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Abstract

Background: While much progress has been made in understanding stem cell (SC) function, a complete description of the
molecular mechanisms regulating SCs is not yet established. This lack of knowledge is a major barrier holding back the
discovery of therapeutic uses of SCs. We investigated the value of a novel meta-analysis of microarray gene expression in
mouse SCs to aid the elucidation of regulatory mechanisms common to SCs and particular SC types.

Methodology/Principal Findings: We added value to previously published microarray gene expression data by
characterizing the promoter type likely to regulate transcription. Promoters of up-regulated genes in SCs were characterized
in terms of alternative promoter (AP) usage and CpG-richness, with the aim of correlating features known to affect
transcriptional control with SC function. We found that SCs have a higher proportion of up-regulated genes using CpG-rich
promoters compared with the negative controls. Comparing subsets of SC type with the controls a slightly different story
unfolds. The differences between the proliferating adult SCs and the embryonic SCs versus the negative controls are
statistically significant. Whilst the difference between the quiescent adult SCs compared with the negative controls is not. On
examination of AP usage, no difference was observed between SCs and the controls. However, comparing the subsets of SC
type with the controls, the quiescent adult SCs are found to up-regulate a larger proportion of genes that have APs compared
to the controls and the converse is true for the proliferating adult SCs and the embryonic SCs.

Conclusions/Significance: These findings suggest that looking at features associated with control of transcription is a
promising future approach for characterizing ‘‘stemness’’ and that further investigations of stemness could benefit from
separate considerations of different SC states. For example, ‘‘proliferating-stemness’’ is shown here, in terms of promoter
usage, to be distinct from ‘‘quiescent-stemness’’.
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Introduction

Stem cells (SCs) have extensive self-renewal capacity and can

differentiate into a wide variety of cell types. These are the two

defining properties that distinguish SCs from fully differentiated

cells. Also central to the study of SCs is the concept of ‘‘stemness’’,

a term coined by biologists to refer to the common genes and

mechanisms regulating SC function [1]. Stemness has proved to

be an elusive concept to define in terms of individual genes and

this has been attributed to the differences in experimental

conditions such as the starting SC population and purity [2,3].

Given that SCs share similar properties, it still remains an

attractive proposition to search for the common biological themes

and regulatory mechanisms controlling SC function. Whilst much

progress has been made to understand the molecular basis of SC

function, the description of the molecular control mechanisms

common to SCs and to given SC types is incomplete. These are

some of the bottle necks that prevent the use of SCs in the

treatment of a wider range of diseases.

Complete information regarding the control of gene expression in

SCs is necessary to understand the regulation of self–renewal and

differentiation. A large number of experiments have shown that the

methylation of promoter CpG-islands and histone modifications

have an important role in gene silencing and play a central role to

genomic imprinting [4,5]. To exemplify the role of CpG-islands in

the control of mouse embryonic SC gene expression, bivalent

domains have been characterized as specific modification patterns

comprising larger regions of H3 lysine 27 methylation containing

smaller regions of H3 lysine 4 methylation [6]. In the genome these

bivalent domains largely correlate with the mammalian conserved

non-coding elements, the CpG-islands and the transcription factor

genes [6]. Bernstein and co-workers (2006) propose that bivalent

domains have a role in silencing genes in embryonic SCs ‘‘while

keeping them poised for activation’’. The methods used include

histone methylation experiments and bioinformatics techniques.

Whilst the role of these domain features has been characterized in

embryonic SCs, very little is known about the adult SCs where few

such studies have been carried out [7,8].

Here, a novel meta-analysis of microarray gene expression data

to investigate the properties of promoters of up-regulated genes in

mouse SCs is described (Fig 1). The promoters of genes are

characterized in broad terms such as being CpG-rich or CpG-
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poor and whether the gene is known to have a single promoter

(SP) or has alternate promoters (APs). A widely accepted definition

of a CpG-island is a genomic region which is longer than 200 bp

with high (G+C) content (.50%) and a ratio of observed to expected

CpG-dinucleotide greater than that typically found in the genome

(.0.6) [9]. The observed versus expected ratio of CpG is normally

suppressed in mammalian genome (<0.1). CpG-islands are in and

near approximately 40% of promoters of mammalian genes and

with respect to actual frequencies of CpG-islands, the mouse genome

contains about 15,500 whilst that of human contains about 27,000

[10]; the mouse genome has about a 40% decrease in the number of

CpG-islands compared with the human genome.

Figure 1. A schematic describing the work flow of the analysis.
doi:10.1371/journal.pone.0002712.g001
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The promoter is the genomic sequence located immediately

upstream of the transcriptional start site and is defined by the 59

end of an mRNA transcript. It is a regulatory region that binds the

transacting factors required to control gene transcription. A gene

has APs if it has multiple transcripts that differ in their 59 termini

[11,12]. Recent studies estimate that the percentages of genes

controlled by APs in mouse and human are 28% and 52%

respectively [13]. It is widely accepted that APs are used to drive

tissue-specific gene expression, gene expression in development

and differentiation processes. AP usage contributes also to the

complexity of the mammalian proteome through the generation of

different proteins [11–15]. An understanding of the SC tran-

scriptome is an important step to understanding the mechanisms

regulating biological properties of SCs. Studies that examine the

promoters of active genes in SCs are sparse in the scientific

literature. There are very few scientific research papers investi-

gating the AP usage in SCs. One relevant and recent study based

on ChIP-chip analyses of promoters compared mouse embryonic

SCs with fully differentiated tissue and estimated that 28% of

genes with RNA polymerase II binding utilize APs [16].

One of the aims of this meta-analysis is to quantify the promoter

CpG-richness and AP usage of up-regulated genes in embryonic

SCs and establish if it is similar to that of adult SCs. The SCs

included in this study originate from different sources (eg.,

embryonic SCs, neural SCs, retinal SCs, haematopoetic SCs

and satellite SCs). Quiescent adult SCs and proliferating adult SCs

are included. The microarray gene expression data generated

from five independent research groups are reviewed (Table 1).

This study focuses on the up-regulated genes in mouse SCs and

not human SCs due to differences in the number of CpG-islands

between human and mouse [10], the significant species differences

that occur in the AP usage between mouse and human [13] and

the absence of equivalent human SC molecular profiling studies.

Methods

The methods consist of four parts (Fig 1). The first part involves

extracting the lists of up-regulated genes in SCs from various

microarray studies (Table 1). The second part classifies the

promoters of up-regulated SC genes to belong to one of four

types–CpG-rich AP, CpG-poor AP, CpG-rich SP and CpG-poor

SP [as defined in 15]. The third part identifies AP usage of up-

regulated SC genes by extracting the promoter sequences from

transcripts of genes in the Ensembl database [22,23] using

bioinformatics tools to assess for promoter CpG-richness. The

fourth part describes over-represented gene ontology (GO)

categories determined for the up-regulated SC genes based on

their promoter classification.

Collecting Lists of Up-regulated Genes in Stem cells
The gene lists collated are up-regulated genes for various types

of SCs published by five different research groups (Table 1). The

details for each gene list were obtained from the supplementary

data of the published research. There are 18 data sets classed by

cell type or developmental stage (Table 1). Three different sets of

gene lists are collated as negative controls (Table 2). These

control data sets are obtained from different analyses. The first set

comprises profiled gene expression from 45 mouse samples across

a diverse array of tissues, organs and cell lines [21] and also mouse

mature blood cells [18]. The second set of gene lists comprises

either 10% or 15% of mouse genes from mgu74av2 chip randomly

sampled and were derived as part of this analysis. The third set of

control gene lists comprises the mouse identifiers in the Baek et al

(2007) study [15].

Classifying Promoters of Up-Regulated SC Genes using
the Baek et al Data

Baek and co-workers (2007) characterized 12,025 promoter

regions that are conserved between mouse and human. Of these,

1080 could be reliably assigned as APs and 3109 as SPs. They classed

each promoter as ‘‘CpG-rich’’ if the flanking genomic region

significantly overlaps one or more CpG-islands or as ‘‘CpG-poor’’

otherwise. According to their classification scheme, the properties of

up-regulated SC genes in the four promoter classes (CpG-rich AP,

CpG-poor AP, CpG-rich SP and CpG-poor SP) are considered.

This section describes the mapping of up-regulated SC genes

(Table 1) to previously characterized genes and their promoters in

mouse and human [15]. The promoters and the corresponding

genes (ie., the mouse and human isoforms) are identified by the

RefSeq names and the EMBL/DDBJ/GenBank accession numbers

[15]. Some mouse isoforms are referenced by the MGI Clone

identifiers. To be able to identify common genes between the two

different types of data sets, ie., the data from Baek et al study [15] and

from our study, it was necessary to obtain three types of identifiers

(the accession number, the RefSeq name and the MGI Clone

identifier) for each mouse probe (Table 1). The accession numbers

and the RefSeq identifiers were extracted for the probes using

Bioconductor [24]. A pipeline was designed to identify the MGI

Clone identifier for mouse probes. The pipeline uses two files

(MGI_EntrezGene.rpt and MGI_CloneSet_RIKEN.rpt) from the

MGI Data and Statistical Reports FTP Site ftp://ftp.informatics.jax.

org/pub/reports/index.html. The pipeline included the following

three steps. (a) Mapping the probe identifier to the Entrez Gene

identifier using Bioconductor functions; Bioconductor version 2.0

and R version 2.5.0 were used. (b) Mapping the Entrez Gene

identifier to the MGI Marker identifier. (c) Mapping the MGI

Marker identifier to the MGI Clone identifier. These processes are

automated with PERL scripts developed in-house. Lastly, a set of

java classes was developed to compare the RefSeq identifiers, the

accession numbers and the MGI Clone identifiers between the up-

regulated SC genes (Table 1) and the genes from the Baek et al

(2007) study [15].

Classifying Promoters of Up-Regulated SC Genes using
Bioinformatics

The entrez gene identifiers of up-regulated SC genes (Table 1)

were used to extract 1500 bp upstream and 1500 bp downstream of

genomic sequence from the transcription start site. The promoter

regions were extracted from the Ensembl database using the PERL

Ensembl API [22,23]. The NCBI m37 assembly of the mouse

genome was used (Ensembl gene build Oct 2007; database version

48.37a; Ensembl PERL API release 48). A PERL algorithm was

developed to define APs. For each gene, the coordinates of the

transcription start sites (TSSs) were extracted using the Ensembl

PERL API. The TSS coordinates were sorted in ascending order. A

genome wide study to identify and characterize APs of human genes

was previously carried out using the clustering of capped full length

cDNAs and comparing the clusters with the genome sequence and

known RefSeq genes. This study provides strong evidence that the

true APs are most likely to be separated by at least 500 bp [25]. The

APs were identified in this analysis here using a similar definition to

previous studies with respect to being at least 500 bp apart from each

other [15,25]. The most 59 terminal TSS(i) was used as the reference

point to search for a downstream TSS(i+1) which passes the filter. If a

new TSS(i+1) was identified, it was taken as the updated reference

point to search for the next downstream TSS(i+2) and so on until no

more could be found. All the promoter sequences were extracted

from Ensembl and used as input for an EMBOSS program [26]
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newcpgreport to report the CpG-rich regions. EMBOSS release

5.0.0 was used. Each gene is described as having a SP or APs. Each

gene is described as CpG-rich, CpG-mixed or CpG-less. CpG-rich

describe the scenario in which all the promoters for the gene have a

CpG-island. A gene is CpG-less when none of the promoters have

CpG-islands. A gene belongs to the CpG-mixed category when it has

APs and at least one promoter has CpG-islands and at least one

promoter has none. PERL programs were written to perform these

classifications.

Over-Represented GO Terms in the Different Categories
of Data

Two comparisons were performed. GOstats [27], a Bioconductor

package written in R, was used to examine gene ontology (GO) terms

[28] that are statistically over-represented in the various data sets

(Tables 1, 2) and the promoter categories (Fig 2). Over-represented

GO terms for given data sets were calculated using a classical hyper-

geometric statistical comparison against a reference gene list using

GOstats. The up-regulated genes expressed in mouse SCs were

compared with the genes present on the microarray chip on which

the experiment was carried out. The GO term identifiers were

included in the study if they are present in the microarray chip with a

frequency higher than 8 and if the GO term identifier is present with

a frequency equal to or higher than 8 (out of the 24 data sets). Over-

represented GO terms for genes that belong to a given promoter

class were calculated using a reference gene list. The reference gene

list is the member genes of the four promoter classes plus the

unclassified genes. The GO term identifiers were included in the

study if they are present in the reference gene list and if the GO term

identifier is present with a frequency equal to or higher than 6 (out of

the 24 data sets). The Baek_mm data set was excluded (Table 2).

Table 1. The up-regulated gene lists from the 18 different SC microarray experiments included in the meta-analysis.

Data set Description
Number of
Genes Reference, species and microarray chip

Ramalhosantos_ESC ESCs 1788 Ramalho Santos et al 2002 [17] (mouse; mgu74av2)

Ramalhosantos_NSC Adult NSCs 2458

Ramalhosantos_HSC Adult HSCs 1977

Fortunel_ESC ESCs 1687 Fortunel et al 2003 [3] (mouse; mgu74av2)

Fortunel_NPC Adult NPCs 1737

Fortunel_RPC Adult RPCs 2230

Ivanova_ESC ESCs 757 Ivanova et al 2002 [18] (mouse; mgu74av2)

Ivanova_NSC Adult NSCs 830

Ivanova_HSC Adult HSCs 908

Venezia_adult_liver_HSC Adult liver HSCs 955 Venezia et al 2004 [19] (mouse; mgu74av2)

Venezia_fetal_liver_HSC Fetal liver HSCs 817

Venezia_5FU Genes that change over 5FU time course 1488

Venezia_pgp Genes expressed on day (2,3 & 6) after 5FU treatment 680

Venezia_psig Gene expressed (Venezia fetal liver>Venezia_pgp) 338

Venezia_qgp Gene expressed on day (0,1,10 & 30) after 5FU treatment 808

Venezia_qsig Genes expressed (Venezia adult HSCs>Venezia_qgp) 298

Fukada_Satellite_Proliferating Activated satellite cells in adult skeletal muscle 507 Fukada et al 2007 [20] (mouse; moe430)

Fukada_Satellite_Quiescent Quiescent satellite cells in adult skeletal muscle 659

The key to abbreviations: SC - stem cell; ESC - embryonic SC; HSC - haematopoietic SC; NSC - neural SC; NPC - neural progenitor cell; RPC - retinal progenitor cell. The
pyrimidine analog 5-fluorouracil (5FU) kills cycling HSCs. The spared quiescent HSCs go into cycle after 5FU treatment to re-populate and this is analyzed in the form of
a time series [19]. In Figs 2 & 5 venezia_adult_liver is equivalent to venezia_adult_liver_HSC.
doi:10.1371/journal.pone.0002712.t001

Table 2. The seven negative control sets included in the meta-analysis.

Data set Description Number of genes Reference, species and microarray chip

Suai_mm Differentiated tissue–42 tissue types 256 Su et al 2002 [21] (mouse;mgu74a)

Ivanova_MBC_mgu74av2_2 Mature Blood Cells 224 Ivanova et al 2002 [18] (mouse; mgu74av2)

Random_mgu74av2_2 ,10% of chip sampled 1250 Generated in this study (mouse; mgu74av2)

Random_mgu74av2_15P1 ,15% of chip sampled 1900

Random_mgu74av2_15P2 ,15% of chip sampled 1900

Random_mgu74av2_15P3 ,15% of chip sampled 1899

Baek_mm Transcripts with promoters categorized (mouse) 4189 Baek et al 2007 [15] (mouse;na)

The key to abbreviation: na - not applicable.
doi:10.1371/journal.pone.0002712.t002
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For both comparisons, the entrez gene identifiers were used for gene

identification. A PERL script was written to automate this process

and perform this analysis.

Results

Classifying Promoters of SC Genes using the method
outlined in Part 2 (Fig 1)

The genes are categorised to have one of four promoter types

according to the Baek et al scheme (CpG-rich AP, CpG-poor AP,

CpG-rich SP and CpG-poor SP) (Fig 2; Fig S1). This scheme

considers genes and promoter sequences conserved in human and

mouse. The key findings are discussed in the following six

subsections.

(1) In comparison with the controls, the SCs have a higher

proportion of genes using the CpG-rich SPs and a lower

proportion of genes using the CpG-poor SPs. Comparing

the SCs and the controls, the differences in the CpG usage

are confined to the SP categories and not the APs. (i) The

SCs (mean = 72.9%) have a higher proportion of up-regulated

genes with CpG-rich SPs compared with the negative controls

(mean = 59.5%) (Table 3; Fig 2C). (ii) The SCs (mean = 4.2%)

have a lower proportion of up-regulated genes with CpG-poor SPs

compared with the negative controls (mean = 16.2%) (Table 3;
Fig 2D). (iii) The SCs (mean = 18.6%) have similar proportions of

up-regulated genes with CpG-rich APs compared to the negative

controls (mean = 18.1%) (Table 3; Fig 2A). (iv) The SCs

(mean = 4.2%) have a slightly lower proportion of up-regulated

genes with CpG-poor APs compared to the negative controls

(mean = 6.2%) (Table 3; Fig 2B). For the two alternate promoter

categories (CpG-rich AP and CpG-poor AP), the percentage of

genes in the SCs compared to the negative controls differs by less

than 2.0%. This difference is small and statistically insignificant.

The opposite is true for the SP categories (CpG-rich SP and CpG-

poor SP) where the difference between SCs and non SCs is large

and statistically significant (Table 4).

(2) The embryonic SCs and the proliferating adult SCs

use a higher proportion of CpG-rich SPs compared with the

controls and the quiescent adult SCs. (i) The proliferating

adult SCs (mean = 87.3%) have the highest proportion of up-

regulated genes using CpG-rich SPs closely followed by the

embryonic SCs (mean = 78.7%) and thirdly by the adult SCs

(mean = 70.7%). These three SC types use the CpG-rich SPs to a

greater extent compared with the quiescent adult SCs and the

negative controls (Table 5; Fig 2C). The quiescent adult SCs

(mean = 56.8%) and the negative controls (mean = 59.5%) are

similar in their use of the CpG-rich SPs. High usage of the CpG-

rich SPs is defined as a property of the embryonic SCs and the

proliferating adult SCs (Table 6). (ii) The proliferating adult SCs

(mean = 2.4%), the embryonic SCs (mean = 3.4%), the adult SCs

(mean = 4.1%) and the quiescent adult SCs (mean = 7.6%) are in

consensus with respect to the usage of CpG-poor SPs. All four SC

types use this promoter class to a lower extent compared with the

negative controls (mean = 16.2%). All SC types are statistically

similar with each other and statistically differ from the non SCs

(Table 5; Fig 2D). Examining the individual percentages and

with the exception of 2 outliers namely, ivanova_HSC_mgu74av2

and fukada_satellite_Q, all the SCs have less than 7% usage of

Figure 2. The distribution of genes classed according to the four promoter types (A) CpG-rich AP, (B) CpG-poor AP, (C) CpG-rich SP
and (D) CpG-poor SP. The standard error for the percentages are calculated using the equation (p*(1002p)/n)0.5 where p is the percentage of
genes that belong to a given promoter type and n is the total number of genes classified. The standard errors for the percentages are plotted as error
bars. See Fig S1.
doi:10.1371/journal.pone.0002712.g002
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CpG-poor SPs (Fig 2D). Low usage of CpG-poor SPs is reported

as a property of stemness (Tables 4, 6).

(3) The quiescent adult SCs up-regulate a higher

proportion of genes that have CpG-rich APs compared to

the controls and the proliferating adult SCs. (i) The

quiescent adult SCs (mean = 26.8%) differ in their use of the

CpG-rich APs compared with the proliferating adult SCs

(mean = 9.6%), the embryonic SCs (mean = 15.6%) and the

negative controls (mean = 18.1%) (Fig 2A; Tables 6, 7). (ii)
The embryonic SCs (mean = 2.3%) and the proliferating adult SCs

(mean = 0.7%) are similar in that they use the CpG–poor APs

minimally compared with the adult SCs (mean = 4.7%), the

quiescent adult SCs (mean = 8.9%) and the negative controls

(mean = 6.2%) (Fig 2B; Table 7). The two adult SC states

(quiescent and proliferating) are observed to have distinct patterns

in promoter usage. With respect to the CpG-rich AP usage, the

quiescent adult SCs are similar to the negative controls and both of

these differ from the embryonic SCs and the proliferating adult

SCs. With respect to the CpG-poor AP usage the converse is true,

the proliferating adult SCs and the embryonic SCs are similar to

the negative controls and these three differ statistically from the

quiescent adult SCs.

(4) CpG-islands are found in the promoters of active genes

in SCs more often than in the controls. The AP and the SP

classes are merged so the CpG-rich (CpG-rich SP and CpG-rich AP)

and the CpG-poor (CpG-poor SP and CpG-poor AP) classes are

considered (Fig 3A; Tables 8, 9). (i) The SCs (mean = 91.6%) have

a higher proportion of up-regulated genes using the CpG-rich

promoters compared with the negative controls (mean = 77.6%).

There is a large difference (,15%) between the two means which is

statistically significant (Table 8). The proliferating adult SCs

(mean = 96.9%), the embryonic SCs (mean = 94.3%), the adult

SCs (mean = 91.2%) and the quiescent adult SCs (mean = 83.5%)

make higher use of the CpG-rich promoters compared with the

negative controls (mean = 77.6%). The first three comparisons show

statistically significant differences compared to the negative controls

(Table 9) and the fourth comparison (ie., the quiescent adult SCs

versus the negative controls) is not statistically significant. The

proliferating adult SCs (mean = 96.9%) use a higher proportion of

up-regulated genes with CpG-rich promoters than the quiescent

adult SCs (mean = 83.5%). (ii) The adult SCs differ from the

embryonic SCs and the proliferating adult SCs by a small value (less

than 6%) which is statistically significant (Table 9). High usage of

CpG-rich promoters is essentially a property of the embryonic SCs

and the proliferating adult SCs.

(5) There is no difference in the AP usage between SCs and

the controls. The single (CpG-rich SP and CpG-poor SP) and the

alternative (CpG-rich AP and CpG-poor AP) promoter types

(Fig 3B; Table 8) are considered. The difference in the

percentage of genes using APs in the SCs and the negative

controls is small (less than 2.0%) and statistically insignificant

(Tables 4, 8).

(6) The quiescent adult SCs up-regulate a larger proportion

of genes that have APs compared with the controls and the

Table 3. The distribution of promoter usage in the SCs and
the negative controls (NCs); four promoter categories are
shown.

Promoter type Mean6Standard Deviation P-value

SC NC

CpG-rich AP 18.6267.57 18.1262.81 0.8106

CpG-poor AP 4.2162.85 6.1962.32 0.0941

CpG-rich SP 72.93612.00 59.5067.16 0.00288

CpG-poor SP 4.2462.94 16.1865.88 0.001240

P-values calculated using the Welch two sample t-tests. The promoters are
characterized using the Baek et al (2007) scheme.
doi:10.1371/journal.pone.0002712.t003

Table 5. The distribution of promoter usage in the SC types and the negative controls (NCs); the upper right section of the table
considers the CpG-rich SPs and the lower left section considers the CpG-poor SPs.

*************** ASC (70.7368.63) ESC (78.7265.53) PASC (87.2969.01) QASC (56.7566.93) NC (59.5067.16) ***************

ASC (4.1162.89) *************** 0.08415 0.05993 0.04319 0.01649 ASC (70.7368.63)

ESC (3.3960.78) 0.5229 *************** 0.2384 0.01210 0.001145 ESC (78.7265.53)

pASC (2.3561.81) 0.2732 0.4329 *************** 0.01123 0.01596 pASC (87.2969.01)

qASC (7.5864.03) 0.2714 0.2107 0.1402 *************** 0.6 qASC (56.7566.93)

NC (16.1865.88) 0.0009633 0.001057 0.0005378 0.03875 *************** NC (59.5067.16)

*************** ASC (4.1162.89) ESC (3.3960.78) pASC (2.3561.81) qASC (7.5864.03) NC (16.1865.88) ***************

P-values calculated using the Welch two sample t-tests. The promoters are characterized using the Baek et al (2007) scheme. The key to the abbreviations: ESC -
embryonic SC; ASC - adult SC; qASC - quiescent adult SC; pASC - proliferating adult SC; NC - negative control. The first and the last rows and columns provide the SC
type and the mean6the standard deviation are given in parenthesis.
doi:10.1371/journal.pone.0002712.t005

Table 4. The promoter usage in the SCs compared with the
negative controls.

AP SP

CpG-rich < .

CpG-poor < ,

doi:10.1371/journal.pone.0002712.t004

Table 6. The promoter usage in the quiescence SCs
compared with the proliferating SCs.

AP SP

CpG-rich .. ,,,

CpG-poor . <

doi:10.1371/journal.pone.0002712.t006
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Table 7. The distribution of promoter usage in the different SC types and the negative controls (NCs); the upper right section of
the table shows the CpG-rich APs and the lower left section the CpG-poor APs.

*************** ASC (20.4366.28) ESC (15.6365.16) PASC (9.6366.51) QASC (26.7963.85) NC (18.1262.81) ***************

ASC (4.7361.02) *************** 0.1989 0.07734 0.08772 0.3703 ASC (20.4366.28)

ESC (2.2760.96) 0.005404 *************** 0.2630 0.02206 0.4211 ESC (15.6365.16)

pASC (0.7360.74) 0.0007444 0.06135 *************** 0.02536 0.1438 pASC (9.6366.51)

qASC (8.8762.04) 0.06095 0.01845 0.01236 *************** 0.03970 qASC (26.7963.85)

NC (6.1962.32) 0.1607 0.003795 0.0005364 0.1361 *************** NC (18.1262.81)

*************** ASC (4.7361.02) ESC (2.2760.96) pASC (0.7360.74) qASC (8.8762.04) NC (6.1962.32) ***************

P-values calculated using the Welch two sample t-tests. The promoters are characterized using the Baek et al (2007) scheme. The notes for Table 5 provide further
explanations.
doi:10.1371/journal.pone.0002712.t007

Figure 3. The percentage of the genes classed according to the promoter type. The promoters are characterised based on the Baek et al
2007 scheme. Consideration is given to (A) the genes using CpG-rich and CpG-poor promoters and (B) the genes with single and alternative
promoters.
doi:10.1371/journal.pone.0002712.g003
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proliferating adult SCs. The quiescent adult SCs

(mean = 35.7%) have a higher proportion of up-regulated genes

using the APs compared to the controls (mean = 24.3%), the

proliferating adult SCs (mean = 10.4%) and the embryonic SCs

(mean = 17.9%) (Fig 3B; Tables 6, 9). These differences are

appreciable and statistically significant. Additionally, in the adult

SCs, AP usage is reduced by 10.5% compared with the quiescent

adult SCs and increased by 14.8% compared with the proliferating

adult SCs. Both these differences are statistically significant.

Classifying Promoters of SC Genes using the method
outlined in Part 3 (Fig 1)

This second study is based on mouse genes and the property of

conservation is not given consideration. The promoter sequences

of mouse SC genes were extracted from Ensembl and char-

acterised in terms of CpG-islands and APs using the Bioinfor-

matics analysis outlined in part 3 of methods (Fig 1).

(1) CpG-islands are found in the promoters of active

genes in SCs more often than in the controls. The

promoters of genes that are CpG-rich and CpG-poor are

considered in the context of SCs and non SCs (Fig 4A;
Tables 10, 11). The SCs (mean = 41.3%) have a higher

proportion of up-regulated genes using the CpG-rich promoters

compared with the negative controls (mean = 34.2%). There is

approximately 6% difference between the two means and this

difference is statistically significant (Table 10).
(2) In terms of CpG-islands in the promoters of genes, the

embryonic and the proliferating adult SCs use a higher

proportion of genes with these promoter types than the

controls whilst the quiescent adult SCs are similar to the

controls. One of the aims of the investigation is to quantify the

usage of CpG-rich promoters of up-regulated genes in the

embryonic SCs and establish if this property is similar to that of

the adult SCs. The proliferating adult SCs (mean = 42.0%), the

embryonic SCs (mean = 42.8%), the adult SCs (mean = 41.7%)

and the quiescent adult SCs (mean = 37.5%) make higher use of

the CpG-rich promoters compared with the negative controls

(mean = 34.4%). The first three data sets show statistically

significant differences compared with the negative controls

(Table 11). However the fourth SC data set - the quiescent

adult SC compared with the negative controls exhibits no

statistically significant difference. Whilst statistically significant

differences are not observed between the different SC types,

statistically significant differences are observed with the SCs versus

the negative controls for three out of the four SC types.

(3) There is no difference in the AP usage between the SCs

and the controls. Each gene is classed as having either a SP or

APs and the differences in usage is described for the SCs and non

SCs (Fig 4B; Table 10). The difference in the percentage of

genes with APs in the SCs and the negative controls is small (less

than 1%) and statistically insignificant (Table 10).

(4) The quiescent adult SCs up-regulate a larger proportion

of genes that have APs compared with the proliferating adult

SCs. The quiescent adult SCs (mean = 22.6%) have a higher

proportion of up-regulated genes using the APs compared with the

proliferating adult SCs (mean = 15.2%) and the embryonic SCs

(mean = 19.0%). Both these comparisons show statistically significant

differences (Fig 4B; Table 11).

Comparing the results obtained from the two
classification schemes

This section compares and contrasts the results obtained from

the two classification schemes (parts 2 and 3 of work flow; Fig 1).

The Baek et al classification is based on the promoters and the

genes conserved in mouse and human. The second study is based

on mouse genes and the property of conservation is not given

consideration. When the genes and the promoters are conserved in

human and mouse, both SC and non SC populations have double

the proportion of genes that are CpG-rich than when conservation

is not considered (Figs 3, 4; Tables 8, 10). Considering the

differences between the SC and the non SC populations in each

study, 14.0% (91.6–77.6%; Table 8) and 6.1% (41.3–34.2%;

Table 10) more SC genes have CpG-islands compared to the non

SC populations using the classification scheme of Baek et al (2007)

and the scheme based on the data extracted from Ensembl and

newcpgreport annotations respectively (Fig 1). The difference

between both SCs and non SC populations again is increased by a

factor of 2 when the genes and the promoters are conserved in

Table 8. The distribution of promoter usage in the SCs and
the negative controls (NCs); CpG-richness and AP usage are
considered.

Promoter type Mean6Standard Deviation P-value

SC NC

CpG-rich 91.5665.37 77.6267.30 0.001455

AP 22.8369.92 24.3264.00 0.5986

P-values calculated using the Welch two sample t-tests. The promoters are
classified using the Baek et al (2007) scheme. The notes for Table 5 provide
further explanations.
doi:10.1371/journal.pone.0002712.t008

Table 9. The distribution of promoter usage in the different SC types and the negative controls (NCs); the upper right section of
the table considers CpG-richness, whilst the lower left section considers AP usage.

*************** ASC (91.1663.55) ESC (94.3561.20) PASC (96.9262.51) QASC (83.5466.08) NC (77.6267.30) ***************

ASC (25.1666.95) *************** 0.04634 0.02793 0.1502 0.001849 ASC (91.1663.55)

ESC (17.9065.54) 0.08772 *************** 0.2094 0.08717 0.0007531 ESC (94.3561.20)

pASC (10.3667.21) 0.04471 0.2126 *************** 0.04675 0.0002692 pASC (96.9262.51)

qASC (35.6664.25) 0.02222 0.004974 0.01117 *************** 0.2462 qASC (83.5466.08)

NC (24.3264.00) 0.7759 0.09962 0.06397 0.02046 *************** NC (77.6267.30)

*************** ASC (25.1666.95) ESC (17.9065.54) pASC (10.3667.21) qASC (35.6664.25) NC (24.3264.00) ***************

P-values calculated using the Welch two sample t-tests. The Baek et al (2007) classification scheme is used. The notes for Table 5 provide further explanations.
doi:10.1371/journal.pone.0002712.t009

A Meta-Analysis of Stemness

PLoS ONE | www.plosone.org 8 July 2008 | Volume 3 | Issue 7 | e2712



human and mouse than when the conservation is not considered.

Based on the classification scheme of Baek et al (2007) and the

scheme outlined in part 3 (Fig 1) respectively, 1.5% (24.3–22.8%;

Table 8) and 0.6% (20.5–19.9%; Table 10) of genes have APs

when comparing SCs to the non SC populations. These are small

differences and neither are significant. In both studies, the

quiescent adult SCs up-regulate a larger proportion of genes that

have APs compared to the proliferating adult SCs (Tables 9, 11).

Based on the classification scheme of Baek et al (2007) and the

scheme outlined in part 3 (Fig 1) respectively, 15.3% (35.7–10.4%;

Table 9) and 6.3% (22.6–15.3%; Table 11) a larger proportion

of genes make use of APs in the quiescent adult SCs compared to

the proliferating adult SCs.

The trends obtained from the two classification schemes (parts 2

and 3 of work flow; Fig 1) are complementary and supportive.

However, the trends are emphasized in the first study compared to

the second study. This is most likely due to the conservation of the

promoters and the genes in human and mouse in the first study

which is not considered in the second study. Conserved non-

coding DNA sequences are found near genes involved in early

development processes and transcriptional control. The conserved

non coding sequences are enriched with regulatory regions such as

promoters and enhancers [29]. These regions are enriched with

CpG-islands and other regulatory signals for control mechanisms

and this observation supports the ethos that conserved genes that

have conserved promoters are most likely to share common

Figure 4. The percentages of the genes classed according to the promoter type. The promoters are characterised using the Bioinformatics
methods outlined in part 3 (Fig 1). The y-axis reports the percentage of genes using (A) CpG-rich promoters and (B) APs whilst the x-axis reports the
data sets analysed (Tables 1, 2).
doi:10.1371/journal.pone.0002712.g004
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regulatory features and mechanisms and this is especially true

when taking into account what is known about early develop-

mental processes in mammals and also transcriptional control

processes [6,29]. Lastly, the second study shows estimates of CpG-

islands and alternate usage of a similar order of magnitude

predicted in the mouse genome [10,13,16].

Over-Represented GO Terms in the Different Categories
of Data

Over-represented GO terms in up regulated genes in mouse

stem cells are examined. Two main studies are carried out. The

first takes a bird’s eye view of the relationships between over-

represented GO terms and various stem cell types. The second

study shows associations between over-represented GO terms and

the four different promoter types up-regulated in mouse SCs.

Over-Represented GO Terms associated with SC Types
Clustering the up-regulated genes in mouse SCs based on the

over-represented GO term identifiers clusters the data into three

groups (Fig 5; Table 12). The first contains the proliferating adult

SCs and the embryonic SCs, the second comprises the quiescent

adult SCs and the third contains the negative controls (Fig 5).

There are a few exceptions. For example, the ivanova_ESC data

clusters with the quiescent adult SCs and a few adult SCs

(proliferating and quiescence status unknown) cluster in one of the

three groups. The over-represented GO term identifiers in the

embryonic SCs and the proliferating adult SCs are associated with

mitosis (the mitotic cell cycle, DNA replication and DNA repair),

meiosis (the meiotic cell cycle and DNA recombination), DNA

packaging (any process by which DNA and associated proteins are

formed into a compact, orderly structure) and the generation of

the nucleotide building blocks (Table 12). RNA splicing, mRNA

processing, translation, protein folding, protein targeting and more

general categories are amongst the over-represented terms. The

over-represented GO term identifiers in the quiescent adult SCs

are associated with regulation: that is the regulation of cell cycle,

DNA dependent transcription, metabolic processes and cellular

processes. The two over-represented GO terms, not associated with

regulation, are transcription and RNA biosynthetic process

(Table 12). The quiescent adult SCs are enriched with GO terms

associated with regulation, whereas the proliferating adult SCs and

the embryonic SCs focus on GO terms that are more general in

scope. To exemplify, the nucleobase, nucleoside, nucleotide and

nucleic acid metabolic process (GO:0006139) is used. This GO term

is over-represented in the cluster containing the proliferating adult

SCs and the embryonic SCs. Whilst, the regulation of nucleobase,

nucleoside, nucleotide and nucleic acid metabolic process

(GO:0019219) is over-represented in the quiescent adult SCs.

Additionally, this GO term is part of the nucleobase, nucleoside,

nucleotide and nucleic acid metabolic process. This suggests that the

proliferating adult SCs and the embryonic SCs are associated with

the higher order GO terms that include the regulation and suggests

that the quiescent adult SCs are focussed on the regulation of this

process. Similar analogies exist with the cell cycle GO terms.

The following functional categories are enriched in HSCs,

NSCs and ESCs: signalling, transcriptional regulation, DNA

repair, cell cycle regulation, cell death, RNA processing,

translation, protein folding, ubiquitin pathway, vesicle traffic and

toxic stress response [17]. Seven out of the eleven GO terms are

over-represented here (Table 12) whilst the remaining (4/11) GO

terms (signalling, vesicle traffic, cell death and toxic response) are

not over-represented (Table 12). In the study of Ivanova et al

(2002), the following functional groups were identified in HSCs

(metabolism, RNA binding proteins, apoptosis, protein processing,

protein folding, protein synthesis, DNA repair, cell cycle,

transporters, cytoskeletal proteins, ECM/cell adhesion, chromatin

regulators, transcription factors, intracellular signalling, surface

antigens, cell surface receptors and ligands) [18]. Eight out the

seventeen GO terms are over-represented here (Table 12) whilst

the remaining nine GO terms (RNA binding proteins, transport-

ers, cytoskeletal proteins, ECM/adhesion, intracellular signalling,

surface antigens, cell surface receptors, apoptosis, ligands), are not

over-represented here (Table 12). The Ivanova et al (2002) study

scores functional categories based on counts of genes with the

Table 10. The distribution of promoter usage; CpG-richness
and AP usage are considered to highlight differences between
SCs and non SCs.

Promoter type Mean6Standard Deviation P-value

SC NC

CpG-rich 41.3363.48 34.1562.44 0.0001072

CpG-less 53.5263.07 59.6562.61 0.0007695

CpG-mixed 5.1561.79 6.2060.68 0.04948

AP 19.8963.20 20.5261.88 0.5677

P-values calculated using the Welch two sample t-tests. The promoter
classifications rely on the methods described in part 3 (Fig 1). The notes for
Table 5 provide further explanations.
doi:10.1371/journal.pone.0002712.t010

Table 11. The distribution of the promoter usage in the different SC types and the negative controls (NCs); the upper right section
of table considers CpG-richness, whilst the lower left section considers the AP usage.

*************** ASC (41.7863.29) ESC (42.8461.76) PASC (41.9663.08) QASC (37.4764.78) NC (34.1562.44) ***************

ASC (21.0562.35) *************** 0.4831 0.9351 0.2536 0.0003197 ASC (41.7863.29)

ESC (19.0061.92) 0.1471 *************** 0.6879 0.1826 0.0001927 ESC (42.8461.76)

pASC (15.2563.26) 0.07146 0.1731 *************** 0.2542 0.02616 pASC (41.9663.08)

qASC (22.6361.08) 0.1668 0.02622 0.04777 *************** 0.3527 qASC (37.4764.78)

NC (20.5261.88) 0.6467 0.2580 0.09029 0.07264 *************** NC (34.1562.44)

*************** ASC (21.0562.35) ESC (19.0061.92) pASC (15.2563.26) qASC (22.6361.08) NC (20.5261.88) ***************

P-values calculated using the Welch two sample t-tests. The promoter classifications rely on the Bioinformatics methods described in part 3 (Fig 1). The notes for
Table 5 provide further explanations.
doi:10.1371/journal.pone.0002712.t011
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available functional annotation for a single SC type. The present

study investigates over-representation using a hyper geometric

model and employs a degree of consensus across multiple SC

types. The Venezia et al study (2004) resulted in the following GO

enrichments in HSCs (proliferating; ATP synthesis coupled

electron transport, DNA replication, cell cycle check point and

hydrogen transport: quiescent; regulation of cell cycle, defense

response, protein kinase cascade, cell-cell adhesion) [19]. Four out

of these were identified here (Table 12). The Fukada et al study

(2007) resulted in the following GO enrichments in satellite cells

(proliferating; synthesis of DNA, RNA, protein and progression of

cell cycle: quiescent; regulation of cell growth, TM receptor

protein tyrosine phosphatase signalling pathway, cell-cell adhesion)

[20]. Whilst all of the proliferating GO enrichments in the Fukada

et al (2007) study are identified here, none of the quiescent GO

terms are identified (Table 12). The aim of the meta-analyses

here, is to examine commonalities across SCs and SC types. There

are more GO terms over-represented that are specific to given

data sets in our analysis; many of these are not present at

frequencies high enough to pass the filters for consensus (methods).

The differences between the enrichment of GO terms in the five

independent studies plus this study here can be attributed, in part,

to the differences in the methods.

Over-Represented GO Terms associated with the Four
Promoter Types

Comparing the embryonic SCs with the controls, no biological

themes are observed for the GO terms over-represented in the

CpG-rich APs. In three out of the four embryonic SCs, the two

GO terms, the ribonucleoside and the uridine metabolic processes,

are over-represented (Table 13). Comparing the SCs with the

control sets some biological themes are over-represented in the

CpG-poor APs and surprisingly three of the GO terms (the

positive regulation of B-cell proliferation, the non-apoptotic

programmed cell death and the negative regulation of cyclin-

dependent protein kinase activity) are common to all the adult

neural SCs. Comparing the embryonic SCs with the controls, the

GO terms including the mitotic sister chromatid segregation, the

M-phase of mitotic cell cycle, the mitotic cell cycle and mitosis are

over-represented in the CpG-rich SPs. Themes such as the

electron transport and the immune response are over-represented

in the CpG-poor SPs (Table 13). Associations of GO terms with

promoter types were carried out previously [15]. A fair extent of

agreement exists between the types of GO terms established

previously [15] and those identified here. For example, both

investigations identify the GO term immune response with the

CpG-poor SPs. The differences observed could be due to

Figure 5. The over-represented GO terms in up-regulated genes of mouse SCs are shown. A heat map showing dendograms clustering
the GO terms (x-axis) associated with the different SC data sets (y-axis). The dendogram on the x-axis shows clusters of the various data sets into three
main categories. The cluster on the left (x-axis) comprises the negative controls, the cluster in the middle contains the adult SCs and the quiescent
adult SCs and the third cluster on the right (of x-axis) largely contains the embryonic and the proliferating adult SCs. The key to the abbreviations
follow: RS-Ramalho-Santos; Ve-Venezia; Fo-Fortunel; Iv-Ivanova; Ra-Random_mgu74av2; Fu-Fukada. The GO term identifiers are given in Table 12.
doi:10.1371/journal.pone.0002712.g005
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differences in methods, eg Baek et al (2007) masked genes

occurring higher in the list for given promoter types and the

predominant use of up-regulated genes in SCs (in this study)

compared with their whole genome study.

Discussion

This present work provides new insights regarding the roles of

non-coding regions of over-expressed genes in SCs; specifically, of

genomic regions in and around gene promoters. We focused our

analysis particularly on CpG-islands and on genes that have APs.

This is the first large scale survey of CpG-richness and AP usage for

up-regulated SC genes. We looked at five independent microarray

investigations of mouse SCs. These comprise 25 data sets, over

25,000 genes and over 75,000 promoters. It presents a broad proof of

concept that new observations can be obtained from the meta-

analysis of published gene lists generated from microarray gene

expression experiments. We show that mining of published gene lists

obtained from the microarray gene expression can be used to probe

underlying patterns of gene regulation. The study uses large volumes

of experimental data, and analyses it in ways that have not been

previously considered; that is, looking for information in non-coding

regions of genes, where previously only the coding regions have been

considered [2,3]. Thus providing new research directions in

analyzing microarray gene expression data. However, these data

are complex, and there are many challenges in re-analysing the

results of these types of experiments at scale. Some of the challenges

arise because of variations in how the original experiments were

conceived and carried out: that is platform-to-platform [30], lab-to-

lab [2,3] and, of course, species-to-species variability. Other

challenges include the lack of standards (e.g. gene naming) for data

formats, which make data handling problematic and time-

consuming; and critically, important data is sometimes ambiguous

or missing from database submissions and supplementary informa-

tion. This means that authors sometimes need to be contacted to

clarify certain issues with regards to the gene lists. In the present

work, the impact of platform-to-platform variability was minimized,

because much of the data included in the analysis was performed on

the mgu74av2 chip (Tables 1, 2). We eliminated species-to-species

effects by carrying out the entire analysis on mouse SCs. Problems

with gene naming were resolved by using the probe identifiers and

entrez gene identifiers as the starting point for the analyses, rather

than the gene names.

Relatively fewer laboratory–based experiments have been

performed on the adult SCs compared with the embryonic SCs,

with respect to DNA methylation and chromatin re-modelling [8].

The focus of research efforts has been on the embryonic SCs

[16,31]. CpG-islands are present in the promoters of up-regulated

genes of the embryonic SCs to a similar extent of that in the

proliferating adult SCs. The up-regulated genes in the embryonic

SCs and the adult SCs (with the exception of the quiescent adult

SCs) use higher proportions of promoters that are CpG-rich than

non-SCs. The results of this investigation suggest that CpG-

richness, whether from a proliferating adult SC or an embryonic

source, is an important feature for regulating gene expression in

SCs. This effect is reduced in the quiescent adult SCs. Our

observations suggest that epigenetic regulatory mechanisms such

as DNA methylation and/or chromatin re-modelling are impor-

tant features in the control of gene expression in the embryonic

SCs and the proliferating adult SCs and that these effects are used

in a different way in the adult quiescent SCs. Stemness has been

defined as an unproven notion [1]. This study brings to the fore

two related issues. Firstly, considering features associated with

control of transcription is a very promising approach for defining

Table 12. Over-represented GO term identifiers in 24 data
sets.

GO IDs Description

Over-represented GO terms
associated with cluster 1
comprising the embryonic SCs
and the proliferating adult SCs

GO:0000279 M phase

GO:0000278 Mitotic cell cycle

GO:0006260 DNA replication

GO: 0006270 DNA replication initiation

GO:0006397 mRNA processing

GO:0007067 Mitosis

GO:0008380 RNA splicing

GO:0006281 DNA repair

GO:0009719 Response to endogenous
stimulus

GO:0006511 Ubiquitin-dependent protein
catabolic process

GO:0006457 Protein folding

GO:0006605 Protein targeting

GO:0043632 Modification-dependent
macromolecule catabolic
process

GO:0051603 Proteolysis involved in
cellular protein catabolic
process

GO:0006412 Translation

GO:0006139 Nucleobase, nucleoside,
nucleotide and nucleic acid
metabolic process

GO:0051301 Cell division

GO:0007126 Meiosis

GO:0051321 Meiotic cell cycle

GO:0065003 Macromolecular complex
assembly

GO:0006310 DNA recombination

GO:0006323 DNA packaging

GO:0043283 Biopolymer metabolic
process

GO:0044238 Primary metabolic process

Over-represented GO terms
associated with cluster 2
containing the quiescent
adult SCs

GO:0019222 Regulation of metabolic
process

GO:0019219 Regulation of nucleobase,
nucleoside, nucleotide and
nucleic acid metabolic
process

GO:0050794 Regulation of cellular process

GO:0065007 Biological regulation

GO:0032774 RNA biosynthetic process

GO:0006350 Transcription

GO:0006355 Regulation of transcription,
DNA-dependent

GO:0000074 Regulation of cell cycle

doi:10.1371/journal.pone.0002712.t012
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stemness as opposed to studying the identity of individual genes.

Secondly, in terms of stemness it would appear to be more fruitful

to investigate ‘‘proliferating-stemness’’ which is shown here, in

terms of promoter usage, to be distinct from ‘‘quiescent-stemness’’.

Our results show different signatures of promoter usage for the SC

populations and non-SC populations and among different types of

SCs. The results of this research may have possible applications to

establish how pure an adult SC population is, ie., what proportion

of SCs are in cycle; in quiescent it is widely accepted that about 1–

2% of cells are in cycle, whereas in proliferating SCs about 30% of

cells are in cycle [reviewed in 19]. Our devised classification

system might be usefully applied on a gene chip mRNA expression

profile to distinguish whether the cells are SCs or not, and quite

importantly whether adult SCs are quiescent or proliferating.

The quiescent adult SCs are shown to express a higher

proportion of genes that use APs that are CpG-rich compared

with the embryonic SCs, the proliferating adult SCs and the

controls. Put another way, with respect to the alternate promoter

usage, the proliferating adult SCs and the embryonic SCs are

similar to the negative controls, whilst the quiescent adult SCs are

different compared to the negative controls. Whilst the prolifer-

ating adult SCs and the embryonic SCs have a larger proportion

of genes with CpG-rich SPs compared with the controls and the

quiescent SCs. Additionally, the adult SCs (ie., pASCs, qASCs and

ASCs) collectively display more variability in the use of APs than

the embryonic SCs. Usage of the APs versus the SPs in regulating

SC function has not been studied widely. Our results suggest that

the use of the SPs and the APs differs significantly in the different

contexts of the adult SCs. This does make sense in a biological

context. It is generally accepted in the scientific literature that the

APs are more highly regulated than the SPs [15]. The CpG-rich

SP class is the least highly regulated of promoters and linked to

house-keeping functions required by most cell types. The other

three classes CpG-poor SP, CpG-rich AP and CpG-poor AP fall

into classes of highly regulated promoters. In terms of up-regulated

genes using CpG-rich SP class, these results suggest that the

embryonic SCs and the proliferating adult SCs are more active

than the adult quiescent SCs and one of the ways the proliferating

adult SCs and the embryonic SCs achieve this mechanistically, is

by reducing use of the genes that have APs and increasing the use

of genes that have SPs and in particular increasing the use of genes

that have CpG-rich SPs.

The overall aim of this research was to gain new insights into

the biological properties likely to affect SC gene expression. We

designed a novel bioinformatics analysis pipeline and utilized this

pipeline to examine previously published gene expression data

from SCs in a novel way and to a large extent the overall aim of

the meta-analysis was achieved. We were able to provide new

insights into the regulation of SC function. This type of meta-

analysis in future could rely on the gene expression data deposited

in microarray databases such as Array-Express [32] and GEO

[33]. Going down this route would allow for further automation to

include larger numbers of cell types and species types and will

provide for new research directions in analysis of microarray gene

expression data.

Supporting Information

Figure S1 The distribution of genes classed according to the four

promoter types: CpG-rich AP, CpG-poor AP, CpG-rich SP and

Table 13. Over-represented GO term identifiers in the four promoter categories.

Promoter Type GO ID Description Comments

CpG-rich AP GO:0019219 Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

GO:0006350 Transcription

GO:0032774 RNA biosynthetic process

GO:0006355 Regulation of transcription, DNA-dependent

GO:0016481 Negative regulation of transcription

GO:0046108 Uridine metabolic process

GO:0009119 Ribonucleoside metabolic process

CpG–poor AP GO:0030890 Positive regulation of B cell proliferation In all NSCs

GO:0016244 Non-apoptotic programmed cell death In all NSCs

GO:0043071 Positive regulation of non-apoptotic programmed cell death In all NSCs

GO:0045736 Negative regulation of cyclin-dependent protein kinase activity In all NSCs

GO:0009411 Response to UV

GO:0007050 Cell cycle arrest

CpG-rich SP GO:0000070 Mitotic sister chromatid segregation In all ESCs

GO:0000278 Mitotic cell cycle

GO:0007067 Mitosis

GO:0000279 M-phase

CpG-poor SP GO:0006954 Inflammatory response

GO:0048305 Immunoglobulin secretion

GO:0042773 ATP synthesis coupled electron transport

GO:0006122 Mitochondrial electron transport, ubiquinol to cytochrome c

doi:10.1371/journal.pone.0002712.t013
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CpG-poor SP. The 100% stacked column compares the

percentage value for each promoter type contributing to the total.

Found at: doi:10.1371/journal.pone.0002712.s001 (0.72 MB EPS)
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