discontinuation and short median duration of time on a specific

regimen. Saag et al. described the increasing number of unique

antiretroviral regimens between 1988 and 1998 and a median

duration of a specific regimen of 4 months.[64] Van Roon et al.

reported that 25% of their clinic patients discontinued HAART

within 1 year of initiating therapy.[65] An Italian cohort found

that 36% of men who began HAART modified or discontinued

their initial regimen over a median follow-up time of 11

months.[66] Mocroft et al. estimated that 26% of their patients

initiating HAART modified or discontinued their regimen within

6 months of initiation and that 45% had modified or discontinued

their regimen after a median follow-up time of 14 months.[67]

The life expectancy projected by the model calibrated to the 24-

month short-term cohort-specific data was 140.9 months using the

mean calculated from simulations using the 50 best-fitting

parameter sets (with individual estimates of the 50 best-fits ranging

from 130.5–148.4 months) among the patients with CD4 50–199/

ml. Further, the incremental gains projected by 5 lines of HAART

versus 4 lines of HAART using the empirically calibrated model

(Figure 3, Part B) were twice those predicted by the model prior

to calibration. We also found that uncertain assumptions, such as

late failure, while not influential on short-term outcomes, exerted a

major impact on the predicted life expectancy. While estimates of

life expectancy varied considerably with plausible changes in

uncertain assumptions, the incremental gains associated with

comparing different treatment strategies within a single cohort

varied far less. The implication is that results of incremental cost-

effectiveness analyses, for example those conducted to inform

choices among competing treatment options, may be less affected

by this variation; in contrast, analyses that seek to project long-

term estimates of life expectancy or cost for a population of HIV-

infected persons, may be more variable.

Our analysis has several important limitations. First, this analysis

is not intended to depict a formal empirical calibration process.

Rather, this paper was intended to provide a description of the

‘‘real world’’ iterative process of assessing model performance while

building a simulation model of a complex disease. In addition, we

sought to demonstrate the kind of insights that can be obtained by

this type of exercise while providing a description that is intended to

increase the transparency of a model development phase. Although

we intended to explore the comparative implications of using

WIHS versus MACS cohort data, our primary goal was not to fit

the model to empiric data. In fact, we would not want to use a

model empirically calibrated to older data, reflecting much lower

treatment efficacy, to inform current policy questions that could

contribute to decisions in the future. Furthermore, we recognize

that there are alternative methods for sampling the parameter space

including utilization of Bayesian methods, random sampling or

complex optimization algorithms. Our guided approach was

chosen after careful consideration of the practical and theoretical

strengths and limitations of these alternatives, given our goal was to

conduct an exploratory exercise; that being said, it is possible we

did not sufficiently explore the entirety of the parameter space.

These exercises can play an important role in characterizing the

effects of key uncertain assumptions, identifying logical inconsis-

tencies, and helping the analyst to understand and describe the

performance of the model.

Second, cohort heterogeneities pose challenges to assessing

model performance in that it is impossible to reflect all patient and

population level differences in any analysis; the availability of data

Figure 3. Impact of alternative assumptions on life expectancy. Results from sensitivity analyses showed that the most influential variable on
long-term outcomes was the probability of late treatment failure. Part A of Figure 3, shows the impact of varying our base case assumptions (0.021)
from no late failure to a 2-fold increase in late failure. Depending on the baseline CD4 cell count, life-expectancy was increased by 14.8 to 30.9
months with no late failure (green), and was decreased by 2.8 to 6.6 months with 1.5-fold increase in late failure (orange), and by 5.1 to 11.0 months
with a 2-fold increase in late failure (red). The magnitude of these changes was similar regardless of whether we assumed 4 lines or 5 lines of HAART.
Part B of Figure 3 shows the impact of 5 lines of HAART versus 4 lines of HAART on life expectancy. The average life expectancy projected by the
model calibrated to the 24-month short-term data (using the mean of the 50 best-fitting sets) was 140.9 months (range, 130.5-148.4 months) among
the patients with CD4 50–199/ml and 80.1 months (range, 65.9–87.3 months) among those with CD4 ,50/ml. Average life-expectancy projected by
the uncalibrated model varied with different assumptions about the ART effect, ranging from 123.3 months (no ART effect) to 156.5 months (ART
effect) in patients with CD4 50–199/ml, and from 73.2 months (no ART effect) to 100.1 months in patients with CD4 ,50/ml (ART effect). Figure 3, Part
B, shows the incremental gains provided by 5 lines of HAART versus 4 lines of HAART were greatest using the calibrated model (green bars), and
lowest using the uncalibrated model assuming no ART eff ect (orange bars).
doi:10.1371/journal.pone.0012647.g003
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that adequately characterize heterogeneities within this study

cohort remain limited. Some differences between the WIHS

cohort and the clinical trial cohorts used to generate initial

HAART efficacy estimates[42,49] are clear; for example, the

WIHS is all women (versus trials often with more than 80% male),

more than 30% report a history of injection drug use (versus only

10–18% in trials), and nearly two-thirds are black or Hispanic

(versus more than 50% white in many trials).[33,34] Furthermore,

heterogeneities in prior treatment exposure, underlying health

status, patient adherence, and patient preferences about treatment,

could have substantial effects on outcomes which must be taken

into consideration; these and other unknowable factors could have

directly or indirectly contributed to the high rates of switching and

discontinuation of early lines of HAART in women in the WIHS.

For example, toxicities have been reported as an important reason

for discontinuation of therapy,[66] and a study by Ahdieh and

colleagues reported that women were twice as likely as men to

discontinue HAART because of toxicities.[68]

Third, treatment regimens could not be simulated with

complete accuracy. Between the period of April 1996 and

September 1996 there were roughly 13 unique HAART regimens

used in the WIHS, with 25% of women taking the most common

regimen which consisted of zidovudine, lamivudine and indina-

vir.[34] However, by the year 2000, there were 171 unique

HAART regimens reported in the cohort, with fewer than 15% of

women taking the most common regimen of stavudine, lamivudine

and nelfinavir.[34] We attempted to account for HAART era

effects on treatments used by using values representative of

commonly-used regimens for the given time period during which

the WIHS treatment data were collected.[43] However, we

recognize these assumptions were at best approximations of the

actual range of regimens used.

We emphasize that this analysis is not intended to be a

representation of the current treatment environment, where there

have been substantial improvements over time in response to

treatment, both in terms of drug efficacy and reductions in

treatment failure, in addition to decreases in drug toxici-

ty.[59,60,62,63,69] Rather, the purpose of these exercises was to

assess whether the model could produce results consistent with the

data used to parameterize the model (i.e., internal consistency and

validity), and could simulate a specific cohort such that outcomes

were consistent with independent data from that cohort. Using this

same model to simulate access to contemporary treatment strategies

in HIV-infected women in the United States today, we found the

projected life expectancy in women with a mean CD4 cell count of

350/ml, exceeded 250 months (.21 years) given 5 lines of therapy

and assuming initiation of HAART at a CD4 cell count of 350/ml.

Simulations using a higher CD4 cell count threshold for treatment

and/or a greater number of contemporary treatment regimens are

likely to project even longer life expectancies.

Exercises that involve iterative assessment of model perfor-

mance can provide information about the relative influence of

different uncertain assumptions, illuminate unexpected synergies

between parameters, and provide insight into particular hetero-

geneities within and between cohorts. When data are available to

allow for exercises like those described here, they can be used to

assess model performance; descriptive analyses of the process

taken to do so can contribute to a dialogue about different

approaches that are taken by analysts to assess model process and

model structure uncertainty.

Supporting Information

Supporting Information S1 Supplementary tables and figures

referenced in the main text are provided.

Found at: doi:10.1371/journal.pone.0012647.s001 (1.27 MB

PDF)
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