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Abstract

Background: Local network connectivity disruptions in Alzheimer’s disease patients have been found using graph analysis
in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance
connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes
thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph
analysis on resting-state condition fMRI data.

Methodology/Principal Findings: 18 mild AD patients and 21 healthy age-matched control subjects without memory
complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions
was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient) and global
(path length) network measures were quantitatively defined. Compared to controls, the characteristic path length of AD
functional networks is closer to the theoretical values of random networks, while no significant differences were found in
cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups.
Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and
generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of
functional long-distance links between frontal and caudal brain regions.

Conclusions/Significance: We present evidence of AD-induced changes in global brain functional connectivity specifically
affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection
theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in
AD, further suggesting a loss of global information integration in disease.
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Introduction

Alzheimer disease (AD) has been characterized as a disconnection

syndrome ([1] for AD; [2] for age-related cognitive decline),

implying network-wide functional changes due to local structural

changes. In AD, both selective decreases and increases in brain

activity have been reported in a variety of behavioral conditions. In

the absence of goal-directed behavior (i.e. resting-state condition),

two different brain networks, the default mode network (DMN)

[3,4] and the dorsal visuo-spatial attention system [5,6], show

decreased activity in AD patients compared to age-matched healthy

subjects ([7,8] but see also [9]). Hypoactivity on both the DMN and

visuo-spatial attention system has been associated with a decrease in

spontaneous thoughts [10] and cognitive decline [11,12,13].

Relative activity increases in a variety of brain regions (dorso-

lateral prefrontal cortex, anterior cingulate cortex and lingual gyrus)

have been interpreted as the engagement of compensatory and

cognitive reserve mechanisms [14,15,16]. Therefore, the conse-

quences of AD are not only those directly related to the loss of

functional relationships between previously connected brain

regions, but also involve abnormal or compensatory reorganizations

of non-compromised functional connectivity networks.

A small number of studies have pioneered the exploration of the

principles and dynamics of global network changes in AD. In a

very recent report applying graph analysis (a whole-brain network

analysis technique; see below), Supekar et al. describe disruptions
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in local network connectivity in AD but no change in the

connectedness of the global brain network [17]. These results are

in contrast with those obtained by Stam et al. [18] and He et al.

[19], both indicating long-distance connectivity differences. We

examine this controversy in the context of the disconnection

syndrome hypothesis by characterizing both local and global

connectivity changes of the functional network in AD using graph

analysis on blood-oxygen level dependent (BOLD) functional

magnetic resonance imaging (fMRI).

Graph Analysis
Graph analysis enables the study of complex systems described

by way of pairwise relations between discrete elements. It can be

used to explore and quantify the structure of whole-brain patterns

of anatomical and functional connectivity [20,21]. To express

functional connectivity between discrete brain areas we calculate

the synchronization likelihood (SL) [22]. SL is a measure of linear

and non-linear dynamic dependencies between fMRI BOLD

time-series acquired during resting-state condition. By using graph

analysis, the characteristics of the whole-brain synchronization

patterns are then modeled into a network composed by ‘vertices’

or brain regions responsible for an activity pattern connected by

‘edges’ representing inter-vertex synchronization levels.

Small-world Networks
In their seminal paper, Watts and Strogatz used graph analysis

to describe the emergent properties of a certain network type, i.e.

increased signal-propagation speed, processing power and syncro-

nizability as a small-world phenomenon. The authors character-

ized this network type as ‘small-world’ based on two measures,

typical inter-vertex separation (path length, L) and the degree of

grouping between network vertices (clustering coefficient, C) [23].

Compared to ordered and random networks, small-world

networks are characterized by highly clustered vertex assemblies

(high C) with a limited number of global shortcuts between clusters

(relatively low L), which favors functional synchronization. Small-

world network structures have been described in healthy

anatomical [24,25] and functional brain networks [26,27,28,29]

and its organizational principles of local specialization and global

integration [30] are recognized as the bases supporting higher

cognitive functions [31]. Therefore, the application of graph

theory on functional connectivity fMRI data set allows us to

classify the clustering and connectedness of the whole-brain

functional network, and to judge its emergent functional

properties. The subdivision of the brain activity patterns in

discrete functional networks, like the DMN or the dorsal visuo-

spatial attention system, excludes the analysis of their possible

interactions and the emergent global configuration [32]. By

contrast, examination of the brain-wide consequences to local

network dysfunction can shed light on aspects of AD beyond the

primary function loss, including compensatory mechanisms, early

detection and prognosis.

There is increasing evidence that the altered brain function in

diseases as Schizophrenia, AD or attention deficit hyperactivity

disorder is characterized by the conversion from small-world

network architecture to less optimal functional topologies

[17,18,33,34,35,36]. With the present study we intent to

determine the functional characteristics of the whole-brain

networks by applying graph analysis to fMRI data acquired in

resting-state condition. Furthermore, we investigate whether local

dysfunction and functional disconnection in AD brain synchroni-

zation induce a randomization of the original small-world network

structure.

Materials and Methods

Ethics Statement
The study was approved by the Medical Ethics Review

Committee of the VU University Medical Centre, Amsterdam.

All participants in this study were required to provide a written

informed consent in accordance with the VU university Medical

Center Medical Ethical Committee; patients under supervision of

a lawful caregiver if necessary.

Subjects
This study was performed on the data collected from a

subpopulation of subjects of a previously published study

[7,11,32].

The selected data set is composed of two groups of right-handed

participants: 21 older healthy subjects without memory complaints

(age 70.766.0, range 60 to 81 years; 13 female) and 18 patients

with mild AD (age 70.767.2 years, range 59 to 79 years; 9 female).

Mini-Mental State Examination (MMSE) [37] scores are signif-

icantly different in AD patients compared to control subjects (AD

22.663.2, range 17–29; controls 28.761.4, range 25–30;

p,0.001). Details regarding recruitment, diagnostic criteria and

analysis of comorbid lesions (i.e. presence of vascular lesions) have

been previously reported ([7,11]; see next sections for details).

All subjects underwent an MRI session of approximately 35

minutes total. Subjects’ respiration and pulse rate data were

registered by means of respiration belt and pulse sensor. For the

resting-state scan, lasting about 10 minutes, subjects were

instructed to lie still with their eyes closed, not to think of any

one thing in particular and not to fall asleep. Upon completion of

the fMRI procedure none of the participants reported falling sleep

during the scan acquisition.

Neuropsychological assessment
All participants underwent a Mini Mental Status Examination

(MMSE), a Geriatric Depression Scale (GDS), the Dutch version

of the New Adult Reading test (NLV - premorbid IQ test) and a

neuropsychological test battery including tests measuring atten-

tion/concentration, processing speed, episodic memory, executive

functioning and praxis [7,11,32].

Imaging methods
Imaging was performed on a 1.5T Sonata (Siemens, Erlangen,

Germany) scanner. For the functional scan, T2*-weighted echo

planar images (EPI) were acquired with the following sequence

parameters: TR = 2850 ms; TE = 60 ms; flip angle = 90u; 36 axial

slices; voxel size 3.3 mm isotropic – 200 volumes were acquired in

9 minutes and 30 seconds. Additionally a high-resolution T2*-

weighted EPI and a high-resolution T1-weighted magnetization

prepared rapid acquisition gradient echo (MPRAGE) image were

acquired. The sequence parameters of the high-resolution EPI

were: TR = 7230 ms; TE = 45 ms; flip angle = 90u; 64 axial slices;

voxel size 1.661.662.2 mm. The sequence parameters of the T1

weighted image were: TR = 2700 ms; TE = 3.97 ms; flip an-

gle = 8u, 160 coronal slices; voxel size 161.561 mm.

Pre-processing of fMRI sequences and time-series
extraction

Patients were recruited at the Alzheimer Center of the VU

University Medical Center, Amsterdam, Netherlands. Diagnostic

criteria for AD were that of NINCDS-ADRDA [38], with MMSE

scores .18 and CDR ,2. Healthy subjects were recruited by two

means: (1) asking family members of patients and (2) advertise-
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ments posted in the medical center, the medical faculty of the

university and activity centers for the elderly in the community.

Participants were excluded if they had any significant medical,

neurological (except for the diseases under study here in the

patient groups) or psychiatric illness; a history of brain damage; or

if they were taking medication known to influence cerebral

function (except for AD medication in the AD group). T2-

weighted fluid attenuation inversion recovery (FLAIR) scans of

each subject were reviewed by a neuroradiologist (FB) to assess the

presence of vascular lesions. Across all groups some, probably age-

related, WM abnormalities were observed (29 subjects with

Fazekas-score range 1-3 (1.2160.41); and 3 subjects with 1–3

lacunes) [39]. T1-weighted MPRAGE scans were also inspected

by a radiologist for structural abnormalities (FB). None of the scans

included in this experiment presented outspoken posterior

cingulate-precuneus or parietal patterns of atrophy.

The image pre-processing was carried out similarly as in the

previously published resting-state studies [32], using tools from

FMRIB’s Software Library (FSL version 3.2) [40]. The following

pre-statistics processing was applied: motion correction [41];

removal of non-brain structures [42]; mean-based intensity

normalization of all volumes by the same factor (i.e. 4D grand-

mean scaling in order to ensure comparability between data sets at

the group level); high-pass temporal filtering (Gaussian-weighted

least-squares straight line fitting, with sigma = 75.0s); and pre-

whitening to remove temporal autocorrelations.

For each participant the mean (across voxels) voxel absolute

(each time point with respect to the reference image) and relative

(each time point with respect to the previous time point) was

calculated by MCFLIRT (motion correction software; FSL).

Displacements across participants were found to be small (mean

6 S.D. of displacement AD (absolute) = 0.4360.28 mm; AD

(relative) = 0.1160.07 mm; OC (absolute) = 0.3360.16 mm; OC

(relative) = 0.1160.07 mm); no significant differences were found

between the experimental groups (2-tailed t-test; absolute

displacement p = 0.21; relative displacement p = 0.82).

No global spatial smoothing was applied in order to avoid

spurious synchronization between neighboring voxels.

Following the pre-processing the functional scan was first

aligned to the high resolution EPI scan, then to the high resolution

T1-weighted image, which was subsequently registered to the

MNI152 standard space (average T1 brain image constructed

from 152 normal subjects at Montreal Neurological Institute) using

affine linear registration as implemented in FLIRT [41]. To

minimize the effect of disease-related atrophy, we performed an

additional, independent registration procedure thereby transform-

ing the functional data set to a custom brain template or

‘midspace’. By calculating the geometric mean of the previously

computed affine transformation matrices to the MNI152 standard

space, midspace was defined as the transformation that approx-

imates the average size and shape of the individual subjects’

spaces. Hence the registration of functional data sets to midspace

template accounts for the differential atrophy and brain shape

between subjects by reducing the differences between the

individual spatial transformations.

After registration, non-overlapping regions of interest (ROI)

based on the anatomical automatic labeled brain (AAL; http://

www.cyceron.fr/freeware/) [43] were extracted per subject. To

calculate the coupling of brain activity between the regions

defined, single time-series per subject and ROI were calculated by

averaging all voxels’ time-series within the ROIs. In total, 116

fMRi time-series (54 per hemisphere and 8 midline structures)

consisting of 200 time-points were available per subject. In view of

possible concerns over the accuracy of the result of the affine linear

registration on the cerebellum, a second set of ROIs per subject

excluding the cerebellar regions (n = 26) were calculated. In this

second set of averaged voxels’ time-series, the total number or

ROIs defined per brain was reduced to 90.

Functional connectivity computation: SL
Linear and non-linear dynamic correlations between all pair

wise combinations of time-series were measured with the SL

[22,44] (for mathematical details on the SL computation, see File

S1). Briefly, the SL calculation involves dividing each time-series

into a series of patterns (short segments of the time-series

containing a few cycles of the dominant frequency) and searching

for the recurrence of these patterns. The SL is then the average

probability that pattern recurrence in time-series X coincides in

time with pattern recurrence in time-series Y.

The synchronization likelihood was computed with DI-

GEEGXP2 software (CS). Values of the SL range between Pref

when there is no coupling and 1 in the case of fully synchronized

time-series. Therefore, Pref is the value of the small but nonzero

likelihood of coincident pattern recurrence between independent

time-series. In the present study SL measures were calculated at

Pref 0.01 to correct for low SL values that correspond to spurious

synchronization. For the state space embedding (reconstruction of

all possible values of a system) we used a time lag of 1 sample and

an embedding dimension of 6; we further applied the Theiler

correction for autocorrelation (w = 6). SL values were computed

for both groups of control subjects and AD patients, resulting in

two synchronization matrices where each entry contains the group

average value of the SL for two given time-series (Figures 1 and 2).

Graph analysis computation: network descriptors C and L
The SL values express the degree of functional connectivity

between the activity patterns of any two anatomically independent

brain regions. To represent the global connectivity, we used graph

theory analysis to convert the synchronization matrices into binary

graphs or networks consisting of ‘vertices’ (elements) and ‘edges’

(undirected link between two vertices).

Three different sets of binary graphs/networks were created per

subject, representing the whole brain synchronization patterns, the

influence of the differential brain atrophy between AD and control

groups (registrations to MNI152 standard space or midspace) and

the contribution of the cerebellum (with or without cerebellar

regions): (1) 116 ROIs in standard space, (2) 90 ROIs in standard

space, and (3) 90 ROIs in midspace. In these idealized networks,

the vertices correspond to the ROI’s time-series. The synchroni-

zation matrices are converted to a graph by considering a

threshold T. If the SL between a pair of ROIs exceeds T an edge is

said to exist between their representing vertices; otherwise no edge

exists between them. Because there is no unique way to choose T,

we examined the possible networks configurations by constructing

graphs for a range of values of T (0.01,T,0.05 with increments

of 0.01; Figure 3a,b) within which we explored the consistency of

the network characteristics.

The topologies of the resulting connectivity networks were

characterized in terms of their corresponding clustering coefficient

(C) and characteristic path length (L). The clustering coefficient

measures the degree of local interconnectedness of a vertex by

analyzing the properties of its ‘‘neighbor’’ vertices (vertices joined

to it by 1 edge). Clustering coefficients per vertex are calculated as

the ratio of the number of existing edges between its neighbor

vertices and the maximum possible number such an edges. The

global clustering coefficient of the networks was computed by

averaging the C of all vertices of the graph. The characteristic path

length of a network represents its global connectivity/integration,

Small-World Networks in AD
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including the influence of both local and long-range functional

connections. L corresponds to the harmonic mean of the inverse

shortest distance (in number of edges) for each vertex pair,

assigning a value of zero when two vertices are not connected

[45,46].

The SL values can be different between subjects; this would

mean that at a given value of T, a graph could have more or less

edges than other, thereby influencing the differences in C and L.

To guarantee the comparability between both groups, the graph

parameters C and L were also computed as a function of the

average number of edges per vertex (K). The networks tested must

comply with a configuration such that N.K.ln(N).1, where

K.ln(N) guarantees that a random graph will be connected. This

configuration corresponds to sparsely connected networks com-

posed by many vertices [23]. We have tested a AAL template-

based brain network for a range of 5,K,15 with increments of 1.

Therefore, graphs of both AD and control groups share a fixed

number of edges, despite possible differences in the mean SL values,

ensuring that the differences in C and L between the groups solely

reflect differences in graph topology (Figure 3c,d).

For comparison, 50 random graphs were computed based on the

original synchronization matrices for each subject. These random

networks preserved the number of vertices and edges as well as the

degree distribution of the original networks [47]. Mean C and L for

Figure 1. Synchronization matrix of AD group. Intensities of SL values between any given pair of brain regions are color-coded (blue, SL = 0;
red, SL = 1). Labels and guidelines represent groups of AAL brain ROIs. Upper left corner represents the synchronization level between brain regions
in the right hemisphere; lower right corner is the synchronization within the left hemisphere; upper right corner (diagonal line) corresponds to the
synchronization between hemispheres. On this region, main synchronization clusters are indicated: A) frontal cortex; A’) frontal cortex with pre and
post-central gyri and parietal cortex; B) parietal and occipital cortices and precuneus; C) temporal lobe; C’) temporal lobe with parietal and occipital
lobes. The overall synchronization pattern reveals a relative increase of connectivity in the frontal cortices in AD (A); compared to the control group
(Figure 2), decreases of connectivity in AD are spread throughout temporal cortices (C and C’) and particularly the parietal and occipital region (B).
Note that the synchronization matrices are symmetrical – lower half of the matrices are grayed out for convenience.
doi:10.1371/journal.pone.0013788.g001
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AD and control groups were recalculated as a ratio of the original

values and their randomized surrogates C-s and L-s (corrected

cluster coefficient c= C/C-s; corrected path length l= L/L-s ). The

values obtained of C and L as a function of degree K were

compared with the theoretical values of C and L for ordered (C =

3/4, L = N/2K) and random (C = K/N, L = ln(N)/ln(K)) graphs.

Analysis of regional differences in synchronization
Based on the group differences demonstrated with graph

analysis, a post-hoc analysis was performed at the level of regional

synchronization. The distribution of SL differences between AD

and control groups was tested using 2-tailed t-tests. The same

analysis was repeated for the all the available data sets: 116 ROIs

in standard space, 90 ROIs in standard space, and 90 ROIs in

midspace. Despite the differences in number of functional ROI

couples tested and correction of SL values due to the spatial

registration, all tests delivered a similar pattern of SL regional

differences between AD and controls at p,0.05 uncorrected.

We further compared AD patients and controls on the

clustering coefficient C and characteristic path length L. We

controlled for type I rate inflation due to the multiple comparisons

at the different thresholds T (for the SL) and K (for the average

number of edges per vertex). We used a modified version of the

cluster-based permutation test proposed by Maris et al. [48]. The

basic idea of this method is to reduce the multiple comparison

problem to a single comparison problem by making use of a single

test statistic that depends on the differences between the groups at

all levels of T or K. The significance of this single test statistic is

then evaluated under the permutation distribution. Our test

statistic starts from calculating two-sample t-statistics separately for

each of the levels of T or K. Subsequently, these t-statistics are

threshold at some prior value (in our case, the 2.5-th and the 97.5-

th quantiles of their corresponding sampling distributions). The

supra-threshold values are then clustered on the basis of adjacency

(i.e., supra-threshold values for adjacent values of T or K are

joined in one cluster). Next, cluster-level statistics are calculated by

Figure 2. Synchronization matrix of control group. See legend of Figure 1.
doi:10.1371/journal.pone.0013788.g002
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summing the values within every cluster. Finally, the single test

statistic combining information over all levels of T or K is obtained

by taking the maximum of the positive cluster-level statistics (for

positive one-sided and two-sided null hypotheses) and/or the

minimum of the negative cluster-level statistics (for negative one-

sided and two-sided null hypotheses). This test statistic is then

evaluated under the permutation distribution that is obtained by

randomly repartitioning AD patients and controls over two

groups. By modeling data sets representing all possible combina-

tions of patients and controls, we not only test for the robustness of

the graph parameters differences, but also the likeliness of the

original synchronization differences in our population.

Results

Synchronization patterns
The mean functional coupling between the different brain

regions is summarized in Figures 1 and 2 (all figures provided

correspond to the graph analysis derived from the global

synchronization patterns of the set of 116 ROIs registered to

standard space - including cerebellar ROIs). The synchronization

matrices of AD (Figure 1) and control groups (Figure 2) express the

intensity of the synchronization in color coded SL values (blue,

SL = 0; red, SL = 1). The upper left corner of the matrices

represents the synchronization level between brain regions in the

right hemisphere, while the left hemisphere internal synchronicity

is represented in the lower right corner. The upper right corner of

the matrices, crossed by a diagonal line, corresponds to the

synchronization between left and right hemispheres. Within these

functional domains, three major clusters representing intense

functional coupling between defined anatomical regions are

defined: A) corresponds to the coupling within different regions

of the frontal cortex, while A’) represents relationships between

frontal cortex with pre and post-central gyri and parietal cortex.

The wider synchronization cluster visible, B) comprises the

anatomically wide functional relationship between parietal and

occipital cortices, including the precuneus. Two important minor

clusters C) and C’) represent the internal connectivity within the

temporal lobe and its functional relationship with the parietal and

occipital lobes respectively.

Figure 3. Cluster coefficient and path length. Subplots (a) and (b): Mean cluster coefficient and path length calculated for a range of
synchronization threshold values (0.05,T,0.01; K constant = 10). Subplots (c) and (d): cluster coefficient and path length computed for a range of K
values (5,K,15; T constant = 0.05). Path length L is significantly shorter in AD within a wide range of T and K values, therefore closer to the
characteristics values for random networks. Cluster coefficient C is equal for both groups.
doi:10.1371/journal.pone.0013788.g003
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Global synchronization mean
The global average synchronization, S, does not differ between

Alzheimer and healthy control groups (Table 1; AD group

S = 0.0960.01; control group S = 0.0960.02). The global syn-

chronization levels remain unaltered depending on the registration

to standard or midspace or the inclusion of cerebellar regions

(standard space, 90 ROIs: AD group S = 0.1060.02; control

group S = 0.1060.02; midspace, 90 ROIs: AD group

S = 0.0960.02; control group S = 0.0960.02)

Global synchronization: small-worldness
In order to perform a whole-brain graph analysis, the individual

networks representing every subject’s synchronization patterns

were computed based on their respective synchronization

matrices. Corrected C (c) and L (l) were calculated per group as

an index of the original C and L values and their randomized

surrogates C-s and L-s. Importantly, the topologic descriptors are

consistent as neither the removal of the cerebellar regions nor the

atrophy correction using midspace as alternative registration

template did affect the graph analysis results (Table 1; results per

parameter are threefold, corresponding to registration to standard

space with and without cerebellum and registration to midspace

without cerebellum).

Mean C and L were also expressed as a function of threshold T

(Figures 3a and 3b respectively). Across the range of the values of

T analyzed (0.01,T,0.05) the mean clustering coefficient C

(Figure 3a) and characteristic path length L (Figure 3b) of both

groups slowly increase to plateau at the higher T values tested.

However, L reflects clear differences between the groups: values of

L are consistently lower (i.e. shorter path length) for the AD group

compared with those of the control group. Compared to controls,

the characteristic path length of AD functional networks is closer

to the theoretical values of random networks (Table 1;

AD = 1.5360.15; controls = 1.6960.22). The difference between

AD and controls is significant (p,0.05) across a wide range of

thresholds, the most significant difference found at T = 0.05 (t-test,

p,0.01; Figure 3b).

The same parameters, C and L were calculated as a function of

K (5,K,15). As degree K increases, the value of C increases. No

significant differences were found between the groups for C for

any value of K (Figure 3c). Similarly, as K increases the values of L

decrease (higher mean number of edges per vertex allowing for

shorter pathways between vertices). Importantly, L is consistently

lower for AD, showing significant differences between AD and

control groups for a wide range of K values, the highest of which is

found at K = 10 (L shorter in AD patients; t-test, p,0.01;

Figure 3d).

Both C and L parameters for AD and control groups are plotted

together with the theoretical values for random and ordered

(regular) ring-like networks (Figure 3a–d; ordered graph: C = 3/4,

L = N/2K; random graph: C = K/N, L = ln(N)/ln(K)). The values

of C obtained for experimental and control groups fall in between

random and ordered clustering coefficient characteristic values;

the characteristic minimal path lengths L for both groups are also

intermediate between those for random and ordered graphs.

Furthermore, the values of C and L calculated on the bases of

resting state BOLD synchronization are similar to those computed

based on magnetoencephalographic measurements [26].

The corrected path length (l) did not correlate with severity of

dementia, premorbid intelligence or depression scores for any of

the experimental groups (partial correlation, corrected for age,

gender and years of education: MMSE: AD r = 20.45; p = 0.10;

OC r = 0.38; p = 0.12); NLV: AD r = 20.02; p = 0.93; OC

r = 20.10; p = 0.69; GDS: AD r = 20.48; p = 0.08; OC r = 0.35;

p = 0.16).

Synchronization changes distribution
To explore in detail the origin of the different characteristic

path length between AD and control groups, we performed a post-

hoc analysis of the local synchronization differences between both

groups. Similarly to the graph analysis results, the pattern of SL

regional differences between AD and controls was found

unchanged regardless of the inclusion of the cerebellum or the

registration procedure. The synchronization patterns displayed in

the matrices of both groups are similar in their topology (Figures 1

and 2; 116 ROIs in standard space), the differences being regional

synchronization intensities. These group differences were calcu-

lated with 2-tailed t-test, p,0.05 uncorrected. Additionally, a non-

parametric cluster-based permutation test was performed to

control for the family-wise error rate over the 12 levels of K.

We found one significant cluster containing the K-levels between 6

and 15 (p = 0.004). This result confirms the robustness of the path

length difference that constitutes the main result of our study

(Table 1). Additionally, it demonstrates that, in the group tested,

the regional pattern of synchronization differences between ADs

and controls constitutes one of the few combinations of

synchronization changes that produce shorter path length in

AD. The consistent results obtained with different registration

procedures, together with the highly significant difference in path

length make it unlikely that the differential regional pattern of

synchronization between AD and controls is the produce of

chance. Nonetheless, the following description of the pattern of

regional synchronization differences does not report distinctions at

the level of individual ROIs.

Figure 4a represents the matrix of significant differences of

synchronization levels between AD and controls. The white dots

represent brain areas pairs with increased synchronization in AD

while the black dots stand for reduced synchronization with respect

to control subjects. Individual connectivity differences derived for

Table 1. Average synchronization, cluster coefficient and
path lengths.

AD OC p values

Reg_#ROIs mean sd mean sd

S Ss_116 0,09 0,01 0,09 0,02 0,82

Ss_90 0,10 6 0,02 0,10 6 0,02 0,82

Ms_90 0,09 0,02 0,09 0,02 0,83

c Ss_116 4,44 0,50 4,38 0,50 0,69

Ss_90 3,63 6 0,47 3,64 6 0,38 0,98

Ms_90 3,72 0,39 3,57 0,30 0,19

L Ss_116 1,53 0,15 1,69 0,22 0,01*

Ss_90 1,43 6 0,17 1,61 6 0,25 0,01*

Ms_90 1,44 0,14 1,61 0,27 0,02*

Data are presented as mean 6 sd. AD, Alzheimer patient; OC, age-matched
control; t-test (2-tailed;
*, p,0.05 between groups difference). While maintaining similar brain average
synchronization levels (S), the Alzheimer group consistently shows a
significantly shorter corrected path length (l) that controls and similar cluster
coefficient (c) regardless of the registration procedure (Ss – standard space; Ms
– midspace) and the inclusion of cerebellar regions (#ROIs 116 – including
cerebellum; #ROIs 90 – excluding cerebellum). All small-world parameters were
calculated at K = 10 and synchronization threshold T = 0.05.
doi:10.1371/journal.pone.0013788.t001
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the synchronization changes are represented at 3 superior-to-

inferior levels through the brain shown in Figure 4 (b–d).

The majority of the relative increases in both inter- and

intrahemispheric synchronization in AD belong to frontal brain

regions, particularly the orbitofrontal cortices but also the medial

frontal cortex. Subcortical structures including the corpus striatum

(caudate nucleus, putamen and pallidum) and the thalamus also

show more synchronization with the frontal cortices in the AD

group, particularly with the orbitofrontal cortex (Figure 4b–c). The

temporal lobes demonstrate an asymmetric pattern with increased

synchronization in the right hemisphere, in contrast with decreased

left synchronization. This asymmetry is maintained in its relation

with the frontal lobes: only the right temporal regions show increased

synchronization with the right frontal lobe (Figure 4d). Furthermore

we found increased interhemispheric coupling between the temporal

poles. Relative to control group, the AD group shows a widespread

reduction in mean synchronization involving the caudal functional

connections of the temporal lobe and, importantly, concentrated at

the parietal and occipital cortices, including the precuneus. It is in

the parietal and occipital cortices where the pattern of changes is

Figure 4. Synchronization differences. (a) Matrix of significant differences of synchronization between AD and controls (2-tail t-test, p,0.05
uncorrected). The white and black dots represent brain areas pairs with increased and decreased synchronization in AD respectively. (b-d) A subset of
connectional differences corresponding to the matrix (a) are plotted at 3 superior-to-inferior levels through the AAL brain template: (b) = z53;
(c) = z73; (d) = z111. Lines depict synchronization between pairs of regions: solid lines = enhanced synchronization; dashed lines = reduced
synchronization. Note the pattern of generalized posterior (parietal and occipital) synchronization reductions and increased frontal synchronization.
doi:10.1371/journal.pone.0013788.g004
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clearer, with generalized synchronization decreases affecting both

brain lobes (Figure 4a–c). Furthermore, the vermis in AD shows

higher synchronization, particularly with the frontal cortex.

Similarly, the cerebellum also shows a relative increase in

synchronization with the frontal lobe and widespread synchroniza-

tion decreases with the parietal and occipital cortices (Figure 4d).

The regional changes in synchronization described are

translated into abnormal global connectivity patterns, particularly

evident regarding long-distance functional connections. Figure 5

illustrates the new pattern of long distance connections in AD,

demonstrating a net loss of functional connections between the

frontal lobe and the parietal and occipital cortices (Figure 5a and

5b, AD and healthy connectivity patterns respectively).

In summary, both hemispheres show a similar pattern on

internal synchronization differences between the experimental

groups: most of the increased AD synchronization involves the

frontal cortices, while generalized decreases are located at the

parietal and occipital regions. Furthermore, there is a remarkable

interhemispheric asymmetry as coupling of the lateral temporal

lobe with the orbital, medial and dorsal frontal cortices increases

within the right hemisphere. The effect is opposite in the left

hemisphere, where the synchronization of the temporal lobe only

Figure 5. Pattern of long-distance functional connections. Connectivity pattern of AD and healthy groups (left and right panels respectively).
Color-coded vertices correspond to individual AAL ROIs included in the orbital (yellow), medial (red) and dorsolateral frontal regions (light green), parietal
(deep green) and occipital lobes (gray), the cuneus and lingual cortices (black). Upper 2-dimensional graphs (orientation front-down and left-right)
represent the changes in functional connections: solid lines (left) correspond to increases and dashed lines decreases in connectivity in AD (right). Lower
figures (orientation front-left) represent the projections of AD (right) and healthy networks (left) embedded in a 3-dimensional AAL brain template. The
graphs demonstrate a net loss of long-distance fronto-parietal and fronto-occipital functional connections (for both groups, T = 0.05; K = 10).
doi:10.1371/journal.pone.0013788.g005
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shows reductions as compared to the control group. Therefore, a

typical AD pattern emerges in which frontal regions of the brain

show relatively higher mean levels of synchronization in contrast

with reduced functional coupling affecting parietal and occipital

cortices (Figure 4a for overall pattern). This effectively translates in

a global reduction of functional links between frontal and caudal

brain regions (Figure 5).

Discussion

Summary of the results
This study demonstrates a graph analysis of resting-state fMRI

BOLD time-series of Alzheimer patients and healthy controls

using synchronization likelihood (SL) as a measure of functional

coupling. The structure of the whole-brain average functional

network in the control group is of a small-world network. With

equivalent global average synchronization, the network in AD is

distinguished to the controls’ network by a relative randomization

of its architecture driven by a different connectivity pattern.

Graph analysis and Small-world classification
The analysis of whole-brain functional connectivity poses partic-

ular challenges. Arguably the most complex object in the universe, the

human brain generates an extensive and intricate map of functional

relationships. Due to the vast number of functional relationships

possible, the examination of its detail structure is often selective,

focusing on isolating subnetworks from the global network. We have

demonstrated that individually defined functional subnetworks [32]

can also be interpreted as constituents of a global activity pattern. The

application of graph analysis to a whole-brain functional network

reflects the aggregated functional topology of the brain networks in a

few measures with clear theoretical meaning. The global functional

topology can then be expressed in essential organizational principles,

like clustering and connectedness [28,49,50,51,52,53,54] and be used

to interpret global functional dynamics within a network model

[18,23]. Although the small-world network architecture is only an

approximate model of the brain networks, i.e. it doesn’t account for

physical distances between network elements, it provides a high-level

description of the implications of AD-induced changes in the global

functional state of the AD brain.

Small-world model: increased connectedness and
randomization in AD

The discrete connectivity changes induced by AD result in a

global reduction of the network’s characteristic path length. Our

results are confirmed in a recent study by Stam et al., which

reexamines functional connectivity in AD by means of magne-

toencephalograpy [35]. Similar to our methodology, Stam et al.

include the calculation of L using the harmonic instead of

arithmetic mean, to better handle infinite path lengths between

disconnected edges. Furthermore, it addresses the issue of volume

conduction using a new measure of functional synchrony (phase

lag index), comparable to SL but less influenced by common

sources. This refined analysis results in a reduced path length in

AD that is in contrast with earlier reports [18,27]. Therefore,

connectivity characterizing low-frequency synchronized brain

activity in AD, measured both by MEG and fMRI, seems to

move away from the optimal small-world network configuration.

The same trend towards randomness in AD networks described

above has been reported by Supekar et al. [17]. In contrast with

our results, Supekar et al. found a reduced clustering coefficient in

AD patients but an unchanged path length. Importantly, the basic

regional changes in functional correlations detailed by Supekar

et al. extensively coincide with the changes we describe using

synchronization likelihood: (1) AD increased functional connec-

tivity within the frontal cortices and between them and corpus

striatum and thalamus, and (2) decreased between the temporal

lobe and parietal and occipital cortices. The age of the participants

could be a confounding factor in the Supekar et al. study as the

population described included a wide age-range (+/218.5 years

approximately) compared to the one we have studied (+/26.5

years). Considering however the high level of coincidence between

Supekar et al. functional correlations and the synchronization

patterns hereby presented, only methodological differences could

explain the disparity of the graph analysis results. An important

distinction between both studies is the application of spatial

smoothing by Supekar et al. (4 mm full width half maximum

Gaussian kernel). This preprocessing step implies local time-series

averaging, which can generate spurious synchronization between

neighboring voxels. The effect of local data smoothing can

introduce differences between both groups examined due to the

higher degree of cortical atrophy characteristic in AD, which

emphasizes partial volume effects resulting in a lower cluster

coefficient for this group. In order to prevent this problem, in the

present study time-series averaging was only applied within the anatomic

regions defined by the AAL brain template.

According to the principles of the small-world theoretical model,

the decreased normalized path length of the AD network represents

a relative randomization of the functional topology of a healthy

brain network. The establishment of new intercluster connections

could explain the decreased path length. In AD, new intercluster

abnormal connections convey the risk of generating an uncontrolled

flow of information through the entire network [50,51].

Frontal-coupling and caudal-decoupling: long distance
connectivity loss

Most of the synchronization increases are localized in the frontal

lobes including the orbitofrontal, medial and dorsal frontal cortices.

Parietal, occipital cortices and precuneus harbor most of the

synchronization reductions. This regional distribution of synchro-

nization changes confirms the reported lack of functional connec-

tivity in subjects with amnesic mild cognitive impairment between

the temporal lobe structures and posterior brain areas [55] and it is

compatible with the suggested anterior-posterior disconnection in

AD [9,56,57]. Using synchronization likelihood as a measure of

functional connectivity in magnetoencephalographic recordings,

Stam et al. [27] reported similar fronto-parietal disconnections in

AD in both alpha and beta frequency bands. The present data set

was analyzed with tensor PICA, also demonstrating a decrease in

activity in AD patients compared with healthy subjects within the

dorsal visual-spatial attention system and DMN [7,8,55,58,59,60].

Our result also confirms previous reports showing parietal

deactivation as one of the characteristic features of the Alzheimer’s

brain activity patterns [61,62,63] for a review].

The parietal decrease in synchronicity coincides with the AD

network topology, reflecting an overall decrease in the number of

direct connections between frontal lobes and the parietal and

occipital cortices. The loss of long distance connections supports

the view of AD as a disconnection syndrome [1].

The pattern of increased dorsolateral prefrontal and cingulate

cortices activity in AD had been reported in the context of goal-

directed tasks [14,56]. Correlated to improved memory perfor-

mance in AD patients, prefrontal activity has been suggested to

facilitate a compensatory function [14]. Our data demonstrate that

these abnormal increases of functional synchronization within the

frontal cortices are also present during resting-state, confirming an

earlier report [9]. Moreover, this AD frontal activity pattern is
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clearly distinct from the hypofrontality syndrome characteristic of

schizophrenia [34].

Increased fronto-temporal synchronization
Within the DMN, the combination of individual ICA and

template matching procedure for group analysis [8] demonstrated

local bilateral decreases of activity in the hippocampus. This result

was not replicated by applying tensor PICA, although an ulterior

application of the template matching procedure on the same data

set did render similar results [11]. However, such a reduction in

activity must be interpreted as relative to the other the components

of the DMN, obviating the functional relationships of the

hippocampus and the temporal lobe with non-DMN areas. In

contrast with the studies above, our findings point to an

asymmetric connectivity pattern, with increased synchronization

in the right hemisphere, in contrast with decreased left side

synchronization both locally and with the frontal lobes. Impor-

tantly we found increased interhemispheric coupling between the

temporal poles. The observation of a global asymmetric pattern of

changes between rostral and caudal temporal lobe connectivity in

Alzheimer disease could explain the lack of consistency in previous

studies. In agreement with the described functional asymmetry in

the temporal lobe, Karas et al. also found asymmetry in gray

matter loss using VBM analysis, reporting greater left than right

mediotemporal lobe atrophy in AD [64].

Functional connectivity networks compared to cortical
thickness networks in AD

The integration of structural and functional networks represents a

critical challenge in connectivity research. The elegant study by He

et al. [19] on the analysis of cortical thickness intercorrelations

exemplifies this difficulty, describing a structural network character-

ized by a long path length that is in direct contrast with the presently

described shorter functional path length. How is it possible to

imagine the structure of a network with lower structural connectivity

and yet supporting higher functional connectivity? The effect of

compensatory activity on secondary atrophy sites can offer a

tentative explanation. Localized cortical atrophy might result from

secondary axonal and trans-synaptic degeneration following primary

injury ([65]; [66] for a review). This in turn can induce changes in

metabolism at brain regions far removed from the primary atrophy

site [67], some of which are of compensatory nature [14]. We

hypothesize that, in Alzheimer’s disease, compensatory increases in

functional connectivity could help maintain the functionality and

structural integrity of secondary atrophy sites, with two main

consequences at network level: 1) relative increases of cortical

thickness path length, and 2) relative decreases of functional path

length (Figure 6). Additionally, the rerouted functional flow could still

gain partial access to the rest of the network.

L reduction in AD: inter- and intra-cluster connectivity
changes

According to the small-world network model proposed by Watts

and Strogatz [23], a reduction of the small-world parameter L

depends on connectivity decreases within functional clusters and

their replacement by inter-cluster connections. An interaction of

both mechanisms explains the shorter L in AD. The identification

of the vertices of the network and the classification of both

functional and structural changes they undergo in AD could

describe the balance responsible for the decrease in path length

[25,59]. The effect of lesion modeling in network robustness

reveals the importance of this objective as the influence of the

lesion is likely to depend on the global embedding of the affected

vertex. In the context of structural networks, the removal of inter-

cluster vertices generates network-wide effects, while the influence

of intra-cluster vertices remains within the cluster [68]. In

particular, AD structural networks have been reported to be more

vulnerable to attacks on vertices with higher connectedness [19].

When lesions are modeled on functional networks, Stam et al.

show that network changes in AD are driven mainly by a

reduction of connections between highly connected vertices [35].

It is tempting to speculate that, as well as with lesion modeling, the

effect of compensatory activity hypothesized earlier (Figure 6)

might depend on the type of vertex implicated.

Although local processing advantages can be drawn from a

reduced L, the overall randomization of the network represents a

less optimal network organization [30,31,69]. The examination of

the system in patients in transition phases to AD, like MCI, will

help elucidate whether the described frontal hyperconnectivity is

part of the compensatory mechanisms described in early

Alzheimer patients [14].

Graph analysis in Alzheimer: methodological
considerations

Atrophy is a major factor in Alzheimer disease, and its brain

distribution and correlation to cognitive decline are well described

[64,70,71]. Due to local atrophy, the local average of time-series

per ROI could include signal derived from voxels corresponding

to CSF within the region of interest defined by the original AAL

mask, thereby introducing artificial differences between AD and

control subjects’ SL values for the same regions. We controlled for

artificial differences in functional coupling related to differential

atrophy rates by calculating a custom brain or midspace. Once

registered to the midspace, the resulting individual functional

sequences approximate the average size and shape of both

experimental groups, limiting atrophy and registration-related

artifacts. We hypothesized that, in the case of significant

differences in brain size due to atrophy, the graph analysis results

would vary depending on the registration to the ‘‘control-based’’

MNI152 or the ‘‘AD-weighted’’ midspace templates. The different

transformation procedures alter the original data resulting in

slightly different SL values. Importantly, both global synchroniza-

tion and the graph descriptors calculated remain unchanged,

independently of the registration method. This approach consti-

tutes a conservative correction for atrophy in order to avoid

potential overcorrection affecting small-sized ROIS, which would

lead to an artificially high signal.

Different SL values between subjects could also influence the

construction of the graphs. To study the differences in actual

topology between the AD and control graphs constructed, the

graph parameters C and L are computed per subject at a given

average number of edges per vertex (K), implying the application

of different thresholds to different subjects. Although there are no

significant differences for SL average values between the groups,

the fixing for K means that edges computed for different graphs do

no longer all have the same meaning as those in patients can be

based upon weaker synchronization levels. Nevertheless, control-

ling for K is the most rigorous way to compare networks in terms

of ‘pure’ topology [18,20].

Graph analysis provides a way to handle complex data sets with

numerous pair-wise comparisons in a relatively simple way,

reducing the number of comparisons to a small number

(normalized clustering coefficient and path length, for instance).

Based on the group differences demonstrated with graph analysis,

a post-hoc analysis was performed at the level of regional

synchronization differences between the groups with significantly

different path length. Similar regional patterns of significant
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synchronization differences are generated regardless the inclusion

of the cerebellum (defined as 26 subregions) and the different

registration methods applied (standard space or custom midspace).

The consistent results of the regional synchronization level post-

hoc analyses provide additional confidence for the interpretation

of the synchronization changes discussed. However, given the high

number of tests performed, local differences of synchronization

level comparisons cannot be analyzed with confidence. Classic

solutions for the multiple comparisons problem (like Bonferroni

correction or FDR) are too rigorous, and clustering-based

corrections (grouping of connected individually significant voxels

by imposing a single cluster extent threshold) may not be

appropriate given the different size of the original ROIs (see

Figure 4). Instead, we performed a cluster-based permutation test,

randomly repartitioning AD patients and controls over two

groups. By modeling data sets representing all possible combina-

tions of patients and controls, we tested for the likeliness of our

original result. The cluster-based permutation test corroborates

the high significance of the original path length differences

(p = 0.004). This result further supports the original pattern of

synchronization changes as the combination most likely to

generate the AD-related path length difference in our sample of

the population. Nevertheless, we conservatively describe only

patterns at a regional level and not pair-wise ROI differences.

Summary
In summary, we have demonstrated AD-induced changes in

global brain functional connectivity by analyzing low frequency

BOLD fMRI fluctuations during resting state condition. Critically,

this study demonstrates a randomization of the brain functional

networks in AD, suggesting a loss of global information integration

in disease. Our results describe the functional differences between

frontal and the parietal and occipital lobes in AD, supporting the

anterior-posterior disconnection theory.
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