
Daily Sampling of an HIV-1 Patient with Slowly
Progressing Disease Displays Persistence of Multiple env
Subpopulations Consistent with Neutrality
Helena Skar1,2,3., Ryan N. Gutenkunst4., Karin Wilbe Ramsay1,2, Annette Alaeus5, Jan Albert1,2, Thomas

Leitner3*

1 Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden, 2 Department of Microbiology, Tumor and Cell Biology, Karolinska Institute,

Stockholm, Sweden, 3 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America, 4 Department of Molecular

and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America, 5 Department of Medicine, Karolinska Institute, Stockholm, Sweden

Abstract

The molecular evolution of HIV-1 is characterized by frequent substitutions, indels and recombination events. In addition, a
HIV-1 population may adapt through frequency changes of its variants. To reveal such population dynamics we analyzed
HIV-1 subpopulation frequencies in an untreated patient with stable, low plasma HIV-1 RNA levels and close to normal CD4+
T-cell levels. The patient was intensively sampled during a 32-day period as well as approximately 1.5 years before and after
this period (days 2664, 1, 2, 3, 11, 18, 25, 32 and 522). 77 sequences of HIV-1 env (approximately 3100 nucleotides) were
obtained from plasma by limiting dilution with 7–11 sequences per time point, except day 2664. Phylogenetic analysis
using maximum likelihood methods showed that the sequences clustered in six distinct subpopulations. We devised a
method that took into account the relatively coarse sampling of the population. Data from days 1 through 32 were
consistent with constant within-patient subpopulation frequencies. However, over longer time periods, i.e. between days
1…32 and 522, there were significant changes in subpopulation frequencies, which were consistent with evolutionarily
neutral fluctuations. We found no clear signal of natural selection within the subpopulations over the study period, but
positive selection was evident on the long branches that connected the subpopulations, which corresponds to .3 years as
the subpopulations already were established when we started the study. Thus, selective forces may have been involved
when the subpopulations were established. Genetic drift within subpopulations caused by de novo substitutions could be
resolved after approximately one month. Overall, we conclude that subpopulation frequencies within this patient changed
significantly over a time period of 1.5 years, but that this does not imply directional or balancing selection. We show that the
short-term evolution we study here is likely representative for many patients of slow and normal disease progression.
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Introduction

The HIV-1 envelope gene (env) displays the largest genetic

diversity in the HIV-1 genome. The evolutionary rate (nucleotide

substitution rate) of env is affected by the strength of the pressure of

the immune system [1,2] so that both the immune pressure and

the evolutionary rate are higher during the chronic, asymptomatic

phase than during end-stage disease. Similarly, the immune

pressure in long-term non-progressors lasts longer and is often

stronger than in typical patients. Thus, HIV-1 genetic evolution in

env during the chronic disease stage has been characterized by

positive selection for escape mutants due to continuous immune

surveillance [3,4,5,6]. However, other studies have found HIV-1

evolution during chronic infection to be consistent with a neutral

model of evolution, characterized by small effective population

sizes (Ne) strongly influenced by random genetic drift [7,8].

Whether the mutation process will be deterministic or stochastic is

generally believed to be dependent on the population size.

Deterministic models assume an infinite population size, which

given the large amount of HIV-1 particles produced daily in an

infected individual (1010 virions/day) is not unreasonable [9].

However, it has been proposed that the Ne of HIV-1 during

chronic infection is several orders of magnitude lower

[7,10,11,12], which would suggest that stochastic processes could

influence HIV-1 evolution. To date, a few models have tried to

unify the estimated small Ne and the strong positive selection

believed to act on HIV during chronic infection. A meta-

population model, where a large collection of small subpopulations

is subject to frequent migration, extinction, and recolonization,

was shown to agree with the low effective population sizes seen in

chronic HIV infection [12]. Another example is a combination of

both directional and neutral forces acting on the HIV population,

where random genetic drift of neutral mutations predominates

combined with brief episodes of directional selection [7]. A
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combination of the two, where the meta-population model and

selective sweeps both are factors that act together to reduce the

intra-host effective population size of HIV-1 has been proposed to

be the most likely explanation of the reduced Ne [13]. Thus, it is

still unclear how HIV diversity is affected by selection in an

infected individual, and furthermore on which time scale selection

operates.

Here we compare short-term (days, weeks, months) and long-

term (years) HIV-1 evolution in a treatment naı̈ve, asymptomatic

patient with low plasma HIV-1 RNA levels (viral load) and

fluctuating, often close to normal CD4+ T-lymphocyte (CD4)

counts. In patients like this the immune system generally puts a

strong pressure on the virus for a longer time than in typical

patients that, in the absence of antiretroviral drugs, develop AIDS

quicker. We find that multiple distinct subpopulations persist over

years, but that their frequencies fluctuate over time. The

fluctuations during the time period of days to months showed no

significant signature of variable selection across sequence sites, and

the fluctuations were consistent with a neutral model of evolution.

Hence, we find no need for balancing selection to explain the

persistence of the subpopulations over these time intervals.

However, over the period of years, we could detect a signal of

positive selection, especially at potential N-linked glycosylation

sites (PNGS), which may have shaped the subpopulation structure.

Finally, we show that it is important to correctly handle

subpopulation fluctuations when using genetic distances to

estimate the number of de novo mutations.

Results

Sequence data
Seventy-seven individual virus sequences of approximately 3100

nucleotides covering vpu, env and the first half of nef were analyzed.

The sequences were sampled by limiting dilution from plasma

samples obtained at 9 different time points spanning a period of 3

years (Table 1). The limiting dilution sequencing methodology (aka.

SGA and SGS) applied here ensures that PCR and sequencing

artifacts are virtually absent in the sequences [14,15]. The majority

of sequences were sampled during a time period of 32 days, where

the first time point was called day 1. In addition, two samples were

drawn approximately 1.5 years before (day 2664) and 1.5 years

after (day 522) the main sampling period. At each time point 7 to 11

sequences were generated with exception for the earliest time point

from which only 3 sequences could be amplified. As this patient was

a slow progressor with low virus load it was difficult to obtain

additional sequences (see Methods). Only 2 sequences were identical

(at day 18), whereas all other sequences were unique.

In total, 18 unique deleterious mutations were observed, including

9 nucleotide substitutions that caused stop codons and 9 that caused

frame shifts. Because deleterious mutations are unlikely to survive to

the next generation, this suggests a minimum rate of 7.6761025

deleterious substitutions per site per generation, i.e., in the same

order of magnitude as other point mutations and recombination

occur [16,17,18]. In addition to point mutations, sequence 2664.2

had two large deletions, one of 149 nucleotides (nts) in the beginning

of gp120 and another of 435 nts in the end of gp41. Sequence 1.10

had two large deletions of 54 and 60 nts in the middle of gp120, and

522.1 had a large deletion of 48 nts in the middle of gp120. In

addition, several smaller, mostly in-frame indels, were present, which

thus resulted in amino acid insertions or deletions.

Phylogenetic subdivision
Putative recombinants were identified using the PHI-NNet test.

Two sequences (s4.2664.3 and s5.522.10) were classified as

putative recombinants within subpopulations and six sequences

were identified as putative recombinants with ancestors derived

from at least two subpopulations (s2. 2664.2, s4. 2664.1, s4.18.7,

s4.32.9, s4.522.9, s5.1.7) (Figure S1). If these sequences were

removed no recombination signal remained in the dataset

according to the c-AIC criteria in a GARD Single Breakpoint

analysis. To confirm that the identified putative recombinants

were robustly identified, we performed 100 iterations of removal of

8 random sequences. None of these iterations rendered the dataset

free from recombination signal according to the PHI-NNet test.

The general time reversible model with variable rates among

sites and a proportion of invariable sites (GTR+G+I) was the best

substitution model for our data according to a Modeltest analysis.

This model was used to infer a maximum likelihood (ML) tree of

the HIV population (Figure 1). The tree displayed six phylogenetic

clades, designated as subpopulations s1 through s6, which were all

supported by ML bootstrap values 61–100%. Independent of the

inferred tree, and thus less affected by any remaining recombi-

nation signal, Hudson’s population subdivision test supported all

subpopulations except s2 at p[K*
s]#0.0005 (s2 p[K*

s] = 0.0668). A

majority of the subpopulations (4 of 5) persisted over the entire

study period, if we excluded day 2664 that was insufficiently

sampled. Thus, at the last time point (day 522), representatives of

subpopulations s3, s4, s5 and s6 were still present.

Subpopulation selection pressure detection is time scale-
dependent

To test if the different subpopulations were under different

potential selection pressures, we investigated dN/dS ratios on all

sites in the sequences and on all branches in the phylogeny. Four

dN/dS categories (0, 0.42, 1.24, 10000) were found to best explain

the data according to the c-AIC criterion and the GAbranch

model available in Hyphy to test lineage specific selection on

branches (Figure S2). A majority (79%) of the branches in the tree

fell into dN/dS categories 0.42 and 1.24 and of these 72%

suggested positive selection, but there was no clear pattern of

where in the tree they occurred. The deep branches that

connected the subpopulations displayed selection in either

direction, i.e., 0.42#dN/dS#1.24. Branches displaying either no

synonymous or non-synonymous mutations (dN/dS categories 0

and 10000) occurred exclusively within the subpopulations, where

the total number of mutations on most of the branches was very

low.

In agreement with the branch analyses, codon models could not

identify any sites under selection within the subpopulations,

suggesting neutral evolution over the time of this study (days

1…522). Furthermore, there was clear evidence of variable

selection pressure over sites when we analyzed all subpopulations

together in a single phylogenetic tree (p,0.01, likelihood ratio tests

with M0 vs. M3: df = 4, and M1a vs. M2a: df = 2). This indicates

that individual sites may have been under selection when the

subpopulations were established, i.e., over a time much longer

than 522 days as the subpopulations already existed and were

defined by relatively long branches at day 1 (see further below for

an evaluation of how much branches grew over the study period).

Interestingly, potential N-linked glycosylation sites (PNGS) were

significantly overrepresented among positively selected sites in

analyses with the variable selection model M3 (p,0.001, Chi-

square test). Further, while both amino acid substitutions and

PNGS replacements correlated well with positive selection

strength, the response to positive selection was stronger on

branches separating the subpopulations than on branches within

subpopulations (Figure S3).

Neutral Subpopulation Fluctuations in HIV-1
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Overall, these results suggest that natural selection has little or

no impact over short time periods (#1.5 years), but over long

time periods (.3 years) positively selected sites, especially those

that involve PNGS, may contribute to the subpopulation

structure.

Subpopulation frequency fluctuations
Figure 2 shows the count at which the different subpopulations

were observed at each time point. We were interested in

understanding the persistence of subpopulations over time. Could

these experimental data be expected under a neutral process, or

would the data be better explained by selection, and in particular

balancing selection?

We first asked whether the experimental data provided

evidence that the frequencies of the different subpopulations

were changing within the patient. To do so, we used a x2 statistic

to assess whether the frequencies observed at each day J were

consistent with the frequencies observed for the prior days 1…J-

1. To account for the relatively few samples per time point we

accounted for the number of sequences per sample (to limit

stochastic sampling effects) and pooled days together when no

frequency differences were observed (to increase the power of our

analysis). Hence, statistical significance was assessed by simulating

both the multinomial sampling of day J’s observation, and the

inference of the within-patient frequencies for days 1…J-1. The

resulting p-values for constant within-patient subpopulation

frequencies are shown in Figure 2. From this analysis, we

observed no statistically significant changes in within-patient

subpopulation frequencies over the first 32 days, but at day 522

the frequency fluctuations became statistically significant

(p,0.05). As detailed in Supporting Information, repeated

analyses that excluded the putative recombinant sequences

yielded similar results (Table S1), although the fluctuations at

day 522 had a p-value of 0.064.

Subpopulation frequency fluctuations are consistent
with neutral drift

Under a neutral model, the Ne controls the strength of

fluctuations in within-patient subpopulation frequencies. Large

Ne results in small fluctuations, while small Ne results in large

fluctuations. Eventually, if no new subpopulations arise (as was

observed in days 1…522), under a neutral model one subpopu-

lation would eventually take over the entire population, eliminat-

ing all subpopulation diversity. Thus, we now ask whether the

observed diversity at day 522 is consistent with a neutral model,

given realistic values for Ne.

Since no significant frequency changes occurred during days

1…32, we pooled those sequences together (n = 64) to derive more

accurate subpopulation frequencies (Table 2). Given these inferred

frequencies, we compared expected and observed subpopulation

frequencies on day 522. We noted a number of potentially unlikely

events under a neutral model. Some of these events indicated small

frequency fluctuations, and thus large Ne. One was that the

observed frequency of subpopulation s6 on day 522 was 5, exactly

the expected value. Also, we still observed subpopulations s3 and

s4 on day 522, at frequencies similar to that expected from

constant within-patient frequencies. Additionally, we observed 4

subpopulations present on day 522, indicating that not much

diversity had been lost. Thus, we asked which values of Ne are large

enough to be consistent with these observations. On the other

hand, other aspects of the data suggested large frequency

fluctuations. In particular, subpopulation s1 was not observed on

day 522, while our expectation was 2 observations. Hence, we also

asked which values of Ne are small enough to be consistent with

this observation. Finally, subpopulation s5 was observed at much

higher frequency than expected at day 522. For small Ne, we would

have expected subpopulation s5 to go extinct, whereas for very

large Ne it would have been unlikely to rise to high frequency. Thus

we also asked whether any value of Ne makes the observed count of

Table 1. Sequence data.

Day
No.
clones RNA load MPDa Fluctuate Recombine

(copies/ml) hb(wRec) hb(noRec) Ned(wRec) Ned(noRec) hb Gc Ned hb Gc Ned rg

2664 3 n.d.e 0.024 n.d. 358 n.d. n.a.f n.a. n.a. n.a. n.a. n.a. n.a.

1 9 832 0.037 0.036 537 531 0.051 58.2 744 0.036 56.0 526 1.34E-07

2 8 794 0.029 0.029 433 433 0.044 42.1 645 0.034 39.4 500 1.49E-02

3 7 1220 0.033 0.033 487 487 0.038 37.9 559 0.038 44.0 565 2.28E-02

11 8 563 0.024 0.024 358 358 0.025 12 362 0.023 2.8 337 2.40E-07

18 10 518 0.014 0.007 204 97 0.015 224.4 218 0.013 220.3 190 1.03E-02

25 11 450 0.033 0.033 492 492 0.035 21.8 512 0.036 28.0 526 2.18E-02

32 11 600 0.034 0.033 494 482 0.036 32.9 532 0.041 42.8 608 3.86E-02

522 10 n.d. 0.027 0.021 393 304 0.036 21.8 523 0.036 34.5 526 1.01E-02

Mean: 9.3 711 0.028 0.027 417 398 0.035 25.3 512 0.032 28.4 472 1.48E-02

STD 1.5 264.6 0.007 0.010 103 143 0.011 24.6 162 0.009 25.1 139 1.29E-02

aMean Pairwise Distance, as measured by PAUP* using a GTR substitution model.
bGenetic diversity (substitutions/site).
cExponential growth rate.
dEffective population size determined from h = 2Nem with m= 3.461025 substitutions site21 generation21.
eNo data.
fNot analyzed because of the small sample size.
gRecombination rate, C/m, where C is the rate of recombination per inter-site link per generation, and m is the substitution rate per site per generation.
doi:10.1371/journal.pone.0021747.t001

Neutral Subpopulation Fluctuations in HIV-1
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subpopulation s5 plausible. Nearly identical results were observed

when putative recombinants were removed (Table S2). Again,

these calculations accounted for the stochastic effects of the

sampling size at day 522.

Independently, the genetic diversity (h) and Ne were estimated

using three methods (Table 1). The results were similar and

unaffected by the exclusion of putative recombinants. The

estimates based on Fluctuate showed that h ranged from 0.015

to 0.051 substitutions/site during the study period corresponding

to �NNe = 512 with 2s range 6162 (pink region in Figure 3).

Figure 3 plots the likelihood versus Ne of the scenarios

considered above, under a neutral model. While we investigated

a large range of possible Ne’s (range 5–50,000), all the aspects of

the data we have tested are not significantly unlikely under a

neutral scenario within the Ne range consistent with our other

analyses (Table 1). In particular, all the likelihoods for these

individual aspects of the data are larger than 0.05 for Ne<800.

Thus, we cannot reject a neutral model for these data, even though

some uncertainty may remain because of the low likelihood

(p,0.1) of observing $3 taxa of subpopulation s5 at day 522. The

modeling results were robust to whether potential recombinants

were included or excluded (Figure S4).

These results were consistent with classical tests (Tajima’s D,

and Fu and Li’s D* [19,20,21]) that showed no significant

deviation from neutrality when the whole dataset was analyzed.

Subpopulation frequency fluctuations may affect the
observed evolutionary rate

Because the subpopulations were present at different frequen-

cies over time we were interested in the potential impact of such

fluctuations on the measured evolutionary rate. Clearly, the

apparent substitution rate varied greatly over time (Figure S5).

Thus, naively measuring the genetic difference between time

points may mislead the estimation of the de novo substitution rate.

However, the fluctuations may be another mechanism that HIV-1

uses to adapt and evolve its population structure. Hence, to

accurately estimate the substitution rate one must take the

phylogeny into account.

We used a Bayesian coalescent method to infer the de novo

substitution rate within each subpopulation. To account for the

frequency variation of each subpopulation we used the Bayesian

skyline demographic model, which allows Ne to vary over time in a

non-parametric way. The evolutionary rate was inferred as a

hyper-parameter using separate, independent trees to describe

each of the subpopulations. A relaxed clock model was used to

infer a hyper-parameter with individual distributions for each

subpopulation. The mean estimated within-subpopulation substi-

tution rate was 2.3361023 substitutions site21 year21, with a 95%

highest posterior density (HPD) interval of 0.94–3.7461023

substitutions site21 year21. In agreement with our frequency

analysis above (Figure 2), no significant deviation from a constant

Ne could be observed as the Bayesian skyline could contain a

constant Ne within the 95% HPD.

The genetic divergence (nucleotide substitution rate) was further

analyzed in subpopulation s6, which constituted the largest group

of sequences (Figure 4). The mean pairwise distance (MPD)

between clones sampled at the same time, i.e. the population

diversity (0 days), was then compared to the divergence at later

sampling times. Interestingly, we found that the MPD of sequences

separated by about one month’s interval (and longer) differed

significantly from the intra-sample diversity (p,0.01, Wilcoxon

rank sum test), but no significant divergence was seen in shorter

time intervals. Hence, this HIV-1 subpopulation had moved

significantly in sequence space after about a month.

Discussion

HIV-1 evolves by introducing mutations (substitutions, indels,

recombination) through a ‘‘sloppy’’ replication mechanism, mainly

due to the unfaithful replication by the viral reverse transcriptase.

These mutations are often deleterious [16] or otherwise detrimen-

tal to virus fitness [22,23]. However, some mutants have an

advantage as they may allow escape from immune surveillance

[24,25] or more effective infection of certain tissue compartments

or cell types, such as cells in the brain or the genital tract

[26,27,28] or naı̈ve CD4+ T-cells, which express CXCR4 [29,30].

Here we show that in addition to the mutational processes, HIV-1

can alter its population structure by frequency shifts among

subpopulations. Because we analyzed a relatively small number of

sequences per time point, we were careful to include the sampling

into our analysis method. Over short time (days, weeks, months)

Figure 1. Maximum likelihood tree of the phylogenetic
relationships of the viral subpopulations. Sequences from the
different time points (in days from day 1) are indicated with different
symbols and colors as shown. The subpopulations are labeled with
letters s1–s6 and the corresponding bootstrap values are shown as
ratios of 1000 replicates.
doi:10.1371/journal.pone.0021747.g001

Neutral Subpopulation Fluctuations in HIV-1
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these fluctuations were consistent with a constant population size,

and most mutations that occurred at this time scale were neutral or

only weakly selected. On longer time scales we noticed that the

fluctuations became significant movements.

Here, we focused on short-term evolutionary processes (days,

weeks, and months), whereas earlier studies as well as the

generation of, and escape from, neutralizing antibody responses

involve time frames of months to years [31,32,33,34]. Clinically,

our patient was classified as a slow disease progressor. Genetically,

the virus population in our patient was described by co-existing

subpopulations. Thus, it is interesting to compare the HIV

population genetics of our patient to previously published patients

with normal and slow disease progression. In a study by

Shankarappa et al, 5 patients had slow disease progression (p2,

p3, p7, p9, p11) and 5 had normal progression (p1, p5, p6, p8) [2].

These patients were followed over many years, but interestingly

over a sampling period equivalent to ours (522 days, but with

fewer samples), patients in both clinical groups showed subpop-

ulation structure qualitatively similar to our patient (Figure S6).

Thus, the short-term evolution we study here is likely represen-

tative for many patients regardless of disease progression rate.

One might have expected that the persisting subpopulations

found in this patient were controlled by balancing selection

[35,36,37]. Directional selection would have favored the fittest of

the subpopulations and it would have been unexpected to see them

coexist for so long, let alone to have several well separated

subpopulations, which implies that they have existed for longer

than the study period. Hence, some type of frequency-dependent

selection, where the fitness of a variant/subpopulation is

dependent on its relative frequency, would be the alternative

hypothesis to neutral drift. Here we show that although the

immune system partly controls virus replication during the chronic

phase of the disease, particularly well in a slow progressor, and

where one would expect escape mutants to dominate in env, the

genetic evolution is consistent with a neutral process, at least over

the time period studied here. In agreement with this, it was

recently shown that genetic drift was a main contributor to HIV

evolution in culture [38]. Similarly, in several other virus systems

Figure 2. Bar chart showing the observed within-patient frequency fluctuations of the genetic subpopulations during the study
period. Subpopulations as defined in Figure 1 are shown in respective colour and recombinant sequences are marked with diagonal stripes. P-values
for tests of constant within-patient subpopulation frequencies are shown above the histogram for each day. Thus for each day J, subpopulation
frequencies wi of days 1…J-1 are compared to the wi frequencies of day J. See text for details.
doi:10.1371/journal.pone.0021747.g002

Table 2. Subpopulation frequencies: inferred, expected, and
observed.

Subpopulation wi,32±2s
Expected fi,522

(out of 10) Observed fi,522

s1 0.20360.100 2.03 0

s2 0 0 0

s3 0.07860.067 0.78 1

s4 0.17260.094 1.72 1

s5 0.04760.053 0.47 3

s6 0.50060.125 5.00 5

doi:10.1371/journal.pone.0021747.t002

Neutral Subpopulation Fluctuations in HIV-1
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with large population sizes and high mutation rates, where

deterministic processes are expected, genetic drift was shown to

have a larger effect than expected [39,40,41,42]. Furthermore,

stochastic evolution during drug treatment of HIV-1 has

previously been demonstrated [11]. Thus, also in vivo evolution

of HIV-1 during the chronic phase may be largely described by

neutral and stochastic processes. We speculate that this might be

due to that the immune system ‘‘hits’’ all subpopulations with near

equal efficiency.

Our tests for neutrality of the subpopulation frequency

fluctuations are of necessity informal. A more formal procedure

would assess the likelihood of the data under neutral models with

varying Ne and compare with models that additionally include

either balancing or directional selection. There exist methods for

estimating Ne from multi-allele temporal data (e.g. [32]), as well as

methods for inferring directional selection from two-allele

temporal data (e.g. [33]). However, we are not aware of likelihood

methods that include balancing selection and multiple alleles, and

their development is beyond the scope of the present study. Hence,

we have relied on a less formal method that may not have optimal

power, but nevertheless is informative. In addition, our Ne estimate

from sequence data were in the order of previously estimated Ne of

HIV-1 in chronic infection [8,13,43], however, subpopulation

structure or non-neutral evolution may bias these estimates,

therefore we included a large range of plausible Ne in our test of

neutrality (Ne = 5–50,000).

We have sampled free HIV-1 viral particles in plasma but we do

not know where these virions were produced. The degree of

compartmentalization of HIV-1 replication is uncertain; some

researchers have found evidence of compartmentalization whereas

others have not [29,44,45,46,47,48,49]. However, in untreated

patients most virus in plasma is produced by short-lived activated

CD4+ T-lymphocytes [50,51] and there is no or limited

compartmentalization between virus in plasma and lymphocytes

[44,52,53]. Thus, the plasma virus population should be

competing for the same resources, which would justify our analysis

of whether balancing selection exists. However, we cannot exclude

that the frequency fluctuations we see may be due to differential

production from different compartments. The subpopulations

Figure 3. Likelihoods of various aspects of the data under neutral evolution. The pink shaded region denotes the 2s range of Ne

(5126162) inferred using Fluctuate (Table 1) and the dotted line denotes a cut-off at p = 0.05.
doi:10.1371/journal.pone.0021747.g003

Figure 4. Genetic divergence in subpopulation s6. Mean pairwise
distances were calculated between sequences sampled with different
time intervals. At an interval of one month or more, the genetic
distances were significantly greater than the intra-sample diversity (0
days interval) (p,0.01, Wilcoxon rank sum test). Sampling intervals of
1–2 days and 3–4 weeks were estimated together and are named 1 day,
and 1 month, respectively.
doi:10.1371/journal.pone.0021747.g004

Neutral Subpopulation Fluctuations in HIV-1
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were present in actively replicating virus since 1) the subpopula-

tions were detected over time at high frequencies (i.e., detected in

7–11 single molecules per time point), 2) the molecules sequenced

must represent virions which were replication competent at least in

the previous generation, and 3) subpopulation s6 evolved at a

measurable evolutionary rate.

It was interesting to note that PNGS were significantly over-

represented among positively selected sites. Glycosylation and

movement of glycans have been suggested to be an important

immune escape mechanism of HIV-1 [31,32,34,54]. Our data are

compatible with such a scenario, which suggests that immune

escape and positive selection on PNGS may have contributed to

the evolution of the genetic subpopulations in our patient.

Previously, it was demonstrated quantitatively that a wide range

in strength of the autologous neutralizing antibody response

between patients and corresponding differences in the impact on

the viral population [34]. The fact that we observed positive

selection on PNGS, and earlier studies have shown consecutive

replacement HIV-1 env sequences [2,55] and continuous neutral-

ization escape [33,34], do not contradict our observation that

evolution in our patient overall was consistent with a neutral

model of evolution.

The estimation of the evolutionary rate may be misled if

phylogenetic relationships are not accounted for. This may occur

in a naı̈ve analysis where genetic distances between two (or more)

time points are directly compared. Without accounting for the

phylogeny, especially when the population is divided into clear

subpopulations, frequency shifts between existing variants will

masquerade as de novo mutations. We show that in env, which has

the highest evolutionary rate in the HIV-1 genome, the number of

de novo mutations accumulated a significant distance after about

one month within a subpopulation. Hence, this suggests that

sampling more frequently than this may not be useful to estimate

the evolutionary rate in patients during the chronic phase. This is

in good agreement with previous estimates of significant temporal

changes at 22 months based on genomic sequences of similar

length (,1100 nt) in gag-pol [13], which evolves much slower than

env. Note, however, that selection during drug treatment may

potentially act upon existing variants/subpopulations at a much

faster rate [56,57], but, as we show here, during chronic,

asymptomatic, untreated viral infection evolution proceeds mostly

by neutral drift over shorter time frames.

In conclusion, we have performed high-frequency sampling of

HIV-1 evolution in a chronically infected, untreated patient with

slowly progressing disease. We shown that multiple well-separated

subpopulations may persist for years, and over weeks and possibly

months their frequencies remained constant. Over the time period

of years, however, their fluctuations became significant, but were

still consistent with a neutral model of evolution. However,

sequence-based methods showed that individual sites had

experienced positive selection, possibly as the subpopulations were

being formed over several years. While the subpopulation

frequencies fluctuated consistent with neutrality, the divergence

within a subpopulation showed a temporal trend that was resolved

at about one month’s time.

Materials and Methods

Patient and samples
The patient was a treatment naive, asymptomatic man that had

been HIV-1 infected for approximately 7 years at the start of the

study (day 1). The plasma viral load had been stable and relatively

low for several years and ranged from 450 to 1220 copies per ml

during the main study period. The CD4 count was around 600 at

the time point for the first sample, but with previous CD4

fluctuations including values below 500. Thus, the patient did not

fulfill the definition of a long-term non-progressor (CD4 counts

.500 for more than ten years without antiretroviral), and instead

we classify the patient as a slow progressor [58]. In support of this,

the patient was put on treatment after more than 15 years of

infection.

Blood samples were collected each morning for 12 consecutive

days (day 1 through day 12) and then once every week for 3 weeks

(day 18, 25 and 32). One later sample, that was collected 1.5 years

after the first sample (day 522) was also analyzed as well as an

earlier sample that was collected 1.5 years before the start of the

study (day 2664). Plasma was prepared by centrifugation at

2000 rpm for 10 min at room temperature and stored at 270uC
until analysis. Viral RNA was extracted from plasma using the

Nuclisense RNA extraction kit (NASBA Diagnostics, Organon

Teknika, Boxtel, The Netherlands) according to the manufactur-

er’s instructions, and cDNA synthesis was performed using the

First-Strand cDNA synthesis kit (Amersham Pharmacia Biotech,

Uppsala, Sweden).

Ethics statement
The patient gave written consent and the study was approved

by the regional ethics committee (Karolinska Sjukhuset, Lokal

forskningsetikkommitte Nord) in Stockholm (Dnr: 98–336).

Amplification, cloning and sequencing
Single viral molecules were obtained by limiting dilution of the

cDNA [14]. The method was selected to minimize the influence of

PCR errors in the sequences and to allow sequencing of the entire

env gene. According to the Poisson distribution, the likelihood that

a positive PCR reaction originates from a single molecule is 0.95 if

the fraction of positive reactions is 1:3. After a dilution series, we

determined the template load for each PCR and diluted our

template accordingly. Hence, positive PCR samples from dilutions

containing less than 1:3 of positive reactions were sequenced and

analyzed. The single molecule status was confirmed by screening

for mixed nucleotide positions in the final sequence chromato-

grams and sequences with mixed positions were excluded. Hence,

this procedure will identify PCR errors after the cDNA synthesis as

they would be seen in the chromatograms at frequencies #25%.

In addition, bidirectional sequencing was performed. In one

sequence only one mixed position (at 50% in overlapping

sequence fragments) was detected (A/G) and in this case both

possible sequences were included. A 3.1-kb region covering vpu,

env, and one-half of nef was amplified and sequenced as previously

described [59]. A nested amplification was used with outer primers

JL86 (59-CCGTCTAGATGCTGTTTATTCATTTCAGAATT-

GG-39) and JL89 (59-TCCAGTCCCCCCTTTTCTTTTAA-

AAA-39), and inner primers ED3 (59-TTAGGCATCTCCTA-

TGGCAGGAAGAAGCGG-39) and JL88 (59-TAAGTCATTG-

GTCTTAAAGGTACCTG-39). The Expand Long Template kit

(Boehringer Mannheim, Indianapolis, IN) was used according to

the manufacturer’s recommendations and a hot start was achieved

by separating the primers and the template from the enzymes (Tgo

DNA polymerase and Taq DNA polymerase) with a wax layer

(DynaWax; Finnzymes, Espoo, Finland). The PCR program was

94uC for 10 sec, 55uC for 30 sec, and 68uC for 4 min for a total of

30 cycles. Concentrations of 0.4 mM primer and 0.2 mM total

dNTP in a final volume of 50 ml were used, and 2 ml of first-round

product was transferred to the second-round reaction. Positive

reactions were purified using the GFX purification kit (Amersham

Biosciences Corp, Piscataway, NJ) and directly sequenced with a

walking primer approach using standard dideoxy-terminator
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fluorescent automated sequencing methodology (Applied Biosys-

tems, Foster City, CA) on ABI 310 or 3100 sequencing machines.

Sequencing primers were designed so that each nucleotide of the

PCR fragment was detected by at least two separate primers.

Hence, all nucleotide calls were made based on at least two

sequencing reactions, ensuring high base-call accuracy. The

sequences were evaluated and assembled into contigs using

Sequencher software (Genecodes Inc, Ann Arbor, USA). The

sequences are deposited in Genbank under the accession numbers:

JN251812–JN251888.

Sequence analyses
Sequences were manually aligned to HIV-1 reference sequences

using the Se-Al software [60]. The program Modeltest v 3.7 [61]

was used to search for the substitution model that best described

the evolution of the dataset. ML trees were inferred using PhyML

3.0 [62] using 5 random starting trees with SPR and NNI tree

search algorithms. Substitution model parameters were estimated

from the data. Topological uncertainty was estimated using

maximum likelihood evaluated non-parametric bootstrap analysis

with 1000 replicates. Whether the sequence data generally

supported a neutral model of evolution was tested using Tajima’s

D-test, Fu and Li’s D*-test and Fay and Wu’s H-test [19,20,21].

Coalescent estimation of Ne was made with the coalescent-

likelihood programs Recombine and Fluctuate implemented in the

Lamarc 2.1.3 package [63] as well as by calculating the mean-

pairwise distance (MPD) using the program PAUP* [64].

To exclude possible laboratory contamination and sample mix-

up, a phylogenetic tree was constructed where other subtype B env

sequences from the HIV sequence database [65] were included

together with the current dataset. This analysis showed that all our

sequences formed a monophyletic cluster (not shown).

Recombination analysis
In order to assess the extent of recombination in our dataset,

and possibly identify the recombinants, we applied a procedure

that has been shown to be able to identify intra-host

recombination [66]. Conflicting phylogenetic signals in the

dataset are visualized using the Neighbor Net (NNet) algorithm

[67] implemented in SplitsTree version 4.10 [68] and the

presence for recombination signal is then specifically tested with

the pairwise homoplasy index (PHI) statistic [69]. The PHI

statistic measures the similarity between closely linked sites and

the significance of the observed test statistic is obtained using a

permutation test. If there is no recombination in the data the

genealogical correlation of adjacent sites is invariant to

permutation [70]. But in the presence of finite recombination,

the order of the sites is important, and distant sites will tend to

have less genealogical correlation than adjacent sites. [69,70]

Subpopulations were screened one at a time by the PHI-NNet

test. Intra-subpopulation recombinants were removed before

screening for putative inter-subpopulation recombinants. As the

identification process of putative recombinants may be subjective

we wanted to control for human bias in selecting putative

recombinants. We therefore randomly removed an equal

number of sequences as were determined recombinant and

calculated the PHI p-value. This randomized reduction was

performed a hundred times.

To verify that the removal of the putative recombinants as

determined by the PHI-NNET analysis rendered the dataset free

from recombination signal we tested the two alternative datasets

with the single breakpoint analysis available at www.datamonkey.

org/GARD/ [71].

Lineage- and site-specific selection analysis
Recombinant sequences, as determined by the PHI-NNet test,

were removed and the alignment stripped so that only single-frame

coding regions were present, i.e., only env without vpu/rev. A few

spurious stop-codons were conservatively changed to the weighted

nucleotide in the corresponding column of the alignment. This will

reduce diversity and will not lead to false positive selection

detection. We tested whether the identified subpopulations had

evolved under different selection pressures by using GAbranch

[72] available at the www.datamonkey.org website [73]. GAb-

ranch automatically partitions all branches in the tree into several

selective regimes and performs multi-model inference enabling us

to infer dN/dS rates for each branch in the tree without

subjectively choosing which branches to test for differential

selection. In addition, we tested the subpopulations for site-specific

selection or variation using Nielsen & Yang’s hierarchical model-

pairs (M0, M1a, M2a, M3,) in HyPhy [6,74]. Individual amino

acid changes were identified over the ML tree within or between

subpopulations using MacClade [75].

HIV-1 population subdivision
Putative subpopulations were identified by high bootstrap values

as above. To test whether these subpopulations were statistically

significant, we conducted a test for population subdivision

originally developed by Hudson et al. and further developed to

test HIV-1 intra-patient evolution by Achaz et al. [13,70]. The

method calculates matrices of pairwise sequence differences for the

putative subpopulations as well as for the whole dataset. To assess

the significance of the structure the sequences are randomly

relabeled into new subsets of populations (keeping n1 and n2

constant), which generates a p-value for the probability that the

structure observed was due simply to chance. The test does not

rely upon a common genealogy for all sites, which makes it robust

to the presence of recombination [13].

Significance of subpopulation frequency fluctuations
Our significance test includes stochastic effects due to limited

sample sizes. To determine whether subpopulation frequencies

were significantly fluctuating within the patient, we asked whether

the sample frequencies observed on each day J were consistent

with the within-patient frequencies inferred from days 1…J-1. On

each day J we have NJ total observed sequences, within which

subpopulation i has frequency count fiJ. If we assume the within-

patient frequencies wi are constant, then given the observations

from days 1…J-1 the maximum-likelihood estimate ŵwiJ of the

within-patient frequency of subpopulation i is simply the fraction

of all previously observed sequences that are from subpopulation i.

To assess whether the observed ŵwiJ frequencies fiJ on a given day J

are consistent with the inferred patient frequencies, we use

Pearson’s x2 statistic:

x2~
X

i

fiJ{ŵwiJ NJ

� �2

ŵwiJNJ

ð1Þ

The x2 statistic sums over all subpopulations i the deviation

between the observed counts fiJ and the expected counts ŵwiJNJ .

In assessing the significance of the observed x2 values, we

account for our uncertainty in estimating the within-patient

frequencies from the day 1…J-1 data using simulations of the

estimation process. To do so, we begin with our maximum-

likelihood estimate ŵwiJ of the within-patient frequencies from the

observed data. We then generate simulated data sets using
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constant within-patient frequencies of ŵwiJ , matching the number of

samples NJ from each day. For each of these simulations, we

calculate x2 for day J using population frequencies estimated from

simulated days 1…J-1. One subtlety is that x2 will be divergence if

a subpopulation is first observed on day J. To avoid this, when

calculating x2 for both the real and simulated data, we introduce

one addition count (a pseudocount) for each subpopulation on the

first day. Our p-values are then the proportion of simulated data

sets that yield a larger x2 than the real data.

Simulation and likelihoods of neutral subpopulation
fluctuations

Our neutral simulations begin at day 1 with a population of Ne

individuals, divided amongst the 5 subpopulations based on their

inferred within-population frequencies ŵwi32 from days 1…32. In

each generation a new population of Ne individuals is created by

sampling with replacement from the prior generation, i.e., a

Wright-Fisher model of reproduction. The generation time for

HIV-1 is assumed to be 2 days [9], so that 260 generations

separate our samples at day 1 and day 522. For each simulation,

based on the final subpopulation frequencies after 260 generations,

we calculate the likelihood of observing particular aspects of the

real day 522 data. The likelihood of sampling a given number of

sequences from population i can be calculated directly from the

multinomial probabilities. The likelihood of observing n subpop-

ulations out of T possible is calculated by summing the likelihood

of obtaining 0 observations for T-n subpopulations, carefully

accounting for the number of ways to do this. Our overall

likelihoods represent the average over 104 population simulations.

Also, our results are unchanged if we incorporate our uncertainty

in estimating ŵwi32 by initializing each simulation with different

within-patient frequencies consistent with our observations from

days 1…32.

Evolutionary Rate Estimations
The programs TreeRate [76,77] and BEAST v1.5.1 [78] were

used to infer evolutionary rates. TreeRate optimizes the root and

the evolutionary rate for a given tree by minimizing tip-height

variances at two specified sampling times. The given tree was

inferred by PhyML 3.0 as described above, thereby not

preconditioned on a molecular clock. In addition we used

Bayesian analysis (BEAST) assuming a relaxed molecular clock

(uncorrelated lognormal) and a non-parametric population growth

model (Bayesian skyline).

Supporting Information

Figure S1 Neighbor-Net diagrams showing the evolu-
tionary relationships in the viral population including
incompatible signals. Clones from the different time points are

indicated with different symbols and colors as shown. The

subpopulations are labeled with letters s1–s6 A. All 77 taxa with

8 putative recombinants as determined by the PHI test and

indicated with a star. B. The resulting network when these 8

putative recombinants were removed.

(EPS)

Figure S2 Cladogram of the non-recombinant sequenc-
es where the dN/dS values inferred through GAbranch
are shown. Taxa labels are colored according to genetic

subpopulation.

(EPS)

Figure S3 Correlation of the normalized frequency of
amino acid (aa) substitutions (A) and normalized

potential N-linked glycosylation site (PNGS) replace-
ments (B) to the probability of strong positive selection
pressure. The frequencies of aa and PNGS replacements were

normalized by the number of tree branches between subpopula-

tions (N = 8) or within subpopulations (N = 130). The selection

pressures were partitioned into 3 rate classes (dN/dS = 3.92, dN/

dS = 0.55, dN/dS = 0.13), optimized using the Nielsen-Yang

model M3 in HyPhy [6,74]. The probability of each site of

belonging to the dN/dS = 3.92 class was used to measure the

strong positive selection pressure. The correlations to strong

positive selection were R = 0.78 (between subpopulation aa

substitutions), R = 0.69 (within subpopulation aa substitutions),

R = 0.40 (between subpopulation PNGS replacements), and

R = 0.38 (within subpopulation PNGS replacements). The re-

sponse to strong positive selection, as measured by OLS regression

slopes, was 23 times stronger to between than within subpopula-

tion aa substitutions and 25 times stronger to between than within

subpopulation PNGS replacements (p,,0.001, F-statistic, in both

cases).

(PDF)

Figure S4 Likelihood under a neutral model of aspects
of data with putative recombinants excluded.
(EPS)

Figure S5 The evolutionary rates given in percent
substitutions per site and year, measured between all
time points with TreeRate. Each arrow begins at the first

time-point, and the end of each shaded area represents the second

time point. The impact of inclusion or exclusion of putative

recombinant is shown; the upper part of each arrow represents

exclusion of recombinants (Figure S1), and lower part of arrow

represents the results when recombinants were included.

(EPS)

Figure S6 Genetic diversity and divergence over time in
our patient and previously published patient data. Our

patient (Study patient) was sampled over approximately 3 years,

with most samples days, weeks and months apart up to 522 days

(,1.5 years). Comparing our results to an equivalent sampling

period of patients in a study by Shankarappa et al [2], shows that

regardless of disease progression rate similar subpopulation

structure as in the study patient occurs in at least 5/9 Shankarappa

patients (3, 5, 7, 8, 9). Shankarappa patients 2, 3, 7, 9, 11 had slow

disease progression, as our patient, and the others normal disease

progression. All trees are on the same scale (see scale bar) and the

sampling time intervals are also on the same scale, 120 evenly

divided colors over 12 years (12 colors shown in legend).

(JPG)

Table S1 Subpopulation frequency fluctuations. Exclud-

ing recombinant sequences from our analysis, we obtain the results

shown in Table S1 for the significance of within-patient frequency

fluctuations.

(DOCX)

Table S2 Subpopulation frequency fluctuations are
consistent with neutral drift. Table S2 shows, excluding

recombinants, the subpopulation frequencies inferred from our

data, along with the expected and observed counts in day 522.

Again, we observe several aspects of the data that are informative

about potential deviations from neutrality. We test for the

likelihood of 1) s1 not being observed, 2) s3 being observed, 3)

s4 not being observed, 4) s5 being observed at frequency 2 or

greater, 5) s6 being observed at frequency between 3 and 5

(indicating a fluctuation of less than 1 from expected), and 6)

observing 3 or more populations. Figure S1 shows the results that
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none of these aspects of the data are significantly unlikely (p,0.05)

under a neutral model.

(DOCX)
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