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Abstract

Spring phenologies are advancing in many ecosystems associated with climate warming causing unpredictable changes in
ecosystem functioning. Here we establish a phenological model for Daphnia, an aquatic keystone herbivore based on
decadal data on water temperatures and the timing of Daphnia population maxima from Lake Constance, a large European
lake. We tested this model with long-term time-series data from two lakes (Müggelsee, Germany; Lake Washington, USA),
and with observations from a diverse set of 49 lakes/sites distributed widely across the Northern Hemisphere (NH). The
model successfully captured the observed temporal variation of Daphnia phenology in the two case study sites (r2 = 0.25
and 0.39 for Müggelsee and Lake Washington, respectively) and large-scale spatial variation in the NH (R2 = 0.57). These
results suggest that Daphnia phenology follows a uniform temperature dependency in NH lakes. Our approach – based on
temperature phenologies – has large potential to study and predict phenologies of animal and plant populations across
large latitudinal gradients in other ecosystems.
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Introduction

One of the most evident effects of climatic change during recent

decades is the advancement of spring phenological events in

terrestrial [1,2], marine [3,4], and freshwater ecosystems [5–7].

Phenological changes can affect ecosystem functioning as they can

disrupt food web interactions [8,9]. In freshwater ecosystems,

cladocerans of the genus Daphnia are keystone herbivores that are

important drivers of algal seasonal succession and community

composition [10]. As important prey themselves, daphnids are

crucial for survival and growth of small fish. In evolutionary terms

fish reproduction is often timed to allow juvenile fish to exploit the

seasonal Daphnia maximum. Consequently, Daphnia phenology has

important implications for ecological and evolutionary dynamics

in lake ecosystems.

The timing of the Daphnia maximum has been shown to be

strongly associated with large-scale atmospheric oscillations, e.g.

the North Atlantic Oscillation in Europe [5,11,12] and the Pacific

Decadal Oscillation in Northern America [7]. Furthermore,

Daphnia peak timing is strongly correlated with latitude in

Northern America and has been suggested to occur when surface

water temperatures reach 18.5uC [13]. This suggests a strong

control of Daphnia population dynamics by water temperatures

making their phenology sensitive to climate warming.

Mechanistic simulation models of various complexity have been

developed to examine Daphnia phenology [11,14,15]. These

models emphasize the importance of water temperature but also

address the potential importance of food phenology, mortality

rates due to predators, and Daphnia life cycle strategies [11,14,15].

These mechanistic models allow prediction of Daphnia seasonal

population dynamics under a variety of environmental conditions.

However, those conditions and their possible changes with

ongoing global warming need to be specified in these models.

Hence, there is need for empirical models to allow for general

predictions of the effects of changing thermal regimes on Daphnia

phenology.

In previous studies, Daphnia spring dynamics have been related

to water temperatures averaged across specific times of the year

(e.g., [6,7,16]). However, this approach requires that these time

periods need to be determined specifically for each lake owing to

differences in vernal warming among lakes due to their depth,

elevational and latitudinal setting. This suggests that an approach

based on temperature averages, although very useful for specific

studies, does not allow predictions across lakes generally, e.g. those

with different morphometries or at different latitudes. An

alternative approach is to use temperature phenology as a

predictor for Daphnia seasonal dynamics. Here we develop and

test such a model with data from lakes across the Northern

Hemisphere (see Figure 1 for a flow chart of analyses performed).

We first develop a linear model to describe the temperature

dependency of the timing of Daphnia peak seasonal densities in

Lake Constance, a large and intensively studied perialpine lake in

central Europe (thereafter LC Daphnia phenology model). We then

test the LC phenology model with time series data from two other
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well studied lakes in temperate regions: large, deep Lake

Washington, USA and small, shallow Müggelsee, Germany and

compare the temperature phenology models with models using

average May temperatures as predictors. Finally, we test the LC

phenology model with data from a literature survey of Daphnia

dynamics from 49 lakes/sites across the Northern Hemisphere

thereby testing its applicability beyond the climatic range for

which it was established.

Materials and Methods

Daphnia in deep warm-monomitic Lake Constance were

sampled weekly (biweekly in 2002) during the spring period from

1979 to 2007 with the exception of 1983 when no data were

collected. Samples were collected with a Clarke-Bumpus sampler

by vertical hauls from a depth of 140 m in the Überlinger See, a

deep and fjordlike appendix of the lake [16]. Water temperature at

the sampling station was recorded either with temperature probes

at a weekly resolution or by quasi-continuous measurements (every

20 min) from thermistor chains employed at the sampling station

[17]. Prior to analysis water temperature data were aggregated

and interpolated to provide a daily temporal resolution and a

depth resolution of 1 m in the upper 20 m of the water column.

Information on the measurements of Daphnia abundances and

water temperatures in Müggelsee (1980–2007) and Lake Wash-

ington (1977–2007) can be found in [6,7]. No specific permits were

required for the described field studies. From a literature survey 66

seasonal dynamics of Daphnia and water temperature were derived

from 49 different sites (lakes, ponds, and reservoirs) in the

Northern Hemisphere ranging from 33u 529 N to 71u 209 N

latitude and from 21 to 3040 m elevation (Figure 2, see Table S1

for information on the study sites). We chose only sites with a

sampling resolution of $2 samples per month during the spring/

early summer period. To obtain data from these literature studies,

relevant figures were scanned at high resolution and digitized. We

did not distinguish between the different Daphnia species (D.

ambigua, D. cucullata, D. galeata, D. galeata mendotae, D. hyalina, D.

longispina, D. parvula and D. rosea) and calculated the total number of

Daphnia per sampling date and analysed the phenology of these

time-series. We also included studies reporting the dynamics of

Daphnia biomass as Daphnia abundance is usually very tightly

related to Daphnia biomass (e.g. for Lake Constance: r2.0.9). For

all Daphnia seasonal dynamics, the timing of the Daphnia late

spring/early summer maximum (TDmax) was defined as the date

of maximum abundance/biomass during the period from 1 March

until 31 July. For high elevation (.1000 m asl) lakes and/or high

latitude lakes (.60uN) we extended the period for maximum

abundance/biomass to 30 September.

Differences in a) average TDmax and b) the surface temperature

at TDmax between Lakes Constance, Washington and Müggelsee

were analysed by comparing the respective linear models (with

lake as a factor) and null-models, both with autocorrelated errors,

using a Likelihood Ratio test.

The relationship between Daphnia phenology and water

temperature phenologies in the Lake Constance time series was

analysed in an exploratory study. For all study years we recorded

the first day in the year when specific temperatures (from 6 to

20uC with 0.5uC steps) were obtained at the surface and on

average within the upper 5 m, upper 10 m and upper 20 m of the

water column. As data were normally distributed Pearson

correlation analysis was used to relate these timings of water

temperatures (TT) to TDmax to identify depth layer –temperature

combinations with the highest predictive power for TDmax. For

those correlations between TDmax and the upper 5 m average

water TT which yielded the highest Pearson r, we additionally

implemented linear models with autocorrelated errors and

compared their performance using AIC corrected for small

sampling sizes (AICc) [18].We chose Lake Constance for

establishing our baseline model as we expect in this large and

deep lake to have the largest variation in temperature-driven

change in phenology which should facilitate establishing a

generalizable model. Furthermore, spring Daphnia dynamics in

Lake Constance have been shown to be strongly influenced by

water temperatures [16], and there is no evidence that spring

Daphnia dynamics have been influenced by a mismatch with their

algal food source as has been reported for Lake Washington [9].

We also prefer to use Lake Constance as a baseline model over the

NH data set as there is no reason to assume that the observed

temperature TDmax relationship in Lake Constance may be

confounded by correlated systematic variation. In contrast, within

the Northern Hemisphere data set, TDmax variability is expressed

mostly along latitude, which is associated with gradients in e.g.,

temperature, season length, Daphnia size [13], and the strength of

biotic interactions [19].

The best linear model based on AICc between TDmax and the

upper 5 m average water TT in Lake Constance was used to

predict TDmax in Lakes Washington, Müggelsee and in the

Northern Hemisphere Lakes data set. As measurements of water

temperatures also include errors, we used standardized major axis

(SMA) regression to test whether the intercept and slope of the

relationship between observed and predicted TDmax in these lakes

differed from zero and one, respectively [20], to test for systematic

bias in predicted TDmax. We also report the explained R2 of the

relationships between predicted and observed TDmax for these

regressions.
Figure 1. Flow chart of statistical analyses performed in this
study.
doi:10.1371/journal.pone.0045497.g001

Figure 2. Geographical location of lakes considered in this
study. Location of Lake Constance is shown as a black dot. Locations of
the two lakes for which temporal variability in Daphnia phenology was
analysed shown as blue (Lake Washington, US), respectively, red dot
(Müggelsee, Germany). Locations of lakes considered in the Northern
hemisphere study are shown as grey dots.
doi:10.1371/journal.pone.0045497.g002

Uniform Phenology in a Keystone Herbivore
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In a second approach we used linear models with autocorrelated

errors (AR1) a) to determine whether the response to TT differed

between Lakes Constance, Washington and Müggelsee, b) to

compare the TT models with models predicting Daphnia phenol-

ogy with average May temperatures, and c) to compare the

performance of models differing in the independent factors (TT,

elevation and latitude), i.e., to test whether TT’s were able to

explain a similar part of the variability in TDmax as the latitudinal

and elevational setting of the lakes in the NH data set. We

compare models based on AICc and a measure of Pseudo-R2, i.e.,

the R2 between observed values and model predictions. Autocor-

relation in our data sets was small and models with autocorrelated

errors did only in some cases perform slightly better (based on

AICc and residual diagnostics) than the corresponding models

without autocorrelated errors. However, for consistency we

performed all linear models with considering autocorrelated

errors. Statistical models were implemented using the R packages

SMATR [21] and NLME [22], the latter with parameter

estimation based on maximum likelihood. We used SAS (version

8) [23] for data processing and R (version 2.13.0) [24] for statistical

analysis and graphs.

Results

The average development of upper water layer temperatures in

the first half of the year differed strongly between the three lakes

with long-term data (Figure 3A). January and February temper-

atures were highest at Lake Washington and lowest at Müggelsee.

During April and May vernal warming was fastest for Müggelsee

and slowest for Lake Washington. The differences in late winter

temperature combined with the differences in vernal warming

resulted in highest June water temperatures in Müggelsee,

followed by Lakes Washington and Constance (Figure 3A).

Average Daphnia dynamics were characterized by low and

declining abundances during the first three months of the year

and started to increase in all lakes around March – April

(Figure 3B). During April and May Daphnia population increases in

all three lakes were remarkably similar and maxima of average

population trajectories were reached in early June in Lake

Constance and Washington and approximately two weeks earlier

in Müggelsee.

The difference in the peak timing of Daphnia between Müggelsee

and the other two lakes is confirmed when computing the average

TDmax (Likelihood Ratio Test, L = 13.05, p = 0.0015) (Table 1).

However, the surface water temperature at TDmax did not differ

between lakes (Likelihood ratio Test, L = 4.1, ns) (Table 1). In the

northern Hemisphere dataset, TDmax varied strongly and ranged

from February/March in Florida and Portuguese lakes to August/

September in high latitude, and high elevation lakes; the average

temperature at TDmax was 16.664.6uC (mean, std dev).

The timing of the Daphnia maximum showed a strong

relationship to the seasonal timing of water temperature at

different depths in Lake Constance (Figure 4). Correlation

coefficients of similar magnitudes with different TT’s and water

depths are expected due to temporal and spatial autocorrelation of

water temperatures. Nevertheless, correlation analyses identified

TT-depth combinations with the highest predictive power for

TDmax (Figure 4A). The highest Pearson correlation coefficients

were obtained when relating the TDmax to TT of 14uC at the

surface, 13uC at 0–5 m, 12uC at 0–10 m, and 9uC at 0–20 m, i.e.,

with increasing thickness of the surface layer the TT’s at which the

highest correlation coefficients with TDmax were observed,

decreased. This shift in highest correlation coefficients with

increasing TT corresponds to decreasing water temperatures with

layer thickness. That is, highest correlation coefficients were

obtained when surface temperatures reach 14uC and this timing

corresponds closely to the timing of 13uC - temperature at 0–5 m

depth, of 12uC at 0–10 m depth, and of 9uC at 0–20 m depth

(Figure 4B). As our aim was to establish one model useful for

predicting TDmax both in shallow (i.e. ,10 m depth) and deep

lakes, we focused on the best linear model for the 0–5 m depth

layer, i.e. TT13, 0–5:

TDmax ~ 22:25 +32:6 SEð Þz 0:99 +0:23 SEð ÞTT13,05 ð1Þ

Note, that based on AICc this model also outperformed (all

DAIC .4, Table 2) models based on the 12, 12.5 and 13.5 TT’s

within the 0–5 m depth layer, i.e. the TT’s which Pearson

correlation coefficients ranking next to the 13uC TT (Figure 4A).

However, as the 0–5 m layer temperatures did not reach 13uC in

some high elevation and high latitude lakes (6 out of 66 lake-years),

the prediction of TDmax was based on equ. 1 but using the timing

of the maximum water temperature achieved in those lakes as the

independent variable. In Lake Constance the model with TT13, 0–5

explained 44% of the variability in TDmax (n = 28, p,0.001,

Figure 4B).

Tests with Long-term Data from Müggelsee and Lake
Washington

When using data from all three lakes with long-term records

(i.e., Müggelsee and Lakes Constance and Washington) TT13, 0–5

explained 49% of the variability of TDmax. Furthermore, the slope

and intercept of the relationship (Figure 5A and Table 3) were very

close to the relationship observed for Lake Constance data only

(equ. 1). Models allowing for lake-specific intercepts and lake-

specific intercepts and slopes did not perform better (differences in

AICc #1, Table 3) than the model without lake-specific

parameters. Pseudo-R2 differed only slightly between the models

(Table 3). Also there was no strong evidence for lake-specific

intercepts (F2,81 = 1.9, p = 0.15) nor lake-specific-slopes

(F2,81 = 2.67, p = 0.07).

Similar to TT13, 0–5, mean May temperatures were significantly

related to TDmax (Figure 5B and Table 3) and lake-specific

intercepts and slopes did not increase significantly model

Figure 3. Average seasonalities of A) upper water layer (0–5 m
in Lake Constance and Washington, 0 m in Müggelsee)
temperatures and B) Daphnia dynamics in Lakes Constance
(black), Washington (blue), and Müggelsee (red). Prior to
averaging data were binned into 7-day periods. To account for
differences in absolute abundance and achieve comparability of
Daphnia dynamics between lakes, Daphnia dynamics in each lake and
each study year were scaled relative to its maximum abundance during
the first 210 days of the year. Scaled data were log-transformed and
averaged across study years.
doi:10.1371/journal.pone.0045497.g003

Uniform Phenology in a Keystone Herbivore
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performance (Table 3). However, models with TT13, 0–5 clearly

outperformed models with average May temperatures as predic-

tors (Table 3), although Pseudo-R2 values of the former were not

strongly improved.

As expected from these similar responses of TDmax to TT13, 0.5,

a significant fraction of the interannual variation in TDmax of

Müggelsee and Lake Washington, could be explained with the

TDmax2TT13, 0–5 relationship established for Lake Constance

(Figure 5C,D). In Müggelsee this relationship explained 25% of

the observed variation in TDmax (Figure 5C). The SMA slope of

this relationship did not differ significantly from 1 (b = 0.88,

confidence intervals (CI): 0.6–1.2) and the intercept not signifi-

cantly from 0 (a = 12.2, CI: 231.5–55.9). In Lake Washington the

Lake Constance Daphnia phenology model explained 39% of the

variation in TDmax (Figure 5D). However, in this case the MA

slope significantly deviated from the 1:1 line (slope: 1.8, CI: 1.3–

2.4, intercept: 2120, CI: 2203–237).

Tests with Data Across the Northern Hemisphere
The LC Daphnia phenology model also performed well for

predicting TDmax within the Northern Hemisphere data set

(Figure 6). A linear regression between observed and predicted

TDmax explained 57% of the variability observed among 66

Daphnia phenologies in 49 sites; that is, the model was successful

also at latitudes and elevations differing strongly from Lake

Constance. The slope of the SMA regression did not significantly

differ from 1 (slope = 0.94, CI: 0.83–1.07), whereas the intercept

was slightly positive (intercept = 21.6, CI: 1.9–41.3). When

ignoring those lakes where maximum temperature did not surpass

13uC slope and intercept did not differ significantly from 1

(slope = 1.12, CI: 0.94–1.33), respectively 0 (intercept = 21.8, CI:

230.6–27.0). Residuals from the SMA regression did not show

any relationship with latitude nor elevation (all p.0.05).

Furthermore, in linear models TT13,0–5 explained a slightly

higher amount of variation in TDmax as latitude and elevation and

clearly outcompeted this model based on AICc (Table 4,

difference in AICc .8). However, when including elevation or

elevation and latitude in addition to TT13 as independent factors,

model performance was further enhanced, but the amount of

explained variation only increased to 78% compared to 73%

simply using TT13,0–5 as a predictor. Similar results were obtained

when using a reduced data set in which those lakes were excluded

which did not surpass a maximum temperature of 13uC (Table 4).

Discussion

We developed a simple phenological model from a single, well-

studied lake to predict the phenology of Daphnia maxima in lakes of

the Northern Hemisphere. Our phenology model was established

with data from Lake Constance, a large, deep and warm-

monomictic lake during a period in which the lake’s trophic

status changed from eutrophic to oligotrophic conditions. How-

ever, there was no evidence that the change in trophic status

influenced the temperature-phenology relationship in Lake Con-

stance as e.g., early and late TDmax were observed during

Table 1. Mean timing of the Daphnia maximum (TDmax) and mean surface temperature at TDmax in Lakes Constance, Washington
and Müggelsee.

Timing of Daphnia maximum (TDmax)
(days since 1 Jan) Surface Temperature at TDmax (6C)

Lake Constance 159618 (SD) 15.5 (2.5)

Lake Washington 158618 (SD) 16.7 (2.1)

Müggelsee 14067 (SD) 16.2 (2.1)

doi:10.1371/journal.pone.0045497.t001

Figure 4. Exploratory analysis of the Daphnia phenology - water temperature phenology relationship in Lake Constance. A)
Correlation coefficients between the timing of the Daphnia maxima and the timing when different water temperatures where first reached in various
water column depths in Lake Constance during 1979–2007. Arrows indicate the temperatures with largest Pearson r for each water column depth. B)
Relationships between the timing of the Daphnia maximum and the timing of those water temperatures with highest Pearson correlation coefficients
at the respective depths (see arrows in Fig. 4A). Linear model equations for the TDmax and TT’s of 14uC at the surface (14uC0m): y = 27.0+0.97*x
(Pseudo R2 = 0.39 ), 13uC0–5m: y = 22.2+0.99*x (Pseudo R2 = 0.44), 12uC0–10m: y = 14.5+1.04*x (Pseudo R2 = 0.44), 9uC0–20m: y = 16.2+1.09*x (Pseudo
R2 = 0.46).
doi:10.1371/journal.pone.0045497.g004
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eutrophic and more recent oligotrophic conditions. Likewise

Daphnia spring phenologies followed vernal warming during most

recent years in which rather extreme interannual variability in

vernal water temperature increase was observed [25]. The

robustness of the LC Daphnia phenology model against changes

in trophic status was further supported by the tests of the

relationship with long-term data from Lake Washington and

Müggelsee; in both lakes the SMA residuals did not show any

trend, despite both lakes experienced a reduction of nutrient inputs

during the respective study periods, from eutrophic to mesotrophic

conditions in Lake Washington [26] and from hypertrophic to

eutrophic conditions in Müggelsee [27].

The applicability of our model to a large number of lakes

supports the work of Gillooly & Dodson (2000) suggesting that

temperature is indeed a major driver of Daphnia dynamics during

spring and early summer [13]. However, the data from the three

long-term studies as well as from the NH data set indicate that the

mean temperature at TDmax is somewhat less than observed by

Gillooly & Dodson (2000) in their smaller data set (n = 27, 18.5uC
63.1 SD) – but within the standard deviation given in their study.

The high importance of temperature in regulating Daphnia

dynamics during the spring period is probably due the fact that

this period of exponential growth may be characterised as a period

of low biological, i.e. bottom-up and top-down control. During the

spring bloom, algal food is usually present in high concentrations,

whereas predation is still low because most young-of-the year fish

are not yet large enough to consume Daphnia and invertebrate

predators are not yet present in high concentrations [16]. In

contrast, water temperatures during spring are still low. As a

consequence, temperature variability is likely the most important

factor determining Daphnia population growth rate and conse-

quently TDmax.

The general importance of temperature in regulating Daphnia

during spring does however not explain why the 13uC timing

proved particularly useful in predicting the TDmax. Physiological

rates, e.g., egg development and growth rates, of Daphnia do

neither show any step-wise changes when temperatures surpass

13uC nor are at their maximum at 13uC (e.g., [28]) suggesting that

the physiology of Daphnia is unlikely the cause for the predictive

power of the 13uC phenology. Hence, its relevance is likely due to

ecological factors reducing predictive power when temperatures in

the upper 5 m of the water column either have not yet reached or

have surpassed 13uC. Before TT13,0–5 is reached, there is

obviously a longer period to go for TDmax, which reduces

predictive power. Furthermore, Daphnia population size is still very

low, that is, temperature induced variability in population growth

rate does not have a strong influence on population development

assuming exponential growth. A low influence of winter temper-

atures on TDmax is also supported when comparing the average

winter temperatures in Lakes Constance, Washington and

Müggelsee, which range between ,4 to .7uC. Winter water

temperatures within this range seem not to influence strongly

Daphnia winter dynamics. Note, however, that daphnid abundanc-

es until late March are often close or at their detection limit in the

three lakes resulting into large standard errors of mean weekly

abundances. Nevertheless, there seems to be no evidence that

winter Daphnia dynamics differ between the lakes with the lowest

(Müggelsee) and the highest (Lake Washington) winter tempera-

tures. Consequently, we should not expect a strong effect of winter

conditions on spring dynamics. This is also in line with a modelling

study showing that Daphnia overwintering biomass does not have a

strong effect on TDmax [14].

The decline of predictability of TT0–5 for temperatures .13uC
might be because the exponentially growing Daphnia population

has already attained high concentrations at TT13,0–5 and is shortly

before suppressing their food algae, resulting in the clear water

phase [5,29] and consequently food limitation. This might suggest

that with TT’s .13uC, the relative importance of temperature in

controlling Daphnia population growth is reduced relative to the

influence of food limitation and possibly also predation. As a

consequence, the predictive power of TT0–59s .13uC for TDmax

possibly declines. Clearly, this hypothesis regarding the impor-

tance of TT13,0–5 will be difficult to test with field data. Rather, we

hope that our results will stimulate modelling analysis, which could

test this hypothesis explicitly.

We subjected our linear model to tests with long-term data from

two lakes and with data from a collection of lakes distributed

widely across different latitudes, longitudes and elevations. Small,

shallow, polymictic and highly eutrophic Müggelsee can be

considered in many aspects as a limnological antithesis to deep,

monomictic, oligotrophic Lake Constance. Despite these differ-

ences, the LC Daphnia phenology model could explain a significant

amount of the variation in TDmax in Müggelsee. This supports a

previous study showing that spring Daphnia dynamics in these two

lakes were synchronized by the North Atlantic Oscillation during

the period 1979–1994 [30].

An even stronger test of the LC Daphnia phenology model

seemed to be the Lake Washington data. In Lake Washington a

climate induced mismatch between algae and Daphnia has

developed with Daphnia unable to follow the temporal advance-

ment of their algal food with earlier spring warming [9].

Furthermore, Winder and Schindler (2004a) stated that ‘‘Daphnia

showed no response to water temperature variation (P.0.05)‘‘ (but

see [7]). In contrast, our study shows that the phenology of Lake

Washington daphnids is strongly temperature controlled and can

even be predicted by the LC Daphnia phenology model; i.e., a

Table 2. Results of linear models analysing the effects of
selected temperatures thresholds (TT) within the 0–5 m depth
layer on the timing of TDmax in Lake Constance.

Model TT intercept Slope AICc Pseudo-R2

1 13 22.2(632.6) 0.99 (60.23) 1.6 0.44

2 12.5 58.2 (628.9) 0.75 (60.21) 5.8 0.36

3 12 71.4 (630.0) 0.66 (60.22) 8.8 0.30

4 13.5 73.9 (632.9) 0.60 (60.23) 9.1 0.24

All models were calculated with autocorrelated errors.
doi:10.1371/journal.pone.0045497.t002

Table 3. Results of linear models analysing the effects of
TT13,0–5 and average May temperatures (TMay) on the timing of
TDmax in Lakes Constance, Müggelsee and Washington.

Model Factors AICc Pseudo-R2

1 TT13, 0–5 683.4 0.49

2 TT13, 0–5, lake 683.7 0.52

3 TT13, 0–5, lake, TT13, 0–5 * lake 682.7 0.55

4 TMay 696.3 0.42

5 TMay, lake 697.5 0.45

6 TMay, lake, TMay * lake 695.5 0.48

All models were calculated with autocorrelated errors.
doi:10.1371/journal.pone.0045497.t003
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phenology model based on observed Daphnia dynamics from a lake

several thousand km apart. Our study also provides a simple

resolution to the observed paradox that Daphnia phenology in Lake

Washington did not advance during recent decades despite a

strong advance in Lake Washington timing of stratification and

algal phenology [9] and the advance of Daphnia phenology in Lake

Constance, Müggelsee and many other lakes [5,11,30]; TT13,0–5

did not significantly advance in Lake Washington (p.0.05) in

contrast to lakes Constance and Müggelsee (Figure 7). That is, the

difference in the response of Daphnia phenology to warming

between Lake Washington and other lakes seems not be due to a

different temperature dependency of Daphnia phenology caused by

e.g., photoperiod dependency of resting egg hatching [9] or

different temperature adaptation of Daphnia [7], but because there

has not been a systematic trend towards warming in Lake

Washington during the critical time period determining Daphnia

phenology. This example shows that our approach based on

temperature phenologies is an important tool to understand and

predict phenology responses under current and future climate.

Figure 5. Relationship between the timing of the Daphnia maximum and A) the timing when water temperatures reached 136C, and
B) mean May temperatures in the upper 5 m of the water column in Lakes Constance (black dots), Müggelsee (red dots), and
Washington (blue dots). Relationship between observed and predicted timing of the Daphnia maximum in C) Müggelsee, and D) Lake
Washington. The black line in subplot A shows the Lake Constance Daphnia phenology model, the yellow line in subplots A and B represent the fits
of model 1 and model 4, respectively (Table 2). In subplots C and D lines represent the fits of SMA regression models.
doi:10.1371/journal.pone.0045497.g005
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Although, the LC Daphnia phenology model proved to be highly

successful in predicting temporal and spatial variation in TDmax,

TT13, 0.5 could only partially explain the variation in TDmax.

Residual variation might be due to other factors influencing

Daphnia spring dynamics in addition to water temperatures (see

below) or because of lack of information and detailed data: First,

Daphnia – algae interactions are highly dynamic and it can be

difficult to determine phenologies based on sampling programs

with a weekly or especially fortnightly resolution [31]. Second,

although there is a high spatio-temporal covariation of water

temperatures during spring, not all variability will be covered by

an analysis of one temperature phenology. For example, it is easy

to imagine a situation where vernal water temperatures increase

towards 12uC but not any further during the next e.g., two weeks

because of cold weather. In such a case, the Daphnia population

would still grow relatively fast towards its maximum, but our

prediction of TDmax could be off by at least two weeks. Third, for

the lakes covered in our literature study, no depth profiles are

available and hence we included also studies in our NH data

which did not report temperature dynamics in the 0–5 m layer,

but at the surface or in the epilimnion (Table S1). Finally, we do

not know the depth range occupied by Daphnia in specific lakes.

For example, while we are sure that all daphnids in shallow

Müggelsee are located in the upper 5 m of the water column, this

is most likely not the case in the deep Lakes Washington and

Constance. Consequently, in these lakes some unknown part of the

Daphnia population will experience lower temperatures than those

in the upper 5 m of the water column. Hence, one reason for

residual variability could be a difference in depth range occupied

by daphnids and consequently in the mean temperature experi-

enced by the Daphnia population. The existence of these

‘‘methodological’’ inconsistencies makes the predictive power of

the LC Daphnia phenology model even more remarkable.

Figure 6. Relationship between observed and predicted timing
of the Daphnia maximum in the NH data set. Green dots represent
those lakes in which maximum temperatures did not reach 13uC. Lines
represent the fits of SMA regression models. The black line shows the fit
for only those lakes, respectively sites in which maximum temperatures
reached 13uC (white dots), the green line presents the fit for all lakes in
the data set, i.e., including the lakes (green dots) in which prediction is
based on the timing of maximum water temperatures.
doi:10.1371/journal.pone.0045497.g006

Table 4. Comparison of linear models relating the timing of the Daphnia maximum to the 13uC phenology (TT13,0–5), latitude (lat)
and elevation (elev) of the respective lakes in the Northern Hemisphere for a) the complete data set (n = 66), and b) the data set
including only those observations (seasons) in which maximum temperatures .13uC were observed (n = 62).

a) complete data set b) only observations with maximum temperatures .136C

Independent variables Pseudo-R2 AICc Pseudo-R2 AICc

TT13, 0–5, lat, elev, 0.78 601.6 0.75 546.5

TT13, 0–5, elev 0.74 609.6 0.72 552.0

TT13, 0–5 0.73 609.8 0.70 552.9

TT13, 0–5, lat 0.73 610.9 0.71 554.4

lat, elev 0.70 618.1 0.64 565.6

All models were calculated with autocorrelated errors.
doi:10.1371/journal.pone.0045497.t004

Figure 7. Changes in the timing of 136 phenology (TT13) in
Lakes Constance (black dots, black line), Müggelsee (red dots,
red line), and Washington (blue dots, blue line) during the last
decades. Fits presents ordinary least-squares fits with slopes of 20.68
(0.22 SE), p,0.005 for Lake Constance, 20.54 (0.14 SE) p,0.001 for
Müggelsee, and 20.1 (0.22 SE), ns for Lake Washington.
doi:10.1371/journal.pone.0045497.g007
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Besides methodological inconsistencies, residual variability

might clearly be caused by factors other than temperature

influencing spring dynamics of Daphnia, e.g., predation, food

quantity, quality and phenology and adaptation of Daphnia

population to different temperature regimes. In this respect it is

important to note that with respect to Lake Washington the SMA

regression between predicted and observed TDMax revealed a

significant bias. Hence, it is a topic for future work to study

whether this bias is due to e.g., the phenological mismatch of

Daphnia with algae [9] or due to some other yet unknown factor.

For example, a simulation approach has shown that Daphnia

phenology is, besides water temperature, most strongly controlled

by Daphnia mortality rates, i.e., predatory losses [14]. In addition,

in very oligotrophic lakes Daphnia phenology may be shifted

towards summer because of strong food limitation [10]. These

factors influencing Daphnia phenology may be better identified and

quantified after accounting for the effect of temperature with the

Daphnia phenology model established in this study.

In addition to food web interactions, temperature adaptation of

daphnids among and within species might be expected to cause

systematic deviation of observed TDmax versus predicted TDmax in

the NH data set. For example, a possible adaptation of daphnids in

lakes at high latitudes to lower temperatures should result in an

earlier TDmax compared to the prediction based on the data from

temperate Lake Constance. However, the MA slope between

observed and predicted TDmax is very close to one, and residuals

from this relationship do not show a significant relationship to

latitude. This suggests that temperature adaptation of daphnids

seems not to strongly influence Daphnia phenology. This suggestion

is in line with the failure to detect thermal adaptation experimen-

tally with pond Daphnia magna clones sampled across a latitudinal

gradient from Spain to Finland [32]. In these intermittent

populations of D. magna the lack of thermal adaptations was

suggested to be due to obligate diapause precluding the necessity

for thermal adaptation, as adverse temperature conditions can be

avoided by entering diapause. However, it could also be argued

that adverse temperatures in many larger water bodies with

permanent Daphnia populations can be avoided too by daphnids as

those larger water bodies usually do not warm as strongly as small

ponds and often offer vertical gradients of water temperature,

which may be used by daphnids if surface temperature increase

beyond optimal levels. Overall, our results suggest that thermal

adaptation of Daphnia populations (if any) is not strong enough to

substantially influence Daphnia phenology in permanent water

bodies. However, clearly more data on Daphnia phenology are

needed in especially boreal and mediterranean climatic regions to

provide a stronger test of a potential influence of Daphnia

temperature adaptation on the phenology of Daphnia populations.

Our model relies on temperature phenology as a predictor

variable and not on the temperature average during a distinct

period prior to the phenological event, which is the predictor

usually used to relate phenological change to warming [7,33–35].

For temperate lakes, for example, May temperatures do also have

a high predictive power for TDmax. However, this commonly used

temperature average approach [7,16] may be less able to predict

phenologies beyond the temperate zone and beyond the current

climate, as the temperatures in a specific seasonal time period, e.g.

average May temperature, might not be relevant for a specific

phenology in more southern latitudes or in a future warmer

climate, when e.g. variability in April temperatures might be more

important. Likewise it will not be possible to predict interannual

variability in TDmax in high elevation or latitude lakes with

average May temperatures, when the lake is still frozen in May

and temperature variability is very low. In contrast, our results

show that an approach based on temperature phenologies can be

applied also to latitudes and elevations beyond a specific climatic

zone, and hence may have a large potential also for other

phenological studies.

To conclude, we show that the vernal increase in temperature is

indeed an important factor affecting Daphnia growth rates during

spring in lakes of the Northern Hemisphere and that it is possible

to predict Daphnia phenology across these lakes with a temperature

relationship based on long-term phenology data of a single lake.

Other potentially important factors such as variability in food

quantity, quality and/or predation pressure or temperature

adaptation of Daphnia seem to play only a secondary role. This

suggests that Daphnia phenology will respond strongly and

immediately to climate warming provided that there is warming

during the seasonal time period critical for Daphnia phenology.

The established phenology model in combination with hydrody-

namical modelling of water temperatures should be a valuable tool

to predict the magnitude of the response of Daphnia phenology in

lakes of the Northern Hemispheric under future warming

scenarios.

Supporting Information

Table S1 Information on lakes in the Northern Hemi-
sphere data set.
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