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Abstract

The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the
conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-
soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays
produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat
storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS) microscopy. Here, we
compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to
analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the
genes daf-2 (insulin/IGF-1 receptor), rict-1 (rictor) and sgk-1 (serum glucocorticoid kinase). CARS imaging provides a direct
measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain
unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both
the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells.
Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the
fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain
unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1
signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS
imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm
that feeding worms with vital dyes does not lead to the staining of fat stores, but rather the sequestration of dyes in
lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to
the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores.
Importantly, both growth conditions and developmental stage should be considered when comparing methods of C.
elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free
means to quantitatively analyze fat storage in living C. elegans.
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Introduction

One of the benefits of using C. elegans as a model organism is the

ability to use powerful, high-throughput, forward genetic screens

to discover important genes and pathways [1,2]. Several papers

have used these methods to determine genes that are involved in

the accumulation of fat stores with possible applications to human

obesity [3–5]. The regulatory roles of many of these genes are

assigned based on dye-labeled assays for fat stores. However, dye-

labeled assays for fat stores produce highly inconsistent results

depending on the type of dyes or whether the staining is performed

in live or fixed worms [6,7]. Many dye-labeled assays for fat stores

do not correlate with standard biochemical assays [6,7].

Consequently, the functional assignments of many genes related

to fat storage based on a single method may not be accurate and

potentially hinders the functional studies of genes that control fat

accumulation in C. elegans.

In recent years, an alternative to dye-labeled assay to quantify

fat stores in C. elegans has been described with coherent anti-Stokes

Raman scattering (CARS) microscopy [8,9]. CARS microscopy is

a label-free chemical imaging technique that relies on intrinsic

molecular vibration as a contrast mechanism [10,11]. CARS
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microscopy allows direct visualization of lipid-rich organelles due

to the abundance of the CH2 group that has the symmetric stretch

vibration frequency of 2840 cm21. In addition, CARS microscopy

is highly multifunctional. It is capable of simultaneous chemical

and fluorescent imaging, which allows label-free visualization of

both neutral lipid droplets and autofluorescent granules [9].

Furthermore, CARS is capable of Raman spectral analysis, which

allows assaying of lipid-chain unsaturation and lipid packing order

of individual lipid droplets [8,9,12–14]. With such versatility,

CARS microscopy has the potential to become a robust and

reliable method to screen for the function of genes that control

lipid metabolism in living C. elegans.

However, technical challenges are hindering the widespread

adoption of CARS microscopy for C. elegans research. First, the

very expensive price tag for a CARS microscope places it beyond

the affordability of most researchers. Secondly, setting up a CARS

microscope system requires expertise in nonlinear optics, which

may be a challenge to many biologists. Thirdly, dye-labeled assays

are inexpensive and readily available which render them attractive

choices. And lastly, many biologists are unfamiliar with the

capability of CARS and other nonlinear optical imaging

modalities.

In this paper, we explore the capability of CARS microscopy for

quantitative analysis of fat storage in wild type worms and three

strains with mutations in genes involved in the insulin/IGF-1

signaling pathway: daf-2(e1370), rict-1(ft7), and sgk-1(ok538)

(Figure 1). We directly compare the abilities of CARS with

several dyes commonly used in C. elegans, as well as triglyceride

quantification to study fat storage. Each of these three mutants has

been reported to have abnormal fat stores compared to wild type

using a variety of techniques [6,7,15]. daf-2(e1370) mutants bear a

mutation in the insulin/IGF receptor [15], while rict-1 mutants

have a mutation in the RICTOR (Rapamycin Insensitive

Companion of mTOR) gene [16,17]. sgk-1 mutants have a

mutation in the serum/glucocorticoid regulated kinase (SGK)

gene [18]. Previous studies using vital stains to assay for fat stores

has produced variable results that are inconsistent with standard

biochemical assays [6,7]. We compare the performance of label-

free CARS imaging to both dye-labeled imaging and triglyceride

quantification to further investigate quantitation of fat stores in C.

elegans. We aim to introduce CARS microscopy to researchers who

are unfamiliar with its capability for lipid studies in C. elegans.

Using CARS, we are able to identify the sources of errors in dye-

labeled assays. We also stress the importance of similar growth

conditions as well as similar developmental stages when trying to

compare methods. Therefore, these studies aim to help researchers

improve the accuracy for fat store measurements by standard dye

assays should CARS microscopy remain inaccessible.

Results

CARS/TPEF imaging reveals co-existing neutral lipid
stores and autofluorescent granules in C. elegans

Fat stores in C. elegans can be visualized by dye-labeled imaging

or by label-free imaging (Figure 2, Figure S1, S2). Dye-labeled

imaging of fat stores relies on the use of fat-soluble dyes such as

Sudan Black, Oil Red O, Nile Red, or BODIPY (Figure 2A,
Figure S1, S2). Sudan Black and Oil Red O are fixative-based

dyes, whereas Nile Red and BODIPY are vital dyes, which are fed

to live worms to assay fat stores [3,7,15,19]. In contrast, label-free

imaging of fat stores with CARS microscopy relies on the intrinsic

molecular vibration of CH2 groups for the contrast mechanism

(Figure 2B). Simultaneous CARS and two-photon excited

fluorescent (TPEF) imaging allows label-free visualization of both

neutral lipid droplets and autofluorescent gut granules [9].

Autofluorescent gut granules have been classified as lysosome-

related organelles (LROs) whose expression increases with aging

and oxidative stress [20,21]. The partial overlap of the TPEF and

CARS signals (Figure 2B) is possibly due to the insufficient depth

resolution of our technique. We have observed that all

autofluorescent granules contain some CARS signal although

the intensity varies from granule to granule. However the converse

is not true and all CARS signal is not associated with

autofluorescent granules. Thus, multimodal CARS/TPEF imag-

ing suggests the co-existence of 1) neutral lipid stores that resides in

both the hypodermis and the intestinal cells, and 2) autofluorescent

organelles that reside exclusively in the intestinal cells.

Quantitative measurements of fat stores in living C.
elegans

CARS microscopy allows quantitative measurements of fat

stores in living C. elegans. The CARS signal typically arises from

both the cytoplasmic lipid droplets or fat stores and the

phospholipid membranes (Figure 2B). Importantly, the coherent

addition of CARS fields produces a signal from the C-H abundant

lipid droplets much larger than that from other cellular organelles.

To quantify the fat stores, a threshold can be set such that the

CARS signal from the phospholipid membrane and other cellular

structures is removed. Integration of the remaining CARS signal

intensity yields a numerical value for total fat stores of the probed

volume (Figure 3A). In addition, a CARS image can be converted

to a binary image for measurements of number and size

distribution of lipid droplets using the particle analysis function

of the ImageJ software. This approach provides a robust means for

lipid droplet analysis. However, when the lipid droplets are too

close to one another, errors can be introduced. In such a case,

limits can be set for additional optimization of the quantitation

(Figure 3A). Furthermore, spontaneous Raman spectral analysis

can provide critical information on the lipid chain of the lipid

droplets (Figure 3B). The ratio of C = C over C-C or I1660/I1445

Figure 1. Simplified diagram of insulin/IGF signaling. Bolded
proteins are proteins that have been investigated in this study.
doi:10.1371/journal.pone.0012810.g001

C. elegans Fat Storage
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Figure 2. Label and label-free imaging methods to assay fat storage in C. elegans. (A) Labeled imaging of fat stores using Sudan Black, Oil
Red O, and Nile Red staining of fixed worms and Nile Red and BODIPY-labeled fatty acids fed to live worms. (B) Label-free visualization of neutral lipid
species and autofluorescent gut granules using simultaneous CARS and TPEF imaging, respectively. Note the co-localization of TPEF signal with CARS
signal in the intestinal cells. Images are presented as 3-D stacks of 30 frames taken at 1 mm increment along the vertical axis. Rightmost panel is an
enlargement of the overlaid image with the xy dimensions of 20 mm620 mm. It should be noted that the association of fluorescent signal with lipid
signal can be found surrounding, at one end, above, or below the lipid signal. In addition, the lipid contents of the fluorescent particles vary from one
to another. For the particular image presented, the fluorescent puncta do exhibit lipid signal when examined at a higher magnification.
doi:10.1371/journal.pone.0012810.g002

Figure 3. Quantitative analysis of the total fat stores and the size, number, and composition of lipid droplets with CARS microscopy.
(A) Total fat stores are defined as the integrated CARS signal intensity over the probed volume minus the background signal arising from worm bodies
(leftmost panel). The ImageJ software is used for binary image conversion of CARS images and for particle analysis to determine the size and number of
lipid droplets. Upper limits (2 mm2) can be manually set to minimize sizing errors due to lipid droplets being too close to each other. (B) The
compositions of six lipid droplets (crosshairs) are analyzed using spontaneous Raman spectroscopy. Statistically insignificant variability in lipid
composition is observed for lipid droplets within a single worm. Leftmost panel is an enlargement of Figure 2A with the xy dimensions of 20 mm620 mm.
doi:10.1371/journal.pone.0012810.g003

C. elegans Fat Storage
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is a reliable measure of lipid-chain unsaturation and the ratio of

asymmetric to symmetric CH2 stretch vibration or I2880/I2845 can

be used to measure lipid-chain packing order [12]. Taken

together, CARS microscopy provides quantitative measurements

of single lipid droplets that have not been described with standard

dye-labeled assays.

Comparison of CARS imaging with dyes in insulin/IGF-1
signaling mutants

To evaluate the performance of CARS microscopy, we

compare CARS imaging assays with standard dye-labeled assays

to quantitate fat stores. We chose three mutants that appeared to

have different lipid profiles by CARS that also happen to affect

insulin/IGF signaling (Figure 1). We assessed lipid stores in all of

the three mutants in comparison to wild type. As shown in

Figure 3, we find that staining fat stores in fixed worms with

fixative dyes Oil Red O and Sudan Black produce results that

partially correlate with CARS imaging of living worms. Qualita-

tively, we observe that daf-2 mutants exhibit a significant increase

in staining level, rict-1 worms exhibit a moderate increase in

staining level, and sgk-1 worms exhibit a reduction in staining level

as compared to wild type worms (Figure 4A, Figure S1, S2 and
quantified in Figure S3). Notably, both fixative dyes give

similar results. Similarly, label-free CARS imaging also shows

increased fat stores in daf-2 mutants and reduced fat stores in sgk-1

worms as compared to wild type worms (Figure 4B). Thus, the

data from the two fixative stains, Oil Red O and Sudan Black,

agree with CARS imaging data on daf-2 and sgk-1 worms.

Figure 4. Label and label-free imaging of fat storage in wild type and mutant C. elegans. (A) Visualization of fat stores in fixed worms using
fixative dyes Sudan Black, Oil Red O, and Nile Red*. Arrows indicate the pharynx (B) Visualization of fat stores (upper panels) and autofluorescent gut
granules (lower panels) using simultaneous CARS and TPEF imaging of living worms, respectively. Images are presented as 3-D stacks of 30 frames
taken at 1 mm increment along the vertical axis. *Nile Red pictures were taken with a more sensitive black and white camera.
doi:10.1371/journal.pone.0012810.g004

C. elegans Fat Storage
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However, CARS imaging shows that rict-1 mutants have similar

lipid stores when compared to wild type, which is in contrast to the

dye staining.

To further investigate these differences, we used additional analysis

with CARS imaging. When we used simultaneous TPEF imaging, we

observed that the level of autofluorescent granules is lower in daf-2

mutants, higher in rict-1 mutants, and similar in sgk-1 mutants when

compared with wild type worms (Figure 4B). However, the

autofluorescent phenotypes of these mutants have largely been

omitted in the literature. It is possible that the dramatic increase in the

level of autofluorescent species in rict-1 worms could interfere with the

evaluation of neutral lipid species using fixative dyes.

Fed Nile Red and Fed BODIPY do not reveal fat stores
We next examined staining fat stores by feeding worms with

vital dyes Nile Red and BODIPY. As shown in Figure 5, the

results from feeding worms dyes to stain lipids produce data that

do not correlate with CARS imaging of live worms. Quantifying

the total fluorescence from the worms using ImageJ from vital

labeling show reduced fat stores in daf-2 worms, increased fat

stores in rict-1 worms, and similar fat stores in sgk-1 worms as

compared to wild type worms (Figure 5A). We find that the Nile

Red and BIODIPY vital labeling data do not agree with fixative

labeling data using Oil Red O, Sudan Black, and Nile Red, or

with label-free CARS imaging data. Our results show that there is

an intrinsic difference between the capacities of dyes to stain fat

stores in live and fixed worms. Previously, Nile Red staining of

fixed worms has been shown to be a better proxy for fat stores than

Nile Red staining of live worms [6]. Indeed, our assays for fat

stores using Nile Red staining of fixed daf-2 and sgk-1 worms

produce data that in general tend to agree with those obtained

with fixative dyes and CARS imaging (Figure 5A). However,

fixed Nile Red staining also shows an increase in fat stores in rict-1

worms, whereas, CARS imaging show comparable level of fat

stores relative to wild type worms. Further verification of fat stores

using biochemical methods corroborates the CARS findings (see
Text S1 and Figure S4).

Quantitation of lipids with CARS
Next, we further extended our analysis of lipids in C. elegans

using CARS imaging. In addition to assaying total fat stores,

CARS imaging allows quantitative analysis of autofluorescent

granules, size and number of lipid droplets, and the degree of lipid-

chain unsaturation (Figure 5B). Compared to wild type worms,

daf-2 mutants exhibit a two-fold increase in the CARS signal and a

three-fold reduction in the autofluorescent signal. rict-1 mutants

when compared to wild type, exhibit similar levels of the CARS

signal and a two-fold increase in the autofluorescent signal. sgk-1

mutants exhibit a three-fold decrease in the CARS signal and a

twenty percent reduction in the autofluorescent signal when

compared to wild type. When we examined the size of lipid

droplets, we found that the lipid droplet size is approximately

1.4 mm2 in wild type worms as well as daf-2 and rict-1 mutants,

while sgk-1 mutants were approximately 1 mm2. Further analysis

showed that compared to wild type worms, daf-2 mutants have a

two-fold increase in the number of lipid droplets and sgk-1 mutants

have one-third reduction in lipid droplets (Figure 5B). The

number of lipid droplets in rict-1 mutants is statistically comparable

to that in wild type worms. In general, all three mutants have a

lower degree of lipid-chain unsaturation compared to wild type

worms. One possibility for this lower lipid-chain unsaturation is

that mutation in either daf-2, rict-1, or sgk-1 might have a negative

effect on the expression or activity of lipid desaturation enzymes,

or the ability to uptake unsaturated dietary lipids.

Figure 5. Quantitative analysis of fat storage in wild type and mutant C. elegans. (A) Total fat stores in mutant worms relative to wild type
worms assayed by feeding worms with vital dyes Nile Red and BODIPY-labeled fatty acids, with CARS imaging, and with fixative staining with Nile
Red. Data represent the average of 3 independent trials with an average of 18 worms quantified per trial for fed Nile Red, 20 worms quantified per
trial for fed BODIPY, 9 worms quantified per trial for CARS imaging, and 23 worms quantified per trial for Nile Red on fixed worms. Data are
normalized to 100 for wild type worms and comparatively for mutant worms. Error bars represent the standard error. (B) Quantitative analysis of
autofluorescent granules using TPEF imaging and size, number, and lipid unsaturation of lipid droplets using CARS imaging. TPEF data are normalized
to 100 for wild type worms and comparatively for mutant worms. Lipid unsaturation represents the ratio of C = C peak intensity over C-C peak
intensity, or I1660/I1445. Data represent the average of 3 independent trials with lipid droplets of 9 worms quantified per trial, or 27 worms total. Error
bars represent the standard error.
doi:10.1371/journal.pone.0012810.g005
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Examining sources of errors with fat storage analysis in C.
elegans

CARS microscopy measures fat stores directly, whereas fixative

or vital dyes serve as proxies for fat stores. Therefore, the

inconsistencies between dye-labeled assays are likely due to

labeling efficiency or errors during quantitation of the dye signal.

To try to investigate the source of errors in dye-labeled assays, we

first examined the spectral properties of two fluorescent dyes, Nile

Red and BODIPY as well as the autofluorescent granules. We find

that the emission spectra of autofluorescent granules and BODIPY

peak at 530 nm and 520 nm, respectively, when excited with a

457 nm continuous-wave laser (Figure 6A). The broad emission

spectrum of the autofluorescent granules therefore suggests that

when fat stores are assayed with BODIPY, the readout inevitably

includes the autofluorescent signal. Furthermore, a recent study

shows that BODIPY does not stain fat stores when fed to live

worms [7]. Taken together, BODIPY should not be used as a

proxy for fat stores in live or fixed worms.

On the other hand, the conditions for Nile Red signal detection

vary among researchers. Some researchers used the Rhodamine

emission filters that centers at 575 nm to detect the Nile Red signal

[3]. At this wavelength, significant autofluorescent signal can still

be detected according to the spectral data (Figure 6A). Thus,

some errors in the Nile Red assays for fat stores can be attributed

to the signal bleed-through from the autofluorescent granules.

Ideally, the emission filter for Nile Red should center around

650 nm. Nonetheless, we observe minimal bleed-through of the

autofluorescent signal using a 600 nm emission filter and two-

photon excitation at 885 nm (Figure 6B). In fact, most

researchers use the emission filters that center around 600 nm,

yet vital staining of fat stores using Nile Red still does not correlate

with biochemical assays [5–7].

Figure 6. Possible errors in dye-labeled assays to analyze fat stores in living C. elegans. (A) Emission spectra of autofluorescent granules,
BODIPY, and Nile Red obtained with microspectrometry. The autofluorescent granules and BODIPY are excited at 457 nm using an Argon-Ion
continuous-wave laser. The Nile Red is excited with a 543 nm Helium-Neon continuous-wave laser. (B) Insignificant bleed-through of autofluorescent
granule signal is observed using a 600 nm bandpass filter and two-photon excitation at 885 nm. (C) CARS and TPEF imaging of two rict-1 worms fed
with Nile Red. Autofluorescent granules (blue) are detected with a 520 nm bandpass filter and Nile Red (red) is detected with a 600 nm bandpass
filter. Pink color is the result of overlapping blue and red colors which indicates co-localization of autofluorescent granules and Nile Red. Note the
complete co-localization of autofluorescent granules and Nile Red in worm 1 (upper panels) and partial co-localization of autofluorescent granules
and Nile Red in worm 2 (lower panels). Rightmost panels are enlargements of the CARS/Nile Red overlaid images with the xy dimensions of
20 mm620 mm. Note the poor co-localization of lipid droplets (grey) and Nile Red (red). Images are presented as 3-D stacks of 30 frames taken at
1 mm increment along the vertical axis.
doi:10.1371/journal.pone.0012810.g006
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To further investigate the source of errors by obtaining CARS

and fluorescent images of live worms fed with Nile Red dye, we

obtained fluorescent images at both 520 nm for autofluorescent

granules and 600 nm for Nile Red dye (Figure 6C). We observed

that in some worms Nile Red signal completely co-localizes with

the autofluorescent signal (Figure 6C top row). This observation

is consistent with many previous findings where autofluorescent

granules were identified as LROs and Nile Red was reported to

stain LROs [7,20]. The presence of more autofluorescent signal

than the Nile Red signal could be due to insufficient Nile Red

concentration or due to the degradation of the Nile Red dye. In

some other worms, only some of the Nile Red signal co-localizes

with the autofluorescent signal (Figure 6C bottom row).

However, in all worms, the Nile Red signal localizes poorly with

the CARS signal for fat stores. This observation is quite surprising

given the proven ability of Nile Red to stain lipid droplets in

mammalian cells and in fixed worms [6,22]. It is highly probable

that Nile Red enters the intestinal cells of C. elegans via endocytosis,

and then remains in the endosomes which eventually mature into

lysosomes [20]. It is unlikely that Nile Red enters the cytoplasm

where the lipid droplets reside because in this scenario Nile Red

should stain lipid droplets given its nonspecific affinity for lipids in

general. Our data clearly suggests that Nile Red should not be

used as a proxy for fat stores in live worms.

Discussion

As C. elegans is increasingly used as a model system to study the

basic mechanisms of fat storage and energy homeostasis, it is

critical to ensure that the established assays accurately determine

and reflect fat content. To that effect, here we study the

performance of existing techniques including vital and fixative

labeling and label-free assays to evaluate fat stores. We find that

vital staining with the fat-soluble dyes Nile Red and BODIPY

labeled fatty acids cannot serve as proxies for fat stores. Nile Red

and BODIPY-labeled fatty acids do not stain fat stores but stain

autofluorescent organelles previously identified as LROs in living

worms [7]. It is possible that Nile red and BODIPY-labeled fatty

acids are actively transported into intestinal cells. In fact, a specific

transporter for Nile Red has been identified in yeast [23]. Similar

transporters in worms may sequester Nile Red and BODIPY-

labeled fatty acids, thus shielding them from the fat stores in living

worms. Furthermore, Clokey and Jacobson reported over two

decades ago that exogenous fluorescent probes are taken up by

endocytosis and accumulate within the autofluorescent lipofuscin

granules, which are the secondary lysosomes and active recipients

of endocytosed fluorescent probes [20]. Our findings, together

with other independent reports, strongly suggest that vital staining

using fat-soluble dyes including both Nile Red and BODIPY,

should not be used to assay fat stores in living C. elegans.

We find that fixative staining using Sudan Black, Oil Red O, and

Nile Red produce consistent and reproducible data on fat stores

(Table 1). Qualitatively, fixative staining data agree with CARS

imaging data on the level of fat stores in mutant daf-2 and sgk-1

relative to wild type worms. However, our fixative staining data

differ with CARS imaging data and biochemical analysis on the

level of fat stores in rict-1 mutants where there is a high level of

autofluorescent gut granules/lipofuscin. These results are in

contrast to those found by Soukas et al. [16] and are further

discussed in Text S1. Since CARS microscopy provides a direct

measure of fat stores instead of a proxy of fat storage, it is possible

that this difference could be attributable to errors introduced during

fixation or staining procedures. Additional error could also be

due to the following reasons. First, lipofuscin is a hydrophobic

accumulation of highly oxidized cellular proteins and lipids that

have characteristic fluorescent properties [24,25]. Their hydropho-

bic properties pose a problem for lipophilic stains because both

Sudan Black and Oil Red O stain for lipofuscin as well as

triglycerides [26,27]. As Nile Red is also a hydrophilic stain, it is

possible that it could also stain lipofuscin. Therefore, fixative

staining cannot distinguish neutral fat stores from lipofuscin.

Second, the autofluorescence of lipofuscin might contribute to

errors in the quantitation of fluorescent stains such as Nile Red and

BODIPY. Third, formaldehyde fixation of the worms introduces

additional non-specific fluorescence due to the fluorescent proper-

ties of the Schiff bases produced [28]. Finally, non-specific staining

of dyes, variable dye concentration, and thoroughness of washing

procedures are among the other factors that might contribute to

the inaccuracy in assaying for fat stores using labeling techniques

[29–31]. Therefore, although fixative staining offers a simple and

reproducible means to assay fat stores in C. elegans, we suggest that

errors may arise due to interference from autofluorescence granules

and non-specific staining of lipofuscin and other cellular organelles.

Thus, fixative staining to assay for fat stores in C. elegans should also

present data on autofluorescent granules.

In contrast to labeling techniques, label-free CARS imaging

provides a direct and reliable means to assay fat stores in living C.

elegans. In addition, CARS imaging allows for detailed analysis of

the number, size, and lipid-chain unsaturation of single lipid

droplets. Multimodal CARS and TPEF imaging further allows

simultaneous visualization of neutral lipids and autofluorescent

lipofuscins. Together, CARS microscopy allows for the assaying of

various aspects of fat storage in living C. elegans in a non-invasive

and label-free manner. Fat storage in the form of lipid droplets has

recently emerged as a complex process that is dependent on insulin

signaling, phospholipid synthesis, fatty acids synthesis and

desaturation, fatty acids uptake and transport, activation of

nuclear hormone receptors, and upregulation of a wide range of

lipid synthesis enzymes [32–39]. Genetic mutations of genes that

control lipid metabolism in C. elegans and other organisms have

been shown to impact the total fat stores, as well as the size,

number, and composition of lipid droplets [36,40,41]. Further-

more, a strong correlation between fat storage, oxidative stress,

and the lifespan of C. elegans has been revealed in recent years

[15–17,42–44]. Therefore, the versatility of CARS microscopy is

critical not only for forward genotype-phenotype screening of

genes that control fat accumulation, but also for the studies of

potential interactions of lipid metabolism genes. Most importantly,

CARS microscopy is currently the only reliable method to assay

for fat stores in living C. elegans. When combined with recent

Table 1. Qualitative comparison of fat stores in mutants
relative to wild type worms.

Strain

Method daf-2 (e1370) rict-1 (ft7) sgk-1 (ok538)

Fed Nile Red decrease increase no change

Fed BODIPY fatty acids decrease no change no change

Fixed Nile Red increase increase decrease

Fixed Sudan Black increase increase decrease

Fixed Oil-Red-O increase increase decrease

CARS (neutral lipids) increase no change decrease

CARS (autofluorescence) decrease increase no change

doi:10.1371/journal.pone.0012810.t001

C. elegans Fat Storage
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advances in microfluidic devices [45–47], this capability should

allow dynamic studies of the correlation between lipid metabolism,

behavioral response, and aging over the lifetime of a single worm.

Conclusions
We have used several methods including fixative stains, live stains

and live imaging to analyze C. elegans fat storage. Our data supports

previous publications that vital dyes should be used with caution for

lipid analysis in C. elegans. Using CARS microscopy we show Nile Red

itself stains the autofluorescent granules and this is the confounding

problem. Importantly, we show that similar stages and growth

conditions should be used when comparing different methods

(Figure S5). We suggest that CARS is the optimal method for C.

elegans fat storage. However, when not available, we suggest using one

of the fixative methods as well as checking autofluorescent levels.

Materials and Methods

Worm strains and growing conditions
All C. elegans strains used in this work were obtained from the

Caenorhabditis Genetics Center. Wild type N2, daf-2(e1370), sgk-

1(ok538) and rict-1(ft7) mutants were maintained at 15uC using

standard C. elegans techniques [48]. All strains except for daf-

2(e1370) were shifted to room temperature at 22.5uC overnight,

while daf-2(e1370) worms were shifted to 20uC overnight, prior to

label or label-free assays. All assays were repeated for a total of

three times using worms at the L3/L4 stage.

Worm fixation
Worms were washed twice with 1 x PBS and then suspended in

120 ml of PBS to which an equal volume of 2X MRWB buffer

(160 mM KCl, 40 mM NaCl, 14 mM Na2EGTA, PIPES pH 7.4,

1 mM Spermidine, 0.4 mM Spermine, 30 mM, 2% Paraformal-

dehyde, 0.2% beta-mercaptoethanol) was added. The worms were

taken through 3 freeze-thaw cycles between dry ice/ethanol and

warm running tap water, followed by spinning at 14000g washing

once in PBS to remove paraformaldehyde.

Nile Red and BODIPY-labeled fatty acid feeding protocol
Nile Red (Cat. No. N1142, Invitrogen, Carlsbad, CA, USA)

diluted in water (100 ng/mL final concentration) or BODIPY-

labeled fatty acids (Cat. No. D-3823, Invitrogen, Carlsbad, CA,

USA) diluted in water (1 mM final concentration) was overlaid on an

NGM media plate and allowed to dry overnight. Worms were then

transferred to the plate for at least 24 hours before fixing the worms.

Fixed Nile Red Staining
A stock solution was made by dissolving Nile Red in acetone. It

was then diluted in water (100 ng/mL final concentration) and

fixed worms were incubated overnight in the working solution.

Sudan Black Staining
Sudan Black (Cat. No. 199664, Sigma-Aldrich, St. Louis, MO,

USA) staining of stored fat was performed as previously described

[15], except for the fixation step as described above. After fixation,

worms were sequentially dehydrated by washes in 25%, 50% and

70% ethanol. Saturated Sudan Black solution was prepared fresh

in 70% ethanol. The fixed worms were incubated overnight in

250 mL of Sudan Black solution, on a shaker at room temperature.

Quantification of Sudan Black staining
Using ImageJ, we measured the average pixel intensity for a 30-

pixel radius immediately behind the pharynx of each animal. A

minimum of 9 animals was measured for each strain and we

repeated the experiments an additional 2 times. Significance was

determined by Student’s t-test.

Oil Red O Staining
Oil Red O staining was performed as previously described [16].

After fixation, worms were resuspended and dehydrated in 60%

isopropanol. Approximately 250 mL of 60% Oil Red O stain (Cat.

No. O9755, Sigma-Aldrich, St. Louis, MO, USA) was added to

each sample, and samples were incubated overnight at room

temperature. Oil Red O was prepared as follows: 0.5 g of Oil Red

O powder was dissolved in 100 ml isopropanol solution and

equilibrated for several days. The solution was then freshly diluted

with 40% water to get a 60% stock and allowed to sit 10 minutes

at room temperature and filtered using 0.2 to 0.4 mm filters.

Quantification of Oil Red O staining
Using ImageJ, we separated out each color image into its RGB

channel components. As it has been reported that Oil Red O

absorbs light at 510 nm, we used the green channel for further

analysis [49]. We measured the average pixel intensity for a 40

pixel radius immediately behind the pharynx of each animal. In

addition, we measured a 40 pixel radius of the background, which

was later subtracted from the values obtained from the staining. A

minimum of 9 animals was measured for each strain and we

repeated the experiments an additional 2 times. Significance was

determined by Student’s t-test.

Triglyceride Assay
Biovision’s Triglyceride Quantification Kit (Mountain View,

CA) was used to assay for triglyceride content. Worms were

synchronized by hypochlorite treatment and then grown at 15uC.

They were then upshifted to 20uC for 8 hours until they were at

the L3/L4 stage. Worms were then collected and washed with S

basal solution. A 5% Triton X-100 solution with 1x protease

inhibitors (Roche cOmplete mini, EDTA-free Indianapolis, IN)

was added 1:1 to a 50 uL worm pellet. The worms were sonicated

with a Bioruptor (Diagenode, Sparta, NJ) using power output 4 for

10 seconds. Protein content was estimated by BCA method. Lipids

were dissolved by heating the lysate to 90uC for 5 minutes followed

by vortexing. This was preformed twice before the lysate was

cleared by centrifugation. The supernatant was then used for the

triglyceride assay per the manufacturers instructions. At least 2

biological replicates were used for each strain and three technical

replicates were used for each biological replicate.

Imaging conditions for dye-labeled assays
Fixed worms were mounted on slides and visualized using a

Zeiss Axioscope 2+ microscope. ImageJ software was used to

quantify total fluorescence from pictures obtained from the

microscope. Exposure times were kept constant within each trial.

NR and SB images were obtained using an ORCA ER CCD

camera (Hamamatsu Photonics, Japan). ORO images were

obtained using an Axiocam HRc CCD camera (Carl Zeiss,

Thornwood, NY). Fluorescent dyes were excited using a 100W

HBO mercury lamp in conjunction with a FITC (480ex/535em)

or TRITC (540ex/605em) filter set (Chroma Technology, Bellows

Falls, VT) for BODIPY or NR respectively.

A multifunctional CARS microscope
Two mode-locked 5-ps Ti:sapphire lasers (Tsunami, Spectra-

Physics, Mountain View, CA) were synchronized to each other

through an electronic module controller (Lok-to-Clock, Spectra-
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Physics). The two parallel-polarized laser beams, pump and

Stokes, were collinearly combined and sent into a laser scanning

confocal microscope (FV300/IX71, Olympus America, Center

Valley, PA). Pump and Stokes lasers were tuned to 14140 cm21

(or 707 nm) and 11300 cm21 (or 885 nm), respectively, to be in

resonance with the CH2 symmetric stretch vibration at

2840 cm21. The combined beams were focused into the sample

through a 60x water immersion microscope objective with a 1.2

numerical aperture. Forward-detected CARS signal was collected

by an air condenser with a 0.55 numerical aperture, transmitted

through a 600/65 nm bandpass filter (Cat. No. 42-7366, Ealing

Catalog, Rocklin, CA), and detected by a photomultiplier tube

(PMT, H7422-40, Hamamatsu, Japan). Simultaneously, back-

reflected TPEF signal was collected by the same illuminating

objective, spectrally separated from the excitation source,

transmitted through a 520/40 nm bandpass filter (Cat.

No. 42002, Chroma Technology, Bellows Falls, VT), and detected

by a photomultiplier tube (PMT, H7422-40, Hamamatsu, Japan)

mounted at the back port of the microscope. To detect Nile Red

fluorescence, the pump beam was blocked and the Stokes beam at

885 nm was used for excitation. To obtain Raman spectra of lipid

droplets, the Stokes beam was blocked and the pump-laser

induced Raman scattering signal was directed toward a spectrom-

eter to permit spectral analysis from 830 cm21 to 3100 cm21,

which covers both the fingerprint and the CH-stretch vibration

regions. A spectrometer with a 300 g/mm grating and a TE

cooled back-illuminated EMCCD (Newton 920-BRD, Andor

Technology, Belfast, Ireland) was mounted to the side port of

the microscope to allow spontaneous Raman spectral analysis on

the same microscope platform. Average acquisition time for a

5126512 pixels CARS image was 1.12 second and a full-spectral

Raman analysis was 4 seconds. The combined Stokes and pump

laser power was kept constantly at 40 mW. For all Raman spectral

measurements, pump laser power was reduced to 10 mW.

CARS imaging conditions and data analysis
All C. elegans were anesthetized in a droplet of 100 mM sodium

azide and mounted on fresh 2% agarose slides prior to imaging. To

evaluate the expression level of neutral and autofluorescent bodies, a

probe volume with xyz dimensions of 125 mm6125 mm629 mm

was defined at the mid-section of wild type or mutant worms.

Simultaneous depth imaging with CARS and TPEF along the

vertical (z) axis was performed at 1 mm step size to obtain 30 frames.

Total CARS and TPEF signal arising from worms were integrated

over 30 frames and divided by the worm volumes to obtain average

pixel intensity values. Thus, the average pixel intensity values were

not affected by size variability among worms. Background CARS

and TPEF signal were defined as those arising from the worm

bodies devoid of lipid droplets or autofluorescent granules.

Background CARS and TPEF pixel intensity were subtracted from

the average pixel intensity of CARS and TPEF signal to obtain

CARS signal for fat stores and TPEF signal for autofluorescent

granules, respectively. Fluoview software (Olympus America,

Center Valley, PA) was used for image acquisition and display.

ImageJ software was used for particle analysis.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0012810.s001 (0.03 MB

DOC)

Figure S1 Additional Sudan Black stained worms. Arrow

indicates the pharynx of the worm.

Found at: doi:10.1371/journal.pone.0012810.s002 (2.28 MB TIF)

Figure S2 Additional Oil Red O stained worms. Arrow indicates

the pharynx of the worm.

Found at: doi:10.1371/journal.pone.0012810.s003 (3.65 MB TIF)

Figure S3 Quantification of Sudan Black and Oil Red O

staining. Both daf-2 and rict-1 have increased staining compared

to wild type. sgk-1 mutants have decreased staining. * indicates a

significant difference compared to wild type. + in 2 out of 3 trials

there was a significant difference from wild type.

Found at: doi:10.1371/journal.pone.0012810.s004 (1.44 MB TIF)

Figure S4 Quantification of triglyceride stores. Corroborating

the data from the CARS quantification, there is a significant

increase in triglycerides in daf-2 worms, a significant decrease in

triglycerides in sgk-1 worms, and no change in triglycerides in rict-

1 worms. Triglycerides has been normalized to total protein levels

and the units for the Y-axis is nmoles of triglycerides/gram of

protein.

Found at: doi:10.1371/journal.pone.0012810.s005 (0.49 MB TIF)

Figure S5 Differential fat stores in larval stage 3 (L3) worms

compared to larval stage 4 (L4) worms. Typical Oil Red O staining

of an L3 sgk-1 worm compared to an L4 sgk-1 worm. The top

panel is an L3 worm and the bottom is an L4 worm.

Found at: doi:10.1371/journal.pone.0012810.s006 (7.78 MB TIF)
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