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Abstract

Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective
behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic
question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially
distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors
that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain
white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair
correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated
in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used
local spatial statistics (e.g., cell areas and number of neighboring cells) cannot clearly distinguish spatial correlations in
distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the
aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and
exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized
in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial
correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of
malignant cells but rather a complex emergent integrated system.
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Introduction

Cancer is a highly complex and heterogeneous set of diseases.

Heterogeneity occurs on a variety of length scales, including the

genomic, phenotypic, cellular, tissue and metastatic intra-organ

levels [1–5]. The rapid growth and resilience of tumors as well as

the reproducible diagnostic classification of tumors based upon

morphologic patterns make it difficult to believe that they behave

as random, disorganized and diffuse cell masses and suggests

instead that they are self-organizing, opportunistic systems [2,3].

It is reasonable to expect that this self-organization would be

reflected in the manner in which malignant cells are spatially

distributed in their heterogeneous environment. Indeed, Thom-

linson and Gray showed that in well-vascularized tumor environ-

ment, the malignant cells are often organized around blood vessels

into ‘‘solid rods’’ (i.e., Krogh cylinders) with predictable cellular

changes in the perivascular space [6]. In fact, one does not need to

know the microvascular anatomy a priori; such information is

reflected in the spatial arrangement of the cells. In addition, it is

difficult to obtain information of how cells are spatially correlated

on large length scales beyond the characteristic scale associated

with a single Krogh cylinder. A crucial question then is how to

systematically probe and extract the structural information in

model-independent manner. It has been suggested recently [7]

that the powerful theoretical machinery of heterogenous materials,

developed in the physical and mathematical sciences [8], be

brought to bear to characterize the structure and bulk properties of

the heterogeneous tumor environment. In this paper, we employ

techniques from the theory of heterogeneous media to characterize

spatially optical images of the distribution of the nuclei of both

benign brain white matter cells and brain glioma cells.

A spatial distribution of cell nuclei can be modeled as a

distribution of points by identifying the geometrical centroids of

the nuclei. Point distributions are one of the most popular and

widely used models for many-particle systems in various branches

of modern science, including condensed matter physics and

materials science [8–10], statistical mechanics [11], discrete

geometry [12], cosmology [13] and biology [8,14]. It is of great

interest to investigate how the points are spatially correlated with

one another on small, intermediate and large length scales, since

such information can reveal underlying mechanisms of the

formation of a point distribition. The degree of spatial correlations
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among the points can vary from perfect long-range order (which

occurs in a crystal structure [9]) to the absence of any spatial

correlations. In particular, a completely uncorrelated point distri-

bution, i.e., a Poisson distribution [8], can be obtained by ran-

domly placing a large number of points in some domain (see

Supporting Information S1 and supporting figure Fig. S1 with the

associated legend). Thus, deviations of spatial statistics of a point

distribution from those of the Poisson distribution provide a

measure of the degree of spatial correlations. We employ Poisson

point distributions as a reference system to characterize spatial

correlations in the distributions of cell nuclei.

Local spatial statistics, such as the number of neighboring cells

and cell areas are commonly used to characterize cell aggregates

[8,15,16]. A systematic way of obtaining such statistics is to

construct the Voronoi tessellation associated with the distribution

of the cells. (A Voronoi tessellation is a subdivision of the plane

into polygons, see the Results section for a precise definition.)

Although the statistics of Voronoi polygon areas and number of

neighbors can provide useful structural information for certain

systems, such as epithelia [15], we find that they are not able to

capture well the salient features of the spatial correlations in

distributions of the nuclei of benign brain white matter cells and

brain glioma cells nor clearly distinguish between the two. This

motivates us to look for more sensitive microstructural descriptors

to characterize spatial distributions of cell nuclei in normal and

tumorous environments.

Specifically, we introduce a class of nontrivial statistical micro-

structural descriptors that arise in the theory of heterogeneous

media [8] and employ them to characterize the spatial distri-

butions of cell nuclei. These descriptors, which include the pair

correlation function, structure factor and various nearest neighbor

functions (defined in Materials and Methods), quantify how pairs

of cell nuclei are correlated and distributed in space, e.g., how the

position of a cell is influenced by another cell at a prescribed

distance away. To the best of our knowledge, this is the first time

that such spatial statistics have been applied in the analysis of

histological images. By comparing the statistics of the nuclei

distributions to the corresponding Poisson-distribution reference

systems and by directly comparing appropriately scaled distribu-

tions of normal and abnormal cell nuclei (i.e., cells in a viable brain

glioma environment), we show that their salient structural features

are captured very well by the aforementioned correlation fun-

ctions. In particular, we find that the abnormal cells pack more

densely than normal cells and possess stronger short-range

correlations. Moreover, we demonstrate that the distributions of

abnormal cell nuclei possess nontrivial long-range spatial correla-

tions, which appears to be a new and biologically significant

observation. Our discovery of nontrivial spatial correlations

between the abnormal cells on both small and large length scales

strongly support the view that cancer is not a random collection of

malignant cells but a complex emergent integrated system.

Results

Histological Images
Pixelized RGB color images were generated from sections of

viable regions of glioblastomas in 13 individuals and from sections

of brain white matter without significant pathologic abnormality

in 20 individuals. From each glioblastoma, three images were

obtained within areas tumor scored as w80% viable tumor

cellularity as determined by our study pathologist (HB). From each

individual without significant pathologic abnormality, three

images were obtained at three different locations randomly

selected. The size of each image is 1310 microns by 983 microns.

Each image of benign brain white matter contains approximately

1700 cell nuclei, while each image of brain glioma contains appro-

ximately 5000 cell nuclei. Thus, cells in the tumor environment

(i.e., abnormal cells) ‘‘pack’’ much more densely than normal cells

with a number density rg (i.e., number of cell nuclei per unit area)

approximately three times larger than that of normal cells rn, i.e.,

rn~1:56|10{3 micron{2 and rg~4:69|10{3 micron{2. The

rg value is consistent with recently reported values for grade 3 and

4 glioma [17]. Note that ‘c~1=
ffiffiffi
r
p

~
ffiffiffiffiffiffiffiffiffiffiffiffi
L2=N

p
gives a character-

istic length scale associated with a single cell, which is referred to as

characteristic neighbor distance. Here we have ‘n
c~25:3 microns for

normal cells and ‘g
c~14:6 microns for cells in tumor environment.

Mapping Distributions of Cell Nuclei to Point
Distributions

The original color images are converted to gray scale images

using MATLAB. Then a threshold value of grayness is chosen to

make binary images such that the nuclei are shown as black

clusters (see Fig. 1). The centers of the nuclei are then obtained by

averaging the positions of pixels of their associated clusters. In this

way, we map the distributions of cell nuclei into point distri-

butions. Note that we have excluded histologically apparent non-

tumoral structural heterogeneities such as blood vessels when

thresholding the gray scale images. This allows us to focus on the

spatial correlations of cell nuclei alone, which in fact contain

information about such heterogeneities. For example, close to a

blood vessel, the local number of density of cell nuclei is slightly

higher. In addition, periodic boundary conditions are used for

each point distribution (e.g., it is surrounded by periodic images of

itself ad infinitum) in order to obtain the spatial statistics (i.e., the

Voronoi statistics and correlation functions). The statistics for

normal and abnormal cell nuclei are averaged over 60 and 39

individual images, respectively, to reduce noise and enhance

common characteristics. Because the distributions of normal and

abnormal cell nuclei do not possess the same number density, their

structural statistics can not be directly compared to each other.

Therefore, Poisson-point distributions at appropriate number

densities are used as reference systems for comparison. Further-

more, the distributions are scaled to the same number density

when the statistics are directly compared.

Voronoi Statistics
We first obtain the Voronoi tessellation associated with each

point distribution (distribution of cell nuclei) by constructing

Voronoi polygons. For a general point distribution in two

dimensions, the Voronoi tessellation is a subdivision of the plane

into polygons, each of which is associated with a point in the point

distribution. Namely, each polygon defines the region of space that

is closest to a point than to any other points [8]. The collection of

all Voronoi polygons fills the plane without any gaps (see

Supporting Information S1 and supporting figure Fig. S2 with

the associated legend). Thus, the area of a cell’s Voronoi polygon is

representative of the space that the cell occupies and cells are

considered to be neighbors of one another if their Voronoi

polygons share a common edge. The area and the number of

nearest neighbors of each Voronoi polygon are then obtained. For

each nuclei distribution, such statistics are binned to generate

histograms. The histograms are then averaged over different

nuclei distributions to produce characteristic Voronoi statistics.

Poisson point distributions at corresponding number densities are

generated whose Voronoi statistics are also collected and com-

pared to those of distributions of normal and abnormal cell nuclei

(see Fig. 2). It can be seen that both normal and abnormal nuclei

distributions have a smaller number of Voronoi polygons with
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smaller areas than that of the corresponding Poisson point distri-

butions, in which two points can get arbitrarily close to each other.

This implies that cell nuclei possess an effective repulsion that

prevents them getting too close to each other. Except for this

distinction, the Voronoi statistics of the nuclei distributions do not

significantly deviate from those of corresponding Poisson point

distributions. However, as we show in the following sections, the

distributions of cell nuclei (especially the nuclei of brain glioma

cells) indeed possess nontrivial spatial correlations, which makes

them distinctly different from Poisson systems. Therefore, the

Voronoi statistics are not able to capture well the salient features of

spatial correlations in distributions of the nuclei of either benign

brain white matter cells or brain glioma cells.

Pair Correlation Function and Structure Factor
It is not completely surprising that the Voronoi statistics are not

sensitive descriptors, since they are local measures associated with

single cells. On the other hand, the pair correlation function g2(r)
and structure factor S(k), respectively, reflect short-range and

long-range spatial correlations in the system at the two-point level

(see Materials and Methods for details). In other words, g2(r) and

S(k) quantify how pairs of cell nuclei are correlated in space and

reciprocal space, respectively. Given a point distribution, g2(r) can

be easily obtained by computing and binning the separation

distances between all point pairs [8], and its value at r is related to

the probability of finding a point at a distance between r and rzdr

to a reference point in the system. S(k) is also computed directly

from the distribution of cell nuclei using Eq. (3). For each nuclei

distribution, g2(r) and S(k) are computed, and the final g2(r)’s
and S(k)’s reported are obtained by averaging over all of the

nuclei distributions. We note that salient features of g2(r) and S(k)
discussed below are observed in each individual distribution,

implying that only noisy fluctuations are averaged out.

Figures 3(a) and (b) show g2(r) associated with the distributions

of the normal and abnormal cell nuclei as well as g2(r) of Poisson

distribution of points, which is trivially equal to unity for all values

of r, meaning that it is equally likely to find point pairs at all

separation distances in such a completely uncorrelated system. For

both nuclei distributions, g2(r)~0 for a range of small-r values and

rapidly increases to unity, indicating there is an effective repulsion

between the nuclei, i.e., no two nuclei can get arbitrarily close to

one another in space. Figure 3(c) compares g2 associated with

normal and abnormal cell nuclei scaled to the same number

density. The slower increase of g2 associated with abnormal cell

nuclei implies that the effective repulsion between them is stronger

than that between the normal cell nuclei, which may arise due to

differences in shape and size of normal and abnormal cells.

Figure 4 shows S(k) associated with the distributions of normal

and abnormal cell nuclei as well as S(k) of Poisson distribution of

points, which is equal to unity for all values of wavenumber

k~2pn=L (n~1,2,3, . . . and L is the linear size the system). Here

we use a scaled wavevnumber K~k‘c=(2p)~n‘c=L, where ‘c is

the characteristic neighbor distance. The real-space length scale L
associated with the scaled wavenumber K can be easily obtained

via L~‘c=K . It can be seen that the structure factor associated

with the normal cell nuclei does not significantly deviates from

unity, implying the lack of long-range spatial correlations be-

tween the nuclei. On the other hand, S(K) for the abnormal cell

nuclei dramatically drops below unity at relatively small wave-

numbers and deviates from S(k) for normal cell nuclei by

approximately 40%. This appreciable dip in the wavenumber

range K[(0:05,0:25) for the abnormal cell nuclei clearly indicates

that these systems possess spatial correlations on intermediate and

large length scales (i.e., 100*500 microns), since density

fluctuations at these length scales are suppressed [18]. This means

that the cell nuclei are organized in a collective way rather th-

an randomly at these large distances. We emphasize that this

Figure 1. Distributions of nuclei of benign brain white matter cells (upper panels) and nuclei of brain glioma cells (lower panels). (a)
A portion of an original sample image. The size of this region is 425 microns by 425 microns. (b) The corresponding binary image. (c) The
corresponding point distribution. (d) A portion of an original sample image. The size of this region is 425 microns by 425 microns. (e) The
corresponding binary image. (f) The corresponding point distribution.
doi:10.1371/journal.pone.0027323.g001
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Figure 2. Voronoi statistics (i.e., distributions of Voronoi polygon areas and number of Voronoi neighbors) associated with the
distributions cell unclei. Upper panels: A portion of the Voronoi tessellation for normal cell nuclei (a) and abnormal cell nuclei (b). The size of
regions shown here is 425 microns by 425 microns. Middle panels: The histogram of the Voronoi polygon areas (c) and the histogram of number of
the Voronoi neighbors (d) for normal cell nuclei. Lower panels: The histogram of the Voronoi polygon areas (e) and the histogram of number of the
Voronoi neighbors (f) for abnormal cell nuclei.
doi:10.1371/journal.pone.0027323.g002
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behavior is observed in S(K) for each individual distribution of

abnormal cell nuclei and persists in the averaged structure factor.

Such long-range correlations can hardly arise from local packing

effects determined by cell shapes and sizes and suggests that there

might exist long-range communications between abnormal cells in

certain form that would lead to cooperative and collective cell

behavior responsible for invasion and metastasis of malignant

tumors. The length scale associated with the cell-cell communi-

cation could suggest that the correlations are at least in part a

function of cellular or non-cellular extra-glial factor(s) (i.e., the

tumoral microenvironments). Alternatively, this may be a function

of the ultrastructure of networks of glial-cell processes. The

significance of this observation will be further addressed in the

Discussion.

Nearest-Neighbor Functions
A direct comparison of g2(r) associated with the properly scaled

nuclei distributions shows that the effective repulsions between the

abnormal cell nuclei are stronger than that between normal cell

nuclei. To better understand this effective interaction, we investi-

gate the spatial correlations among neighboring nuclei by computing

the nearest-neighbor functions, i.e., the ‘‘particle’’ and ‘‘void’’

nearest-neighbor exclusion probability functions EP(r), EV (r),
respectively [19,20], which provide information on the distances

Figure 3. Pair correlation functions associated with the distributions of benign brain white matter and brain glioma cell nuclei. (a) g2

associated with benign brain white matter cell nuclei compared with g2 of Poisson point distributions at the same number density. (b) g2 associated
with brain glioma cell nuclei compared with g2 of Poisson point distributions at the same number density. (c) Direct comparison of g2 for properly
scaled distributions of normal and abnormal cell nuclei.
doi:10.1371/journal.pone.0027323.g003

Figure 4. Structure factor S(K) associated with the distributions of benign brain white matter and brain glioma cell nuclei. (a) S(K)
associated with benign brain white matter cell nuclei compared with S(K) of Poisson point distributions at the same number density. (b) S(K)
associated with brain glioma cell nuclei compared with S(K) of Poisson point distributions at the same number density. We have used a scaled
wavevnumber here K~k‘c=(2p), where k~2pn=L (n~1,2,3, . . ., L is the linear size the system) is the conventional wavenumber. The characteristic
neighbor distances for normal and abnormal cell nuclei are respectively, ‘n

c~25:3 microns and ‘g
c~14:6 microns. The real-space length scale L

associated with the scaled wavenumber K can be obtained via L~‘c=K .
doi:10.1371/journal.pone.0027323.g004
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between nearest neighboring nuclei and the size of spherical voids

in the nuclei distributions (see Materials and Methods).

Figures 5(a) and (b) show EP(r) associated with the distributions

of the normal and abnormal cell nuclei as well as EP(r) of Poisson

point distributions at the same number densities r, which is

E0
P(r)~exp({rpr2) [8]. It can be seen that EP for normal cell

nuclei only deviates from (i.e., greater than) that for the corre-

sponding Poisson distribution of points at small r values, indicating

an effective short-range repulsion between the neighbor nuclei. On

the other hand, EP for abnormal cell nuclei significantly deviates

from E0
P of the corresponding Poisson point distributions for a

much wider range of r values. In Figure 5(c), we directly compare

EP for the properly scaled nuclei distributions. The larger ex-

clusion probabilities associated with the abnormal cell nuclei

clearly indicates a stronger repulsion between them, consistent

with the conclusions drawn from g2(r) analysis.

The void exclusion probability EV (r) associated with the

distributions of the normal and abnormal cell nuclei are shown

in Figures 6(a) and (b), together with EV (r) of Poisson po-

int distributions at the same number densities r, which is

E0
V (r)~exp({rpr2) [8]. (Note that for Poisson point distribu-

tions, E0
V and E0

P are identical.) We see that the void exclusion

probabilities for abnormal cell nuclei are smaller than that for

Poisson systems, meaning the voids in such nuclei distributions are

smaller due to the stronger nuclei repulsion. (If nuclei could get

closer, the voids left behind would be larger in size.) However, EV

for normal cell nuclei distributions is only slightly below E0
V for the

corresponding Poisson distribution, which again implies the

weaker spatial correlations in these systems. Note that its long

(slower decaying) tail indicates the existence of appreciably large

voids in the system as the ones found in Poisson point distributions.

Same conclusions can be drawn from a direct comparison of EV

for the properly scaled nuclei distributions shown in Figure 6(c).

Thus, the nearest-neighbor statistics clearly reflect the fact that

the effective repulsion between the abnormal cell nuclei is much

stronger than that between the normal cell nuclei, which leads to

Figure 5. Particle exclusion probabilities EP associated with the distributions of benign brain white matter and brain glioma cell
nuclei. (a) EP associated with benign brain white matter cell nuclei compared with EP of Poisson point distributions at the same number density. (b)
EP associated with brain glioma cell nuclei compared with EP of Poisson point distributions at the same number density. (c) Direct comparison of EP

for properly scaled distributions of normal and abnormal cell nuclei.
doi:10.1371/journal.pone.0027323.g005

Figure 6. Void exclusion probabilities EV associated with the distributions of benign brain white matter and brain glioma cell
nuclei. (a) EV associated with benign brain white matter cell nuclei compared with EV of Poisson point distributions at the same number density. (b)
EV associated with brain glioma cell nuclei compared with EV of Poisson point distributions at the same number density. (c) Direct comparison of
EV for properly scaled distributions of normal and abnormal cell nuclei.
doi:10.1371/journal.pone.0027323.g006
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effectively larger distances between nearest neighboring cell nuclei

and smaller voids in the distribution. This could cause the reduced

extra-cellular diffusion common in many cancers [17].

Discussion

In this paper, we have characterized the spatial distributions of

the nuclei of both benign brain white matter cells and infiltrating

glioma cells via a variety of nontrivial statistical microstructural

descriptors, including the pair correlation function, structure factor

and various nearest neighbor functions that have been profitably

utilized in statistical mechanics and material science. To the best of

our knowledge, this is the first time that such spatial statistics has

been applied in the analysis of histological images. Our primary

data was derived from images of clinical microscopic slides and we

focused our analysis on cell nuclei because in the CNS, glial and

glioma cell borders are not well delineated in routine hematoxylin

and eosin stained stained sections. While our GBM images were

chosen in areas of high viable tumor cellularity, and histologically

apparent non-tumoral structural heterogeneities were subtracted,

the minority of non-tumoral nuclei present within our processed

GBM images are treated as equal in our analysis. This is a

limitation of our study that precludes definitive assignment of the

relative contribution of non-malignant cells to the microstructural

descriptors we observe as unique to GBM. Addressing this

potential limitation requires future identification of molecular

markers or other methods that identify malignant cells within

GBM with a high degree of specificity (and ideally high sensitivity)

across a series of randomly selected GBMs. An alternative

approach involves comparative studies following methodical

immunohistochemical detection and subtraction of each of the

non-malignant cell types within GBM.

We note that GBM masses generally have a small fraction of

cells that are multinucleated (i.e., with multiple nuclei in a single

cell) [21]. Since such nuclei are confined within single cells, their

contributions to the spatial statistics are mainly associated with

small-distance values and do not significantly affect the correla-

tions on large length-scales. Although this multinucleation would

cause certain discrepancies between the statistics associated with

the distributions of cell nuclei and the cells themselves, we expect

the discrepancies to be negligibly small on large length-scales. In

addition, since the nuclei of the two types of cells appear to be

similar in size, we believe that any artificial effects due to

sectioning should be small. We also note that small perturbations

of the individual nucleus positions do not affect the overall statistics

associated with the distributions. Since distributions of both

normal and abnormal cell nuclei are statistically homogeneous and

isotropic, the conclusions based on the evaluations of the particular

correlation functions of the 2D histological images examined in

this paper should also apply in 3D nuclei distributions [8].

Although the 3D Voronoi statistics will be quantitatively different

than those in 2D, in terms of the deficiency of not being able to

capture long-range correlations, our conclusion also holds.

For comparison purposes, we have also investigated the Vo-

ronoi statistics associated with the nuclei distributions. We have

demonstrated that while Voronoi statistics cannot clearly distin-

guish structural differences between normal and abnormal cell

nuclei beyond length scale associated with single cells, their salient

structural distinctions are very well captured by the aforemen-

tioned correlation functions. In particular, by comparing the

statistics of the nuclei distributions to the corresponding Poisson

reference systems and by directly comparing properly scaled

distributions of the nuclei, we have shown that there exist effective

repulsions between both normal and abnormal cell nuclei; and

that the repulsions between the abnormal cell nuclei are much

stronger than that between the normal cell nuclei. This repulsion

could simply result from exclusion-volume effects of the cytoplasm

(i.e., one cell cannot occupy the same space as another cell) or it

could be caused by the competition between local cells for nutri-

tional needs. In addition, abnormal cell nuclei pack considerably

more densely and are more spatially correlated than the normal

cell nuclei, which is not completely surprising given the corre-

sponding differences in their proliferation rates, nutritional needs

and motilities. This in turn leads to deviations between their

correlation functions at small length scales (i.e., the characteristic

neighbor distances).

Importantly, we found that abnormal cell nuclei possess non-

trivial spatial correlations on intermediate and large length scales,

as manifested by the strong suppression of cell-density fluctuations

on these length scales. This observation is revealing and appears to

be new and biologically significant. Such long-range correlations

can hardly arise from local packing effects determined by cell

shapes and sizes. Possible mechanisms for these long-range

correlations include altered structural or cellular components of

the tumoral microenvironments. For example, subpopulations of

glioblastoma cells can organize around a vascular niche [22].

Alternatively, as glial cells are known to generate complex net-

works of cellular processes [23], the spatial correlations may be

maintained by the ultrastructure of glial-derived processes. These

possibilities enable a ‘‘mutualism’’ mechanism in which abnormal

cells can survive in the stressful tumor environment based on

‘‘common goods’’ principles. There is increasing evidence that

cooperative and collective cell behavior plays an important role in

the invasion and metastasis of malignant tumors. The observed

long-range spatial correlations between abnormal cell nuclei

clearly supports the view that tumors are complex dynamic and

self-organizing systems rather than a random (unorganized) co-

llection of cells.

This work also provides the structural characteristics of brain

glioma cells and sensitive statistical descriptors, which can have

potential applications in cancer diagnosis. Recently, analysis of the

alterations in nuclear structure [24] and wavelet methods [25]

have been employed to analyze histological samples of prostate

cancer and the obtained statistics can be used to devise a

classification scheme of the malignancy of the tumor. Our analy-

sis suggests that characterizing distributions of cell nuclei via

correlation functions provides a complementary way to analyze

histological samples and may have utility in advancing the deve-

lopment of computer assisted diagnostic pathology technologies.

The unique patterns of cell nuclei distributions may be a

measurable bio-marker of tumor behavior and tumor phenotypes

over larger length scales and therefore, may have applications in

assessing the extent of infiltration and margin status from a limited

sample.

Finally, we note that the specific correlation functions employed

here are just a small subset of the zoology of known sophisticated

statistically descriptors, including those that have recently been

fruitfully applied to characterize the microstructure of heteroge-

neous media [26]. Our studies lay the groundwork for future

biological investigations that seek to quantify the relative roles of

tumors cells and non-neoplastic cells in shaping the organization of

tumoral microenvironments via the descriptors reported here or

even more sophisticated correlation functions. The ability to assay

the collective behavior of cancer cells provides new opportunities

to impede malignant progression through the targeting of tumor

self-organization. Moreover, these microstructural descriptors may

also have fruitful applications in the study of morphogenesis, for

which understanding the spatial correlations among cells is crucial.

Spatial Organization of Brain Tumor Cells
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Materials and Methods

In this section, we briefly describe how the histological images

are obtained and define the statistical descriptors that we em-

ployed to characterize the spatial distributions of cell nuclei, which

include the pair correlation function g2(r), structure factor S(k)
and nearest neighbor functions EV (r) and EP(r). In statistical

mechanics and material sciences, these functions have been used

to provide indispensable structural information of systems com-

posed of interacting particles. Here, we consider the cells as

‘‘particles’’ whose geometrical centroids coincide with the cen-

troids of their nuclei. These correlation functions provide quan-

titative information on how the spatial arrangement of a cell is

affected by the presence of another cell a prescribed distance away.

We note that this study received research ethics board approval at

Princeton University and the University of Toronto. Informed

consent from all participants involved in the study was obtained in

written form.

Obtaining Histological Images
Light microscopic images from H&E stained sections were

obtained on a Leica DM4500B microscope/DFC420 camera/

10X/0.40 objective (total magnification 246X) with Leica App-

lication Suite v3.7.0 and captured format settings of 259261944

interlaced large HQ. Final images were stored and analyzed in

300 dpi JPEG format.

Pair Correlation Function and Structure Factor
It is well known in statistical mechanics that a classical many-

particle system can be completely characterized by a countably infinite

set of probability density functions associated with finding a particular

distribution of particle centers in space, i.e., n-particle correlation functions.

The n-particle correlation function gn(r1, . . . ,rn) is proportional to the

probability density of finding n particles in differential volume

elements around the positions r1, . . . ,rn, regardless of the positions of

the remaining particles in the system. For a statistically homogeneous

system, gn is translational invariant and hence depends only on the

relative displacements of the positions with respect to some chosen

origin, say r1: gn(r12,r13, . . . ,r1n), where rij~rj{ri. For an arbitrary

system, deviations of gn from unity provide a measure of the

correlations among the particles in the system.

Of particular interest is the pair correlation function g2(r12).
When the system is also statistically isotropic, g2 depends on the

radial distance r12 only, i.e., g2(r12)~g2(r12), which defines the

average number of particle centers surrounding a reference

particle center. In particular, rs(r)g2(r)dr is proportional to the

conditional probability of finding a particle center in the spherical

shell of volume s(r)dr (where s(r) the surface area of the sphere

shell with radius r), and r is number density of the system.

In this paper, g2(r) is employed to characterize spatial correl-

ations between pairs of cell nuclei on relatively small length scales.

Since two cells can never occupy the same space due to cytoplasm

exclusion effects (described earlier), the probability of finding

two cells at the same place (i.e., r~0) is identically zero, i.e.,

g2(r~0)~0. At finite separations, the position of one cell is

generally influenced by the other through various intercellular

biomechanical/biochemical signals, which leads to variations in

the probability of finding cell nuclei at certain distances away from

a reference nuclei.

For statistically homogeneous and isotropic systems, the stru-

cture factor S(k) is defined as follows:

S(k)~1zrĥh(k), ð1Þ

where r is the number density, ĥh(k) denotes the Fourier transform

the total correlation function h(r)~g2(r){1 and the wavenumber

k~EkE is the magnitude of the reciprocal variable to r. We utilize

the following definition of the Fourier transform:

f̂f (k)~

ð
Rd

f (r)exp {ik:rð Þdr, ð2Þ

where k:r~
Pd

i~1 kiri is the conventional d-dimensional inner

product of two real-valued vectors in d-dimensional Euclidean

space Rd .

For disordered systems, the small k behavior of S(k) reflects the

long-range correlations in the system in real space. Moreover, the

small-k behavior is related to the manner in which g2(r) approa-

ches its large-r asymptotic value of unity, not the asymptotic value

itself. However, it is well known that it is extremely difficult to

accurately capture the large-r behavior of g2(r) by direct sampling.

Thus, S(k) is not computed using Eq. (1), but rather is obtained

directly from the distribution of the particle centers in the system

as encoded in the collective coordinate density ~rr(k), i.e.,

S(k)~
j~rr(k)j2

N
, ð3Þ

where N is the number of particles in the system and ~rr(k) are

defined as

~rr(k)~
XN

j~1

exp(ik:rj), ð4Þ

where rj denotes the location of particle j. We note that the

wavevector k~0 (associated with the forward scattering density)

should be excluded when computing the structure factor using Eq.

(3). Recall that we have employed periodic boundary conditions,

which leads to discrete values of the wavevector and the associated

angularly averaged wavenumber k~2pn=L, where n~1,2,3 . . .
and L is the linear size of the system.

In other words, S(k) for small k values reflects the degree to

which there exists large-scale collective organizations in the spatial

distributions of the cell nuclei. If the cells are not correlated on

large length scales, e.g., the position of a cell is not affected by

another cell far away, the structure factor is equal to unity for all

values of k. If the distribution of cells possess long-ranged spatial

correlations, variations in S(k) from unity should be observed.

Nearest-Neighbor Functions
In considering a system of interacting particles, it is important to

understand the effects of the nearest neighbor on some reference

particle in the system. This requires knowledge of the probability

associated with finding the nearest neighbor at some given dis-

tance from a reference particle, i.e., the particle exclusion pro-

bability function EP [19,20]. A different nearest-neighbor function

EV , which is a more fundamental quantity [27], characterizes the

probability of finding a nearest-neighbor particle center at a given

distance from an arbitrary point in the system [19] and is referred to

as the void exclusion probability function.

Formally, EP(r) and EV (r) are defined as follows:

EP(r)~Probability of finding a region VP(r) (a spherical

cavity of radius r centered at some arbitary particle

center) empty of other particle centers:

ð5Þ
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EV (r)~Probability of finding a region VV (r) (a spherical

cavity of radius r centered at some arbitrary point

in the system empty of particle centers:

ð6Þ

Note that the void exclusion probability EV can also be interpreted

as the expected fraction of space available to a ‘‘test’’ sphere of

radius r inserted into the system, and thus, provides nontrivial void

information of the system. Both EP and EV are monotonically

decreasing functions of r [8].

The nearest-neighbor functions EP and EV reflect how cells are

locally arranged with respect to their immediate neighbors. At high

cellular densities, the spatial arrangement of neighboring cells is

largely determined by the cytoplasm exclusion volume effects.

Specifically, the positions of the neighboring cells are expected to

be more correlated so that they can occupy the available space

more efficiently (i.e., pack more densely). At low cellular densities,

the exclusion volume effects are weaker and the spatial arran-

gement of neighboring cells could be less correlated.

Supporting Information

Figure S1 Point configurations with various degrees of
spatial correlation. (a) A Poisson distribution of points gener-

ated by randomly placing a large number of points in a square

box. The points are spatially uncorrelated and two points can

get arbitrarily close to one another. (b) A point configuration

associated with the random sequential addition (RSA) of nono-

verlapping circular disks. Disks are sequentially and randomly

added subject to the nonoverlapping constraints. The points

correspond to the centers of the disks. Note that this configuration

is more spatially correlated than the Poisson distribution of points

as explained in the text. (c) Points on the sites of the triangular

lattice. The points are completely correlated with one another.

(EPS)

Figure S2 Voronoi tessellations associated with two-
dimensional point configurations shown in Fig. 1. (a)

Voronoi tessellation of a Poisson point configuration. (b) Voro-

noi tessellation of RSA disk centers. (c) Voronoi tessellation of

triangular-lattice point configuration.

(EPS)

Supporting Information S1

(PDF)
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