
HLA-Associated Immune Escape Pathways in HIV-1
Subtype B Gag, Pol and Nef Proteins
Zabrina L. Brumme1,2.*, Mina John3., Jonathan M. Carlson4, Chanson J. Brumme1, Dennison Chan5,

Mark A. Brockman1,2, Luke C. Swenson5, Iris Tao5, Sharon Szeto5, Pamela Rosato1, Jennifer Sela1, Carl M.

Kadie4, Nicole Frahm1¤, Christian Brander1,6,7, David W. Haas8, Sharon A. Riddler9, Richard Haubrich10,

Bruce D. Walker1,11, P. Richard Harrigan5,12 , David Heckerman4, Simon Mallal3

1 Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, United States of America, 2 Simon Fraser University, Burnaby, British Columbia, Canada, 3 Center

for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital, Murdoch University, Perth, Australia, 4 Microsoft Research, Redmond, Washington, United States

of America, 5 BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada, 6 AIDS Research Institute irsiCaixa - HIVACAT, Hospital Germans Trias i Pujol,
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Abstract

Background: Despite the extensive genetic diversity of HIV-1, viral evolution in response to immune selective pressures follows
broadly predictable mutational patterns. Sites and pathways of Human Leukocyte-Antigen (HLA)-associated polymorphisms in
HIV-1 have been identified through the analysis of population-level data, but the full extent of immune escape pathways
remains incompletely characterized. Here, in the largest analysis of HIV-1 subtype B sequences undertaken to date, we identify
HLA-associated polymorphisms in the three HIV-1 proteins most commonly considered in cellular-based vaccine strategies.
Results are organized into protein-wide escape maps illustrating the sites and pathways of HLA-driven viral evolution.

Methodology/Principal Findings: HLA-associated polymorphisms were identified in HIV-1 Gag, Pol and Nef in a multicenter
cohort of .1500 chronically subtype-B infected, treatment-naı̈ve individuals from established cohorts in Canada, the USA
and Western Australia. At q#0.05, 282 codons commonly mutating under HLA-associated immune pressures were identified
in these three proteins. The greatest density of associations was observed in Nef (where close to 40% of codons exhibited a
significant HLA association), followed by Gag then Pol (where ,15–20% of codons exhibited HLA associations), confirming
the extensive impact of immune selection on HIV evolution and diversity. Analysis of HIV codon covariation patterns
identified over 2000 codon-codon interactions at q#0.05, illustrating the dense and complex networks of linked escape and
secondary/compensatory mutations.

Conclusions/Significance: The immune escape maps and associated data are intended to serve as a user-friendly guide to the
locations of common escape mutations and covarying codons in HIV-1 subtype B, and as a resource facilitating the systematic
identification and classification of immune escape mutations. These resources should facilitate research in HIV epitope
discovery and host-pathogen co-evolution, and are relevant to the continued search for an effective CTL-based AIDS vaccine.
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Introduction

Cytotoxic T-Lymphocytes (CTL) eliminate virus-infected cells by

recognizing virus-derived peptides (‘‘epitopes’’) presented by Human

Leukocyte Antigen (HLA) class I molecules on the infected cell surface.

The HLA-restricted CTL response is believed to play a major role in

the immune control of HIV-1 infection [1,2,3,4,5,6], and it is

generally believed that an effective AIDS vaccine will have to elicit

cellular as well as humoral (antibody) responses [7,8,9,10,11]. The

genes encoding HLA class I are among the most polymorphic in the

human genome [12]: each individual expresses up to six different class

I alleles (two at each of the A, B and C loci) out of a pool of over two

thousand allelic variants defined to date. Each unique HLA molecule

is capable of presenting a broad but finite array of epitopes, defined by

HLA allele-specific binding motifs. This extensive genetic diversity

serves as a mechanism whereby the human immune system, on both

the individual as well as on a population basis, is equipped to recognize

a vast array of epitopes from a broad range of pathogens. In addition,

this extensive diversity means that, at both the individual as well as the

population level, the human immune response exerts a complex array

of evolutionary selective pressures driving viral evolution [13,14] in

equally intricate, sometimes even conflicting [15,16] ways.

One of the major mechanisms whereby HIV evades the cellular

immune response is through the selection of HLA-restricted CTL

escape mutations that allow the virus to evade immune recognition

[17,18,19,20]. Escape mutations may interfere with intracellular

epitope processing [21,22], disrupt peptide-HLA binding [23,24],

or disrupt recognition of the peptide/HLA complex by the T-cell

receptor [25,26].

Despite the extensive genetic diversity of both HIV-1 and HLA,

recent studies indicate that viral evolution in response to immune

selective pressures follows generally predictable patterns and kinetics

[13,14,15,27,28,29,30]. For example, in B*57-expressing individu-

als, the B*57-associated T242N escape mutation in Gag is selected

mere weeks after infection [31,32,33], whereas the B*27-associated

R264K (Gag) may take years to develop despite strong continuous

immune pressure in individuals expressing B*27 [24,34]. Further-

more, both T242N and R264K are typically accompanied by a

well-defined set of compensatory mutations [24,35,36]. The

development of improved statistical methods [37] combined with

the availability of large cohorts for which HIV sequences and HLA

data are available has facilitated the systematic identification of

HLA-associated CTL escape mutations, both within [15,28,29,38]

and across [27] HIV subtypes. Due to the extensive diversity of both

HLA and HIV, the identification of mutational escape patterns

requires large, well-powered datasets; thus, additional data are

needed in order to refine existing escape maps. Indeed, just as the

systematic identification of antiretroviral resistance mutations [39]

has been of paramount importance to the design and monitoring of

HIV therapies [40], the comprehensive elucidation of immune

escape pathways will be of relevance to HIV vaccine research.

Here, we identify HLA-associated polymorphisms within the

three HIV-1 proteins most commonly considered in cellular-based

vaccine design strategies (Gag, Pol and Nef) in a combined analysis

of three established cohorts totaling .1500 HIV-infected,

antiretroviral-naı̈ve individuals. We organize results into protein-

wide escape maps illustrating the sites and pathways of immune-

driven viral evolution, and hope that these maps will serve as

useful reference material for researchers interested in CTL epitope

discovery, host-pathogen co-evolution, and HIV vaccine design.

Materials and Methods

Analysis of three established cohorts and formation of
the International HIV Adaptation Collaborative (IHAC)

We merged HLA class I and HIV-1 Gag, Pol and Nef sequence

data from three existing cohorts of chronically-HIV-infected,

antiretroviral naı̈ve individuals previously featured in population-

level investigations of HIV immune escape: the British Columbia

HOMER cohort (British Columbia, Canada, N = 765) [15,38], the

Western Australian HIV Cohort Study (WAHCS; Western

Australia, Australia N = 230) [14,37], and US AIDS Clinical

Trials Group (ACTG) protocols 5142 participants [41] who also

provided human DNA under ACTG protocol 5128 [42]

(N = 555). We have assigned the name ‘‘International HIV

Adaptation Collaborative’’ (IHAC) to describe this multicenter,

international cohort.

Ethics Statement
Ethical Approval was obtained through the following Institu-

tional Review Boards: Providence Health Care/University of

British Columbia; Royal Perth Hospital Ethics Committee; and

the NIH’s National Institute of Allergy and Infectious Diseases

(NIAID) Clinical Science Review Committee (CSRC).

Genotyping methods and inter-laboratory methods
comparison for quality control

HIV and HLA data collection for HOMER cohort participants

was performed at the BC Centre for Excellence in HIV/AIDS,

Vancouver, Canada. Here, HIV RNA was extracted from plasma

using standard methods and regions of interest amplified by nested

RT-PCR using HIV-specific primers. PCR amplicons were bulk

sequenced on an Applied Biosystems 3100, 3700 and/or 3730

automated DNA sequencer. Data were analyzed using ‘Se-

quencher’ (Genecodes) or custom software RE_Call. Nucleotide

mixtures were called if the height of the secondary peak exceeded

25% of the height of the dominant peak. HLA class I typing was

performed using an in-house sequence-based typing protocol and

interpretation algorithm [15].

HIV and HLA data collection for the WAHCS and ACTG

5142/5128 cohort participants was performed at the Centre for

Clinical Immunology and Biological Statistics (CCIBS) laboratory

in Perth, Australia. Plasma HIV RNA was extracted using

standard methods and nearly complete viral genomes amplified

using nested RT-PCR. PCR amplicons were bulk-sequenced using

Applied Biosystems 3730 automated sequencing. Data were

analyzed using semi-automated ASSIGN software with a nucle-

otide mixture threshold of 15% after consideration of the signal/

noise ratio, yielding near-full genome sequences. High-resolution

HLA class I typing was performed using sequence-based methods

and allele interpretation was performed using ASSIGN [41].

To rule out potential biases due to differences in sequence

analysis strategies between study sites, an inter-laboratory DNA

sequencing comparison between the Vancouver and Perth

laboratories was performed prior to merging data. A total of

HIV-1 Immune Escape Maps
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42599 base pairs of sequence data covering Gag, Pol and Nef were

exchanged and analyzed using site-specific software and proce-

dures in a blinded fashion. Overall inter-laboratory concordance

was 42429 out of 42599 calls, or 99.6%. Of the 170 discordant

calls, 169 (99.4%) were due to the presence of a nucleotide mixture

called by one laboratory but not the other, with a tendency of the

Vancouver lab to call more mixtures than the Perth lab.

After verification of inter-laboratory concordance, Gag, Pol and

Nef sequences were extracted from the nearly-full genome WAHCS/

ACTG sequences using GeneCutter (http://www.hiv.lanl.gov/

content/sequence/GENE_CUTTER/cutter.html) before merging

with the BC HOMER sequence data. The merged sequence datasets

were aligned to HIV-1 subtype B reference strain HXB2 (GenBank

Accession No. K03455) using a modified NAP algorithm [40]. HLA

class I types were summarized to two-digit resolution. Final HLA/

HIV sequence datasets comprised N = 1294, 1383 and 1299 for Gag,

Pol and Nef, respectively. Sequence subtypes verified by comparison

to subtype references in the Los Alamos HIV Database (http://www.

hiv.lanl.gov); .95% of sequences in this study were subtype B.

GenBank Accession Numbers
Gag, protease/RT (codons 1–400 only) and nef sequences from

the HOMER cohort were previously deposited in GenBank

[15,38]. Accession numbers of additional HOMER protease/RT

(codon 1–400 only) sequences included in the present study are

GQ303719-GQ303727; full-length protease/RT sequences are

GQ303728-GQ303867 and HOMER RT codon 401–560

sequences are GQ303868-GQ304249. HOMER integrase se-

quences are FJ812899-FJ813480. Linked HLA/HIV datasets from

the BC HOMER cohort are available for sharing with individual

researchers following application to, and approval by the UBC/

Providence Health Care Research Ethics Board; please contact the

corresponding author for more information. GenBank Accession

Numbers for ACTG 5142/5128 cohort sequences are GQ371216-

GQ371763 (Gag), GQ371764-GQ372317 (Pol) and GQ372318-

GQ372824 plus GQ398382-GQ398387 (Nef). GenBank Acces-

sion numbers for the full/partial HIV genome sequences from

WAHCS, from which Gag, Pol and Nef were extracted and used

here, are AY856956-AY857186.

Identification of HLA-associated polymorphisms:
Overview

The identification of HLA-associated polymorphisms in popu-

lation-based datasets is complicated by three potential confound-

ing factors: HIV phylogeny, HIV codon covariation, and Linkage

Disequilibrium between HLA alleles [27]. HIV phylogeny acts as

a confounder because HIV sequences are related to one another

through descent from a common ancestor, with sequences

displaying greater or lesser similarity to one another depending

on the length of time since divergence. Thus, statistical tests that

assume independent and identically distributed (iid) observations,

such as chi-squared or Fisher’s exact tests, may lead to inflated

false-negative and false-positive rates if applied directly [27,37].

Similarly, Linkage Disequilibrium (LD) between HLA alleles also

exerts confounding effects. If LD is not addressed, linked HLA

alleles may appear associated with the same mutational patterns,

when in reality, escape is driven by one allele only

[14,15,27,28,29]. For this reason, analytical methods have been

developed to account for both HIV phylogeny and HLA LD [27].

HIV codon covariation acts as an additional, albeit more subtle,

confounder [27]. Although the phylogenetic tree adjusts for the

underlying evolutionary relationships between HIV sequences,

immune selection pressures may lead to reproducible patterns of

mutations at linked sites, even in sequences located far apart in the

tree. An example of this may be an escape pattern where a

primary mutation is first selected in context of a specific HLA

allele, followed by a compensatory mutation at a secondary site

[24,35,36]. If codon covariation is not accounted for, both the

primary and secondary sites may be identified as being associated

with the HLA allele in question. Technically, this result would not

be incorrect (as both primary and secondary mutations are

selected by the HLA allele). However, if the goal is to discriminate

between HLA-associated polymorphisms selected directly (for

example, mutations that compromise epitope processing, peptide-

HLA binding and/or T-cell recognition), from those that are

selected indirectly (such as compensatory or secondary mutations),

correction for codon covariation is necessary. A method that

simultaneously accounts for HIV phylogeny and codon covaria-

tion, in addition to HLA linkage disequilibrium, has recently been

developed by Carlson et al [27], and we have applied it in this

study.

Identification of HLA-associated polymorphisms:
statistical methods

A detailed description of the HIV Phylogeny, HLA LD and

HIV codon-covariation-corrected method is published in [27].

Briefly, a maximum likelihood phylogenetic tree is constructed for

each gene and a model of conditional adaptation is inferred for

each observed amino acid at each codon. In this model, the amino

acid is assumed to evolve independently down the phylogeny, until

it reaches the observed hosts. In each host, the selection pressure

arising from HLA-mediated T-cell responses and amino acid

covariation is directly modeled using a stochastic additive process.

To identify which factors contribute to the selection pressure, a

forward selection procedure is employed, in which the most

significant association is iteratively added to the model, with p-

values computed using the likelihood ratio test. To increase our

statistical power, each codon is divided into a set of binary

variables, one for each observed amino acid. In addition, we only

consider pairs of variables for which the observed or expected

value for each value of the contingency table is at least three.

Definition of Statistical Significance
Statistical significance is reported using q-values, the p-value

analogue of the false discovery rate (FDR) for each p-value

threshold [43]. The FDR is the expected proportion of false

positives among results deemed significant at a given threshold.

For example, at a q#0.2, we expect a false-positive proportion of

20% among identified associations. The q-value threshold used for

constructing the immune escape maps was q#0.05, meaning that

we would expect only a 5% false-positive proportion among

associations displayed on our maps. Tables S1 and S2 list all HLA-

and covariation associations, respectively, with q#0.2 (see

supporting information).

Classification and Nomenclature of HLA-associated
polymorphisms

Using this method, HLA-associated polymorphisms are

grouped into two categories: (1) amino acids significantly enriched

in the presence of the HLA allele in question (and vice versa), and

(2) amino acids significantly depleted in the presence of the HLA

allele in question (and vice versa). We refer to these two categories

as the ‘‘adapted’’ and ‘‘nonadapted’’ forms, respectively. Previous

studies, including some by our group, have employed various

nomenclature systems for these polymorphisms: the ‘‘adapted’’

forms may also be referred to as ‘‘escape mutants’’ or ‘‘resistant

forms’’, while the ‘‘nonadapted’’ forms have been referred to as

HIV-1 Immune Escape Maps
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‘‘susceptible’’, ‘‘wild-type’’ and/or ‘‘reversion’’ forms. We will

endeavour to use the ‘‘adapted/nonadapted’’ nomenclature in all

future studies of this type.

HIV covariation-corrected analysis: a point to consider
HIV proteins often contain multiple epitopes restricted by the

same HLA allele (B*57 TW10 and IW9 in Gag, for example). On

occasion, we have observed that the covariation-corrected analysis

identifies mutations in epitopes restricted by the same HLA allele

as being ‘‘linked’’, when in fact a more likely explanation is that

that they arise due to HLA-restricted targeting and escape within

multiple epitopes, either simultaneously or sequentially over the

disease course [27,32,44,45,46,47]. In order to not exclude any

potentially important escape mutations from our figures, we ran

the analysis with and without the covariation correction, and

included all HLA-associated polymorphisms identified by either

method in the escape maps. In the escape maps, the covariation-

corrected and uncorrected associations are differentiated by the

use of uppercase and lowercase letters, respectively.

Results

HLA-associated polymorphisms were identified in HIV-1 Gag,

Pol and Nef in a multicenter cohort of .1500 chronically-infected,

treatment-naı̈ve individuals using published methods featuring a

correction for HIV phylogeny, HLA linkage disequilibrium and

HIV codon covariation [27]. The false discovery rate [43] was

used to account for multiple tests.

At the conservative threshold of q#0.05, 282 HIV codons

commonly mutating under HLA-associated immune pressure in

Gag, Pol and Nef were identified. These polymorphisms were

observed at 74 (of 206; 36%) Nef codons, 80 (of 500; 16%) Gag

codons, and 128 (of 947; 14%) codons in Pol. At a more liberal

threshold of q#0.2, the total number of observed codons

harboring HLA-associated polymorphisms increased to 442,

which included 113 (55%), 130 (26%), 199 (21%) of codons in

Nef, Gag and Pol, respectively. These data confirm the results of

previous population-based studies reporting greater density of

HLA-associated polymorphisms in Nef than in Gag or Pol

[15,29,41,48]. Moreover results underscore the observation that

the effects of HLA-associated selection pressures on HIV-1

evolution are extensive and predictable.

All HLA-associated polymorphisms at q#0.05 were organized

into gene-wide ‘‘immune escape maps’’ (Figures 1, 2, 3, 4, 5)

indicating their location, HLA restriction, specific amino acids,

and their direction of association (‘‘adapted’’ vs. ‘‘non-adapted’’)

with respect to the current HIV subtype B consensus sequence

(http://www.hiv.lanl.gov). Published, optimally-described CTL

epitopes [49] containing HLA-associated polymorphisms are also

shown. In addition, the maps discriminate between HLA-

associated polymorphisms directly attributable to selection pres-

sure by the allele (meaning that they survive correction for HIV

covariation), from those that may be better explained indirectly

(meaning that their occurrence may be better explained by the

presence of an HLA-associated covarying residue, rather than the

allele itself). The full list of direct (covariation-corrected) plus

indirect (covariation uncorrected) HLA-associated polymorphisms

within each viral protein at q#0.2 is provided in Table S1.

As described in the methods, we also undertook an HIV

codon-covariation analysis that, besides identifying direct HLA-

associated polymorphisms, also identified all pairwise amino

acid-amino acid (aa-aa) associations within a given HIV protein

[27]. The HIV codon covariation analysis can be used to identify

linked pathways of immune escape, as well as putative secondary

and/or compensatory mutations associated with a primary

escape site. The codon covariation analysis identified .7000

intra-protein aa-aa correlations occurring at .4500 codon pairs,

illustrating the dense and complex networks of covarying amino

acids in HIV (Table S2). Indeed, if one sums up the total number

of codons harboring HLA-associated polymorphisms, plus the

co-varying sites immediately associated with them, the total

proportion of codons in Nef that are either directly or indirectly

associated with HLA selection pressures reaches 77%. For Gag

and Pol, the corresponding proportions are 55% and 44%,

respectively.

The sheer density of the intraprotein codon covariation network

renders the task of displaying these data rather challenging, but

Carlson et al have developed an elegant tool for data visualization

that is freely available [27]. Here, the amino acid sequence of a

protein is displayed in a counterclockwise circle starting at the 3

o’clock position (Figures 6 and 7). Any HLA alleles associated with

variation at those sites are indicated at the corresponding positions

outside the circle, while covarying amino acids are joined together

by arcs within the circle. The strength of the association (q-value) is

indicated by the color of the arc.

HLA-associated intraprotein codon networks in Gag for HLA-

B*57 and HLA-B*27 are shown in Figures 6 and 7, respectively.

These two alleles were chosen as examples due to their association

with slower HIV disease progression in numerous epidemiologic

studies [5,34,50]. Similarly, Gag was chosen in light of

accumulating evidence that Gag-specific CD8 T-cell responses

may contribute substantially to HIV immune containment

[51,52,53] as well as the observation that B*57 and B*27-

associated escape mutations in Gag are associated with measurable

costs to viral replication capacity [35,36,54], which may be

partially rescued by compensatory mutations at secondary sites

[35,36]. All direct (covariation-corrected) and indirect (covariation

uncorrected) B*57-associated Gag polymorphisms at q#0.2 are

identified at their respective positions along the circle’s circumfer-

ence: For B*57 (figure 6), this corresponds to codons 146, 147,

163, 173, 242, 248, 315, 340, 435 and 449. Within the circle, all

q#0.2 ‘‘one-hop’’ associations with these codons (meaning, Gag

codons identified as covarying with them) are connected via arcs.

For example, if the B*57-associated polymorphism at Gag position

242 is considered the ‘‘predictor variable’’ (see Table S2), then the

residues positively associated with it (‘‘adapted’’ associations) and/

or negatively associated with it (‘‘nonadapted’’ associations) are

located at codons 146, 147, 215, 228, 230, 241, 243, 248, 256,

310, 340 and 373. If position 242 is considered the ‘‘target

variable’’, then the covarying residues positively and negatively

associated with it are located at codons 109, 219, 292, 373, 469

and 473. It is important to note in the case of aa-aa associations,

the use of ‘‘predictor’’ and ‘‘target’’ terminology should not be

interpreted as suggesting a directional association between these

polymorphisms or a specific temporal order of selection; rather, it

is more appropriate to simply interpret these as codon-codon

pairs. Therefore, if one is interested using Table S2 to look up all

codons positively and/or negatively associated with Gag codon

242, one should investigate all ‘‘target’’ codons that appear when

242 is set as the ‘‘predictor’’ variable, and vice versa. The union of

these two queries will provide a list of specific codons and residues

that are positively and/or negatively associated with variation at

codon 242.

Note that our analysis also identifies ‘‘two-hop’’ associations

(meaning, codons that positively and/or negatively covary with the

‘‘one-hop’’ sites), however these are not shown on the figure due to

the high density of the resulting networks. The full list of

intraprotein covarying codons is provided in Table S2.

HIV-1 Immune Escape Maps
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Figure 1. Gag Immune Escape Map. Escape maps indicate the locations, specific residues and HLA restrictions of HLA-associated polymorphisms.
The HIV-1 consensus B amino acid sequence is used as a reference. Alternating black and brown letters in the consensus amino acid sequence
distinguish the different proteins in HIV-1 Gag (p17, p24, p2, p7, p1, p6). One hundred amino acids are displayed per line. Shaded vertical bars
separate blocks of 10 amino acids. ‘‘Adapted’’ amino acids (those enriched in the presence of the HLA allele) are red. ‘‘Non-adapted’’ amino acids
(those depleted in the presence of the HLA allele) are blue. UPPERCASE letters distinguish polymorphisms that survive correction for HIV codon
covariation (‘‘direct’’ associations), while lowercase letters distinguish polymorphisms that do not survive correction for codon covariation (‘‘indirect’’
associations). Polymorphisms associated with the same HLA allele that occur in proximity to one another are grouped together in yellow boxes.
Optimally-defined CTL epitopes containing HLA-associated polymorphisms are indicated above the consensus sequence. Note that the escape map
does not list the locations of all published CTL epitopes. This is available at http://www.hiv.lanl.gov/content/immunology. The escape maps show all
HLA-associated polymorphisms with q#0.05. A complete listing of all HLA-associated polymorphisms with q#0.2 is provided in Table S1.
doi:10.1371/journal.pone.0006687.g001
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Discussion

HLA-associated polymorphisms were identified in HIV-1 Gag, Pol

and Nef in a combined cohort of .1500 chronically-infected,

treatment-naı̈ve individuals from established cohorts in Canada, the

USA and Western Australia. These cohorts have previously been

independently investigated for HLA-associated polymorphisms; how-

ever by merging the data and re-analyzing as a whole, we achieved the

highest-powered dataset to date to identify HLA associations in HIV

subtype B. Indeed, where previous studies had employed a significance

threshold of q#0.2 when reporting associations, here we have lowered

the threshold to q#0.05, thus focusing on sites with the strongest

statistical support for HLA-driven adaptation.

The current immune escape maps incorporate some improve-

ments over previous iterations. Firstly, the maps cover all proteins

in Pol (including RNAseH and Integrase), instead of just protease/

RT as in previous studies [15]. Secondly, all associations,

regardless of proximity to known epitopes, are displayed on a

single map so that escape patterns in a protein can be visualized

globally. Note that, in the case where an HLA-associated

polymorphism does not fall within a known optimally-described

epitope, we have not attempted to predict the likeliest epitope as

has been done previously. This was done in order to avoid forcing

an epitope prediction in the case where the HLA association may

be attributable to another mechanism (for example a processing

escape mutation occurring distant from a published epitope), and

also to avoid favoring a particular epitope prediction algorithm

among the many that are available (e.g.: MotifScan http://www.

hiv.lanl.gov/content/

immunology/motif_scan; Epipred http://atom.research.micro-

soft.com/bio/epipred.aspx [55]; SYFPEITHI http://www.syf-

peithi.de/Scripts/MHCServer.dll/EpitopePrediction.htm, [56],

NetCTL 1.2 http://www.cbs.dtu.dk/services/NetCTL/ [57],

and various others [58,59]). That being said, visual inspection of

the maps reveals strong evidence for the existence of a number of

novel CTL epitopes, particularly in Pol where epitope mapping

initiatives may not have been as exhaustive compared to Gag and

Nef. Thirdly, the incorporation of a multivariate correction for

HLA linkage disequilibrium allows the identification of the HLA

allele directly responsible for the association, rather than the

manual assignment of the responsible allele using p-values post-

hoc as employed in previous studies [15]. Finally, the incorpora-

tion of a multivariate correction for codon covariation represents

an important step forward [27]. It allows us to discriminate HIV

polymorphisms directly attributable to selection pressure by the

HLA allele in question, from those who may be better explained

indirectly (meaning that their occurrence may be better explained

by the presence of an HLA-associated covarying residue, rather

than possession of the allele itself). In addition, it allows us to

comprehensively identify positively and negatively covarying

amino acids across proteins (Table S2), thus providing candidate

lists for secondary and/or compensatory mutations associated with

known escape sites. Indeed, Carlson et al. [27] demonstrated that

the codon covariation analysis accurately re-capitulates known

pathways of B*57 and B*27-associated escape in Gag [35,36,60],

supporting the use of this tool for the identification of secondary

escape patterns for additional HLA-associated escape mutations.

Just as the standardized identification of drug resistance mutations

[39] has been essential to both basic research as well as the clinical

monitoring of HIV-infected individuals, we hope that the identifica-

tion of immune escape pathways will be equally relevant to HIV

immunology/virology research and AIDS vaccine design. Our results

confirm the strong influence of immune escape on HIV diversity

[13,14], but more importantly underscore the reproducibility and

predictability of immune escape in response to specific HLA pressures

[15,27,28,29,38]. We hope these maps and tables will be useful to

those interested in CTL epitope discovery, the effects of escape and

compensatory mutations on viral replication and pathogenesis, the

design of novel vaccines, as well as the broader question of host-

pathogen co-evolution. Finally, we have assigned the name

‘‘International HIV Adaptation Collaborative’’ (IHAC) to describe

the current multicenter cohort with the hope that this initiative may

be expanded to include additional cohorts worldwide in the future. In

particular, the merging of data and cohorts across different HIV-1

subtypes [27] will allow us to further explore similarities and

differences in HLA-driven polymorphism patterns across subtypes.

Supporting Information

Table S1 HLA-associated polymorphisms in HIV-1 Gag,

Protease, Reverse Transcriptase, Integrase and Nef (all q,0.2).

Consistent with the immune escape maps, amino acid numbering

begins with 1 for each individual protein (where individual

proteins are defined as Gag, Protease, Reverse Transcriptase,

Integrase and Nef). Also consistent with the escape maps, the

direction of the association (adapted vs. nonadapted) for the

specific HLA in question is differentiated by red and blue lettering,

respectively. Direct (covariation-corrected) and indirect (non-

Figure 2. Protease Immune Escape Map.
doi:10.1371/journal.pone.0006687.g002
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Figure 3. Reverse Transcriptase Immune Escape Map.
doi:10.1371/journal.pone.0006687.g003
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covariation corrected) are also differentiated. P- and q-values

represent the minimum values observed in the covariation

corrected and non-covariation corrected analyses.

Found at: doi:10.1371/journal.pone.0006687.s001 (0.23 MB

XLS)

Table S2 Amino acid-amino acid (aa-aa) associations in HIV-1

Gag, Protease, Reverse Transcriptase, Integrase and Nef (all

q,0.2). Consistent with the immune escape maps and supple-

mentary table 1, amino acid numbering begins with 1 for each

individual protein. Predictor Codon and Target Codon refer to

the predictor and target attributes, respectively, however it is

important to note that this terminology does not imply a specific

direction of association. For example, if one is interested in all

codons that covary with Gag codon 242, one should investigate all

target codons that appear when 242 is set as the predictor variable,

and vice versa. The union of these two searches will provide a list

of candidate codons that covary with codon 242. In the case of aa-

aa associations, adapted refers to positive associations (ie amino

acid pairs that statistically tend to co-exist/co-vary) while

nonadapted identifies negative associations (ie amino acids that

statistically tend not to be found together). Finally, note that in the

original analysis, HIV codon covariation was analyzed across all

three Pol proteins simultaneously. However, to maintain consis-

tency with Figures 1-5 in the paper, the data listed in this

supplementary table are limited to intra-protein associations only,

a fact which should be considered when interpreting the q-values

for aa-aa associations in Protease, RT and Integrase.

Found at: doi:10.1371/journal.pone.0006687.s002 (1.13 MB

XLS)
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