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Abstract

High-throughput short-read technologies have revolutionized DNA sequencing by drastically reducing the cost per base of
sequencing information. Despite producing gigabases of sequence per run, these technologies still present obstacles in
resequencing and de novo assembly applications due to biased or insufficient target sequence coverage. We present here a
simple sample preparation method termed the ‘‘long march’’ that increases both contig lengths and target sequence
coverage using high-throughput short-read technologies. By incorporating a Type IIS restriction enzyme recognition motif
into the sequencing primer adapter, successive rounds of restriction enzyme cleavage and adapter ligation produce a set of
nested sub-libraries from the initial amplicon library. Sequence reads from these sub-libraries are offset from each other with
enough overlap to aid assembly and contig extension. We demonstrate the utility of the long march in resequencing of the
Plasmodium falciparum transcriptome, where the number of genomic bases covered was increased by 39%, as well as in
metagenomic analysis of a serum sample from a patient with hepatitis B virus (HBV)-related acute liver failure, where the
number of HBV bases covered was increased by 42%. We also offer a theoretical optimization of the long march for de novo
sequence assembly.

Citation: Sorber K, Chiu C, Webster D, Dimon M, Ruby JG, et al. (2008) The Long March: A Sample Preparation Technique that Enhances Contig Length and
Coverage by High-Throughput Short-Read Sequencing. PLoS ONE 3(10): e3495. doi:10.1371/journal.pone.0003495

Editor: Mark A. Batzer, Louisiana State University, United States of America

Received September 19, 2008; Accepted September 30, 2008; Published October 22, 2008

Copyright: � 2008 Sorber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by Howard Hughes Medical Institute, Doris Duke Charitable Foundation and David and Lucile Packard Foundation
grants to JLD. KS was supported in part by the National Science Foundation. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The long march procedure has been submitted to the Office of Technology Management at the University of California - San Francisco
and is pending patent. KS, CC, DW, MD, JGR, AH, and JLD are a party to this information

* E-mail: joe@derisilab.ucsf.edu

. These authors contributed equally to this work.

"These authors also contributed equally to this work.

Introduction

DNA sequencing technology has benefited from tremendous

progress over the past several years, with many platforms routinely

producing .109 nucleotides (nt) of data during a single run [1].

Current generation high-throughput sequencers require a library of

amplicons from which reads are generated at random by a variety of

different methods, including pyrosequencing [2], reversible chain-

terminator extension [3], and ligation [4]. Many of these strategies

produce relatively short reads, in the range of 36–70 nt [5],

compared to traditional Sanger sequencing which routinely produces

reads .800 nt in length [6,7]. For some applications, such as

microRNA analysis [8], ChIP-Seq [9], or SAGE (Serial Analysis of

Gene Expression) [10], short reads are sufficient. However, for

resequencing known genomes [5] and de novo assembly of unknown

sequences [11,12], short reads present a bioinformatics challenge and

make sufficient target sequence coverage difficult to achieve.

To date, experimental solutions to these difficulties have focused

on two approaches: increasing the number of reads produced from

a sample or extending read length. Technical advances such as

paired-end reads [13,14] or optimization of sequencing platforms

with hardware, software, and/or reagent upgrades can increase

the number of reads produced from a sample. Alternatively,

additional reads can be produced by simply sequencing a sample

multiple times. However, reaching satisfactory coverage of target

sequences with these solutions is expensive.

Coverage with short-read technologies can also be increased by

directly extending read length, which is achieved by increasing the

number of synthesis or ligation cycles performed during sequencing.

While lengthening reads does not necessarily incur additional cost,

in practice, the signal to noise ratio of current technologies decreases

at each cycle much more rapidly than in traditional Sanger

sequencing, effectively limiting the number of bases that can be read

with an acceptable degree of accuracy [3,15].
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We describe and demonstrate here a simple method for

improving high-throughput short-read sequencing results using a

cost-effective sample preparation technique. This process, termed

the ‘‘long march,’’ utilizes a Type IIS restriction enzyme that

cleaves DNA distal to its recognition motif [16,17]. By embedding

this recognition motif in the sequencing primer adapter of the

initial amplicon library, iterative rounds of digestion and ligation

produce a nested set of sub-libraries for sequencing. While we

demonstrate this method using the Illumina (Solexa) GA2

platform, the long march procedure is applicable to any short-

read shotgun sequencing system, including the ABI SOLiD and

Helicos. We show that the long march increases contig length and

absolute coverage (compared to the same number of reads

produced without the procedure) using a cDNA library generated

from Plasmodium falciparum, the protozoan parasite responsible for

the most deadly form of human malaria. In addition, we show that

the long march can aid in metagenomic analysis of a complex

clinical specimen by increasing coverage of a particular pathogen

(in this case hepatitis B virus, or HBV, in a serum sample from a

patient with acute liver failure) [18]. Finally, we provide a

theoretical framework for optimizing the long march for de novo

genome assembly applications, based on relative enzyme efficien-

cies as well as starting DNA pool complexity. These results suggest

that considerable improvements in absolute base coverage may be

achieved through relatively simple and cost-effective modifications

of high-throughput sequencing sample preparation protocols. In

essence, the long march technique combines the desirable aspects

of both shotgun sequencing and directed primer walking to

produce substantially greater coverage within the same number of

reads and using the same read length.

Materials and Methods

Long marching and barcoding bead-bound cDNA
For Plasmodium falciparum, 40 mL bead-bound cDNA aliquots

(see Materials and Methods S1) were digested in 16 Fermentas

Buffer B and 0.01 mM S-adenosylmethionine with 5 U GsuI

(Fermentas International Inc., Burlington, Ontario) for 1 hour at

30uC, then at 65uC for 20 min. The digestion reactions were

dephosphorylated as described in Materials and Methods S1, then

washed and ligated to adapter ‘‘Sol-L-AA-NN’’ (short-SolL-GsuI-

AANN and Sol-Adapter-L-short-phos-AA annealed). All primer

sequences can be found in Table S1. Bead aliquots were again

washed and resuspended in ddH2O. 40 mL was removed for PCR

amplification with fullModSolS and Sol primer 1 for 10 cycles (see

Materials and Methods S1 for PCR conditions). The remaining 2

aliquots were digested again with GsuI, dephosphorylated,

washed, and ligated to adapter ‘‘Sol-L-CC-NN’’ (short-SolL-

GsuI-CCNN and Sol-Adapter-L-short-phos-CC annealed). After

ligation, the beads were again washed and resuspended, and

40 mL was removed for PCR amplification with fullModSolS and

Sol primer 1 for 10 cycles, while the remaining beads underwent

one more round of GsuI digestion, dephosphorylation, washing,

and ligation to adapter ‘‘Sol-L-TT-NN’’ (short-SolL-GsuI-TTNN

and Sol-Adapter-L-short-phos-TT annealed). The final aliquot

was washed after ligation and PCR amplified with fullModSolS

and Sol primer 1 for 10 cycles.

For the HBV sample, the long march and barcoding were carried

out in an essentially identical fashion to that of Plasmodium falciparum

with the following modifications: (1) the HBV sample used the

adapters ‘‘Sol-L-CC-RR’’ (short-SolL-GsuI-CCRR and Sol-Adapt-

er-L-short-phos-CC annealed), ‘‘Sol-L-GG-RR’’ (short-SolL-GsuI-

GGRR and Sol-Adapter-L-short-phos-GG annealed), and ‘‘Sol-L-

TT-RR’’ (short-SolL-GsuI-TTRR and Sol-Adapter-L-short-phos-

TT annealed) for march rounds 1 through 3, and (2) PCR

amplification of all marched aliquots was carried out for 15 cycles

instead of 10 cycles using the PCR conditions described for the

initial HBV library in Materials and Methods S1.

Solexa sequencing of initial and long marched cDNA
For Plasmodium falciparum, the initial library and each marched

sub-library were clustered on a Solexa flow cell in a separate lane

(Illumina, Hayward, CA). For the HBV sample, the initial library

and round 3 marched sub-library were clustered with 15 other

barcoded clinical samples in one lane. Following cluster genera-

tion, Sol-SeqPrimer was annealed to the clusters on the flow cell,

and 48 cycles (P. falciparum) or 36 cycles (HBV) of single base pair

extensions were performed with image capture using an Illumina

(Solexa) GA2 sequencer (Illumina, Hayward, CA). The Solexa

Pipeline software suite version 0.2.2.6 (Illumina, Hayward, CA)

was utilized for base calling from these images. Base called data

can be found at http://derisilab.ucsf.edu/data/longmarch.

Analysis of sequence data
Illumina’s Solexa software ELAND was used to align reads,

with the initial two nt of marched sub-library reads masked, to

either Plasmodium falciparum genome release 5.4 [23] or to the HBV

genome (accession number: NC_003977) [21]. Any reads that did

not match the genomes in a unique position were not considered

for further analysis. Genome-aligned reads that mapped to the

same genomic coordinates were then collapsed into one to

determine the redundancy of each library.

The percent of P. falciparum reads converted to the destination

barcode for each round was determined by examining the initial

two barcoded nt of the full reads in each lane. For reads with the

correct barcode, if the barcode did not match the two bases

directly upstream of the genomic alignment, it was considered

‘‘definitely barcoded.’’ If the barcode did match the two bases

directly upstream of the genomic alignment, it was considered

‘‘possibly barcoded.’’ The ratio of ‘‘definitely barcoded’’ reads to

total reads was calculated as a conservative estimate of barcoding

efficiency for each library. The number of ‘‘definitely barcoded’’

reads, plus the number of ‘‘possibly barcoded’’ reads times the

barcoding efficiency, gave the estimated number of correctly

barcoded reads due to ligation. This number divided by the total

number of reads gave the estimated percent of correctly barcoded

reads resulting from ligation.

The offset histogram was calculated by comparing the starting

positions of the P. falciparum reads in each dataset. For the march

round 3 line, the upstream reads were half of the location-

collapsed reads with no barcode (NN) from the initial library lane

and the downstream dataset was an equal number of location-

collapsed reads with a TT barcode from the lane marched three

times. For the initial library line, half the location-collapsed reads

with no barcode (NN) from the initial library lane were compared

with the other half. The offset was counted as the distance from

the start of the upstream read to the start of the downstream read.

Contig length for P. falciparum was calculated by counting the

length of genomic segments covered by at least one read for

400,000 randomly selected reads from the initial library and the

round 3 sub-library. Contig lengths were then averaged indepen-

dently for each library.

Calculation of genome coverage
For both P.falciparum and HBV sample libraries, reads from the

initial and the round 3 libraries were chosen at random to fill

datasets of various fixed sizes. Each dataset was then mapped back

to its respective genome (minus the first 2 nt) and the number of
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genomic bases covered was determined. In order to account for

extremely small dataset sizes, HBV datasets were randomly filled

and analyzed 1000 times and the coverage results were averaged.

Simulating optimization of the long march for de novo
genome assembly

The theoretical probability of a contig-generating match

between two sequences (pm) was calculated as a function of the

overlap length between the sequences (OL). Equal probability of all

four nucleotides at each position was assumed. The pm value was

taken as the number of matching sequences (sm) divided by the

number of total sequences (st) of length OL. When only perfect

matches were considered, sm = 1 and st = 4‘OL, so pm = 1/4‘OL.

When mismatches were allowed, sm equaled the number of

sequences within the allowed mismatch distance, which was

calculated as described [24]. Given a dataset of S unique

sequences, the probability of a sequence being spuriously joined

with another to form a contig (ps) was calculated as

ps = 12(12pm)‘S. The probability of at least one sequence in a

dataset of size S being spuriously linked to another (pst) was

calculated as pst = 12(12ps)
‘S. The assumption of a search for

overlap between the 39 end of the given read and the 59 ends of the

remaining reads was assumed when calculating ps. Therefore, the

value of pst reflected the application of ps to an all-against-all

search in which each sequence could be connected to all others

based on either a 59 overlap, a 39 overlap, or both.

Assembly was simulated in silico using an abstract amplicon data

class. Each amplicon contained a number of step positions

numbered from zero through the number of simulated march

rounds. A number of amplicon instances was created equal to the

simulated amplicon pool complexity. The number of reads

obtained was specified for each simulation. For each read, an

amplicon instance was selected randomly (assuming evenl

representation of all amplicons in the pool), and a step number

was randomly selected for that amplicon with the probabilities of

various steps weighted as specified. The resulting amplicon-step

combination (read) was added to a collection, and the contents of

that collection were evaluated in terms of the redundancy of its

contents and the ability to assemble amplicon sequences. Reads

were joined into a contig if they derived from adjacent step

positions of the same amplicon instance. Unlinked reads formed

contigs of length = 1.

Results

The long march uses a Type IIS restriction enzyme to
create a series of nested sub-libraries with reduced read
redundancy

The long march approach exploits the ability of certain classes of

restriction enzymes (Type IIS and some Type III enzymes) to cleave

DNA downstream of their recognition motifs [19]. These motifs are

engineered into the required library adapters to permit iterative

rounds of restriction enzyme cleavage and adapter ligation, which

produce a set of nested sub-libraries. One can sequence either the

sub-library generated at the final round or a combined pool created

by mixing successive sub-libraries, depending on the efficiency of

cleavage and ligation during the long march.

To initiate the long march procedure, RNA from Plasmodium

falciparum was reverse transcribed into double-stranded cDNA,

biotinylated, and bound to streptavidin beads (see Materials and

Methods S1). In construction of the initial library, the adapter

containing the sequencing primer hybridization site (Sol-L) was

modified before its NN overhang to incorporate the recognition

motif of the Type IIS restriction enzyme GsuI (59-CTGGAG-39).

Each march round began with digestion of the bead-bound cDNA

with GsuI, which cleaves double-stranded DNA 14 nt distal to this

motif (Figure 1) [16,17]. Digested cDNA was then ligated to

barcoded Sol-L adapters, and this digestion and ligation process

was repeated iteratively to generate three nested sub-libraries in

addition to the initial cDNA library. The initial library contained

no barcode while subsequent rounds were barcoded AA, CC, and

TT, respectively. After 5–10 cycles of PCR, the initial library and

each sub-library was clustered and sequenced in a separate

Illumina (Solexa) GA2 flow cell lane.

The resulting 48 bp sequence reads were aligned to the P.

falciparum genome (23 Mb) using Illumina’s ELAND software [20].

This analysis yielded the working dataset of genome-aligned reads

presented in Table 1 and all subsequent analysis is based on this

dataset unless otherwise noted.

In order to estimate the redundancy of each library, reads

aligned to the genome were collapsed by location–that is, reads

that mapped to the same genomic coordinates were merged into

one. Location collapse was used rather than sequence-based

collapse to discount aligned reads with sequencing errors. While

the genome-aligned reads from the initial library collapsed to

25.7% of the original dataset (an average of 3.89 reads collapsed

into one), the genome-aligned reads from the round 3 sub-library

collapsed less, to 38.2% of the original dataset (an average of 2.62

reads collapsed into one) (Table 1). These results indicate that the

long march reduced the redundancy of the initial cDNA library.

Marching creates offset overlapping reads and longer
average contigs

The first two nucleotides of each read from the three P.

falciparum sub-libraries were analyzed to determine the fraction of

reads in each pool that successfully ligated to the appropriate

barcoded adapter (Figure 2A). The first round of digestion and

ligation, which should have added an AA barcode to each cDNA

molecule, resulted in 91% of sequenced reads possessing an AA

barcode. After adjusting for reads beginning with AA by chance

instead of by ligation, we estimated that 89% of reads from the first

round of marching received a barcoded adapter (see Materials and

Methods). The second round of marching resulted in 76% CC

barcodes (,76% from barcoded adapter ligation), while the third

round of marching resulted in 75% TT barcodes (,71% from

barcoded adapter ligation). The high percentage of correctly

barcoded reads from each marched sub-library confirms that

significant decreases in digestion and ligation efficiency did not

occur over three rounds of the long march procedure.

Successful ligation of the barcoded adapters to each sub-library

does not necessarily indicate that amplicons were iteratively

marched forward. To assess how well the long march succeeded in

producing offset, overlapping reads along library amplicons, the

genome locations of successfully barcoded reads from the final

round of digestion and ligation and non-barcoded reads from the

initial library were compared. In cases where a read from the final

round mapped downstream of a read from the initial library, the

distance between the 59 termini was measured (Figure 2B). In an

ideal long march, where both digestion and ligation efficiency are

100%, this comparison would yield a histogram of alignments with

one offset peak at 38 bp (14 bp+12 bp+12 bp) corresponding to

molecules three steps removed from the original amplicon. While

GsuI cuts 14 bp into the cDNA [16,17], the portion removed in

rounds 2 and 3 contained a two nucleotide barcode that did not

match the genome, thus reducing the effective offset to 12 bp for

those rounds. However, because the efficiency of each round was

not 100%, three peaks emerged, representing cDNA that was

successfully digested and ligated once, twice, or all three times
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(Figure 2B). The first (14 nt) and second (26 nt) offset peaks each

displayed a distinct shoulder two nucleotides 59 of the expected

peak, because some molecules were not successfully ligated to the

unbarcoded adapter initially but were later ligated to barcoded

adapters, leading to a first step of 12 bp, rather than 14 bp. To

control for chance offset unrelated to the long march protocol, the

same analysis was performed comparing half of the reads from the

initial library to the other half. This analysis yielded no offset

peaks, indicating that the long march procedure was responsible

for the peaks observed at 14 bp, 26 bp, and 38 bp.

Figure 1. Iterative rounds of GsuI digestion and barcoded adapter ligation create nested sub-libraries. Adapter flanked cDNA
molecules are attached to streptavidin beads via biotin modification of the Sol-S adapter. Yellow triangles indicate the GsuI recognition motif
engineered into the Sol-L adapter, while the connected black arrow represents the distal cut site. Adapter barcodes and corresponding reads are
classified as AA (green), CC (red), or TT (blue). Reads from the initial library and all three long march steps are aligned to form an 84 bp contig.
doi:10.1371/journal.pone.0003495.g001

Table 1. Overview of sequencing reads obtained for each sample.

Sample Library Total Reads*
Genome-Aligned Reads (% of
Total Reads)

Location-Collapsed Reads (% of
Genome-Aligned Reads)

P. falciparum Initial Library 2,316,937 525,509 (22.7%) 134,912 (25.7%)

Round 1 4,194,002 968,063 (23.1%) 308,173 (31.8%)

Round 2 2,747,609 485,034 (17.1%) 200,754 (41.4%)

Round 3 4,881,843 1,088,583 (22.3%) 415,836 (38.2%)

HBV Initial Library 294,625 328 (0.1%) 94 (28.7%)

Round 3 643,611 1291 (0.2%) 416 (32.2%)

*Plasmodium falciparum reads are 48 bp long, while HBV reads are 36 bp long.
doi:10.1371/journal.pone.0003495.t001
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The ability to construct long contigs is important in both

resequencing and de novo assembly applications. Therefore, the

average contig sizes for the initial and the round 3 libraries were

calculated using 400,000 reads each. Contigs were defined as

continuous stretches of the P. falciparum genome covered by at least

one read. The long march procedure increased the average contig

size from 59 nt to 69 nt. In addition, the long march resulted in

more exceptionally long contigs due to its ability to connect shorter

contigs by covering previously inaccessible intervening sequence.

The final sub-library generated 17 contigs .1000 nt, the longest of

which was 4952 nt, whereas the initial library generated only 7

contigs .1000 nt, the longest of which was 1630 nt. Library

coverage for PF14_0572 (a ‘‘hypothetical protein’’ gene located on

the minus strand of chromosome 14 from nt positions 2,450,143 to

2,450,743) demonstrated the benefit to contig assembly provided by

the long march (Figure 2C). Without the series of overlapping

marched reads indicated at the bottom, the region from 2,450,594

to 2,450,621 remained unsequenced and the contigs on either side

were discontinuous. However, the additional information gained

from sequencing these adjacent marched reads covered the previous

gap and stitched the two contigs together into a much longer total

covered area.

The long march increases sequence coverage
In addition to contig size, the advantage to total genome

coverage provided by the long march was examined. Several

datasets of randomly sampled genome-aligned reads from the

round 3 sub-library and from the initial library were mapped back

to the P. falciparum genome and the number of genomic bases

covered by at least one read was measured for each dataset

(Figure 3A). Even with a small dataset of 50,000 reads, the round 3

sub-library covered 35% more genomic bases (898,625 nt) than

the initial library (664,114 nt). As the number of reads in each

dataset grew, so too did the difference in coverage. At 500,000

reads apiece, the marched sub-library vastly outpaced the initial

library by covering an additional 1.1 million bases, an increase in

coverage of 39%.

The long march protocol was also applied to RNA extracted

from a serum specimen from a patient with HBV-related acute

liver failure (‘‘HBV sample’’) in order to assess its applicability to

metagenomic analysis. 36 bp reads from the initial library as well

as the round 3 sub-library were aligned to the HBV genome

(3.2 kb) using ELAND (see Materials and Methods) [21].

Sequencing of the round 3 sub-library generated a greater

percentage of location-collapsed HBV reads than were generated

Figure 2. The long march produces barcoded, offset reads that aid in contig growth. (A) Barcodes for each round of the long march. The
first two bases, masked during genomic alignment, were analyzed for all reads aligning to the P. falciparum genome. Barcodes are classified as AA
(green), CC (red), TT (blue) and NN (gray), where NN represents any barcode other than AA, CC, or TT. For each round of marching, the dominant
barcode was that of the adapter added during that round. (B) Histogram of offset, overlapping alignments between 400,000 reads from the round 3
sub-library and 400,000 reads from the initial library. Reads were aligned to the P. falciparum genome and the difference between the starting
positions of their 59 termini was measured in cases where a round 3 read mapped distal to an initial library read. The resulting three peaks represent
reads successfully marched once, twice, or three times. The gray line demonstrates that similar analysis of two pools of 400,000 reads from the initial
library show no offset peaks. (C) Example of contig joining by adjacent marched reads from the same amplicon. A segment of P. falciparum
chromosome 14 from 2,450,540 to 2,450,690 (representing a portion of the ‘‘hypothetical protein’’ gene PF14_0572) demonstrates the long march’s
utility in increasing contig size. Reads from all four libraries mapping to the area are shown. The four bottom reads derive from the libraries marched
zero, one, two, and three times, respectively. While the gray reads cover much of the region shown, the adjacent marched steps from the last gray
amplicon, shown in black, are required to cover the entire area and stitch together neighboring contigs.
doi:10.1371/journal.pone.0003495.g002

Figure 3. Marched sub-libraries show significantly increased genome coverage over a wide range of dataset sizes. Identical numbers
of genome-aligned reads were randomly sampled from the round 3 sub-libraries and the initial libraries to simulate varying degrees of sequencing
depth. The number of genomic base pairs covered by at least one read (y axis) was computed and plotted against the number of randomly selected
input reads (x axis) for A) Plasmodium falciparum and B) hepatitis B virus (HBV) samples. Because of the small dataset sizes for HBV, each dataset of a
given size was randomly filled and analyzed 1000 times; graphed coverage is an average for those datasets.
doi:10.1371/journal.pone.0003495.g003
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by sequencing the corresponding initial library (Table 1). This

trend translated to enhanced genome coverage of HBV–with a

dataset of 300 genome-aligned reads, the round 3 sub-library

covered 42% more genomic bases (1828 nt) than the initial library

(1284 nt) (Figure 3B). Thus the long march increases coverage of a

target genome in both resequencing and metagenomic contexts.

Simulating optimization of the long march for de novo
genome assembly

We used theoretical considerations to assess the utility of the

long march protocol for de novo genome or metagenome assembly

as well. For such assembly to be reliable, the length of overlap

between any two reads must be sufficient to identify their common

origin [22]. In the initial P. falciparum library, the extent of overlap

between reads decayed exponentially (Figure 2B) and therefore

included many instances of both insufficient overlap for de novo

assembly and excess overlap for minimal contig extension. In the

long march procedure, a step size can be selected that creates the

minimum overlap between adjacent steps necessary for correct

assembly given the read length and dataset size. To avoid spurious

joining, datasets with many unique sequences required longer

overlaps than those with few unique sequences (Figure 4A).

Modeling and simulation of the assembly process revealed

amplicon library complexity to be critical to the assembly of

marched reads into contigs. The benefit gained from optimization

of overlap length requires the sequencing of all steps from a given

library amplicon within a reasonable number of reads. With

increasing complexity of the template pool, this stipulation

becomes less likely. Given a dataset of one million randomly-

selected reads and assuming that only adjacent steps have enough

overlap to be unambiguously assembled, the majority of reads

could not be joined into contigs of $2 steps until the pool

complexity was reduced to ,200,000 amplicons (Figure 4B).

Reduction of pool complexity also generated higher read

redundancy (Figure 4C), the error-correcting potential of which

would permit lower mismatch tolerances during assembly, in turn

reducing the probability of spurious joining (Figure 4D). Thus, a

balance must be struck with the long march in de novo assembly

applications between genome coverage and contig assembly.

In the above simulations, equal probability of generating a read

from any step along an amplicon was assumed. However, the true

distribution of sequencing substrates among march steps reflects

the cleavage/ligation efficiency during the long march. In

simulated sequencing of a round 3 sub-library, the calculated

abundance of reads derived from the Nth step (where N can be 0,

1, 2, or 3) was biased towards high N values when cleavage/

ligation efficiencies were high and towards low N values when

cleavage/ligation efficiencies were low (Figure 4E). Either of these

scenarios negated the benefits of marching because few adjacent

steps from the same amplicon were sequenced. The most even

distribution of reads along march steps was producecd with

intermediate cleavage/ligation efficiencies (Figure 4E). Simulation

of contig assembly using a cleavage/ligation efficiency of 0.5

resulted in fewer full-length contigs, but also fewer unjoined reads,

than was produced given an artificially even distribution of reads

across all march steps (Figure 4F; compare to Figure 4B).

The possibility of guiding contig assembly by applying a unique

barcode to each round of marching was also considered. Such

tagging would reduce the probability of misassembling reads by

reducing the number of candidate reads for each step (Figure 4A),

but would only be effective if reads with barcodes corresponding to

the Nth march round also represented the Nth step. The failure of

a molecule to cleave/ligate at one round of marching would result

in the Nth step receiving a tag from round N+1 and prevent its

proper assembly with reads from the N21 step. Generally, the use

of barcodes to guide assembly was not predicted to be useful due to

the low frequency with which this requirement would be met,

especially at the intermediate cleavage/ligation efficiencies yield-

ing the most uniform distribution of reads across steps (Figure 4G).

Discussion

Although the cost per base provided by short-read sequencing

technologies, such as Illumina, SOLiD, and Helicos is at present

far lower than longer read sequencing technologies, like 454 or

Sanger sequencing, shorter read lengths pose significant challenges

for resequencing and de novo assembly applications. The long

march overcomes these challenges by extending the average contig

length and significantly increasing the target sequence coverage

obtained from high-throughput short-read sequencing technolo-

gies without the cost of obtaining more reads per sample or the

high error rate of directly extending read lengths. High-

throughput sequencing platforms generally require the addition

of adapters to the ends of DNA fragments. The long march utilizes

repeated cycles of Type IIS restriction enzyme cleavage and

adapter ligation to allow extended sequencing of each library

amplicon without loss of gene expression information. We have

demonstrated the utility of the long march in the context of

transcriptome resequencing (Plasmodium falciparum), as well as in the

context of clinical specimen metagenomics (HBV). We have also

provided a theoretical framework for the application of the long

march to de novo genome assembly.

The long march protocol capitalizes on amplicon library

redundancies resulting from biases introduced during sample

preparation (in our case, random-primed cDNA synthesis followed

by PCR library amplification) [25]. These redundancies typically

result in wasteful sequencing of multiple identical short reads

derived from the ends of identical amplicons. For the Plasmodium

falciparum and HBV samples described here, the long march

extended the amount of genome coverage within a dataset of a

fixed number of reads, even when that dataset was relatively small.

This extension in genome coverage stems from narrowing the

dynamic range of individual nucleotide coverage, since redundant

reads from the initial libraries were distributed over a longer

distance after the libraries were marched.

In metagenomic analysis, short-read redundancy can obscure

the identities of the organisms present in the sample. Character-

ization of microbial diversity and function from metagenomic

sequence data is dependent on the identification of homology to

known biological sequence [26]. Longer contigs permit more

effective detection of genetic homology to known sequences by use

of BLASTN or TBLASTX [27,28]. The availability of greater

coverage and longer contigs from the long march improves the

likelihood of successful alignment and thus discovery of both

known and novel organisms in a heterogeneous metagenomic

sample.

The ability to assemble overlapping reads into reliable contigs is

also crucial for de novo genome sequencing applications. With

standard amplicon libraries, chance is relied upon to produce

reads with sufficient overlap for assembly, and thus short-read

datasets pose particular challenges by limiting the amount of

overlap obtainable between any two reads. The long march allows

read overlaps to be biased toward lengths sufficient for accurate

assembly but also conservative enough to promote contig growth.

Informed choice of restriction enzyme allows adjustment of the

procedure’s step size to facilitate accurate assembly of a predicted

number of unique sequences. Also, in order to capture the

adjacent march steps from a given amplicon necessary for contig
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PLoS ONE | www.plosone.org 7 October 2008 | Volume 3 | Issue 10 | e3495



Figure 4. Theoretical optimization of the long march for de novo amplicon assembly. (A) Effect of overlap length on the probability of
erroneous assembly of non-overlapping reads. For datasets with the indicated numbers of unique sequences, the probability was calculated of each
sequence being erroneously joined to another in the dataset (left) or of at least one read in the dataset being erroneously joined to another (right).
(B) Effect of initial pool complexity on the length of contigs. For each indicated number of amplicons in the initial pool, a simulation was performed
assuming 1 million reads, and contigs were built by joining adjacent reads (see Methods). Each distribution of contig lengths, expressed in number of
unique sequences assembled into the contig, was derived from a single simulation. (C) Effect of initial pool complexity on dataset redundancy.
Simulations were performed as in (B) for each of the indicated amplicon pool complexities, and the fraction of unique sequences that were observed
more than once is indicated. (D) Effect of allowed mismatches on the probability of erroneous assembly of non-overlapping reads. Probabilities were
calculated assuming datasets of 1 million unique sequences. Allowed mismatches were single-nucleotide substitutions in the context of an
ungapped alignment. (E) Effect of cleavage/ligation efficiency on the distribution of reads across the four steps of a three-round march. ‘‘Step 0’’
refers to unreacted molecules after three rounds of marching, while ‘‘Step 1’’, ‘‘Step 2’’, and ‘‘Step 3’’ refer to molecules that have been cleaved/
ligated in one, two, or all three of three march rounds, respectively. (F) Effect of initial pool complexity on the length of contigs given a non-uniform
distribution of reads across four steps. Contig lengths were determined through simulation as in (B), but using the probability of obtaining a read
from each step as determined in panel (E) assuming a cleavage/ligation efficiency of 0.5. (G) Expected correspondence between round-associated
barcode tags and the step no. of tagged reads. For instance, round no. = step no. = 1 if a molecule was cleaved/ligated in the first round and only the
first round and was therefore tagged with the first round barcode and was advanced by one step along the amplicon template.
doi:10.1371/journal.pone.0003495.g004
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assembly, library complexity, as well as cutting and ligation

efficiency, must be taken into account. Reduction of library

complexity may be required in order to capture enough adjacent

march steps to enhance assembly within a reasonable number of

reads. If a high cleavage and ligation efficiency (.80%) is

achieved, bias toward sequencing only the last march steps of each

amplicon can be counteracted by sequencing a pool of the

marched sub-libraries from each round, rather than sequencing

only the final round sub-library. However, low cleavage and

ligation efficiency (,20%) cannot be overcome so easily. While

low efficiencies do result in some gain in target sequence coverage

(data not shown), both the restriction and ligation enzymes used

for long march should be tested for robust activity before

beginning the procedure.

The long march protocol described here was not optimized for a

particular application. Because the long march relies only on

minor modifications to adapter sequence and an appropriate Type

IIS or Type III restriction enzyme, it can be readily customized for

a variety of applications. Here, marching was carried out for 3

rounds; the only theoretical limit to the number of iterative rounds

is the length of the starting amplicons. Also, the restriction enzyme

GsuI (59-CTGGAG-39; 16/14) [16,17] was chosen arbitrarily;

another restriction endonuclease could be used, such as the Type

III restriction enzyme EcoP151, which cleaves at a site much

further downstream than GsuI (59-CAGCAG-39; 27/25) [29]. For

these studies, long march rounds were tagged using a 2 nt DNA

barcode encoded within the adapter sequence. However, the use

of DNA barcodes also has the potential to allow multiple samples

to be individually coded, and then sequenced simultaneously

without physical separation. This approach is appropriate in

applications where only a fixed depth of sequencing is required

(e.g. detection of small nucleotide polymorphisms (SNPs);

resequencing of small genomes or genomic subregions; pathogen

detection), and/or where multiplexing of samples makes high-

throughput sequencing more cost-effective.
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