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Abstract

Background: Renal cell carcinoma (RCC) is one of the most common kidney cancers and is highly resistant to
chemotherapy. Accumulating evidence suggests that interleukin-22 (IL-22) may mediate host defense against varietal
pathogens as a proinflammatory and anti-inflammatory cytokine. The purpose of this study is to assess the inhibitory effects
of IL-22 on human RCC cell line A498 and to investigate the possible mechanisms underlying the anti-tumor effects of this
cytokine.

Methodology: A498 cells, a RCC cell line, were used to assess the inhibitory growth effects of IL-22 using the MTT assay and
flow cytometric analysis in vitro. BALB/C nude mice bearing A498 cell xenografts were used to examine the antitumor
efficacy of IL-22 in vivo. Western blotting assay was performed to detect the regulation of the intracellular signaling
pathway of IL-22.

Principal Findings: We found that IL-22 suppressed the growth of A498 cells in a dose-dependent manner and inhibited the
growth of A498 xenografts. We also observed that IL-22 produced a dose-dependent inhibitory effect on A498 cells that
involved the induction of G2/M cell cycle arrest without cell apoptosis. Moreover, we showed that the phosphorylation of
STAT1 was increased and the phosphorylation of ERK1/2 was attenuated in A498 cells exposed to IL-22. The growth
inhibition of A498 cells was partially revised after IL-22 treatment as the expression of STAT1 was knocked down. And
inflammatory cytokines, interferon-a and tumor necrosis factor-a (TNF-a) were barely involved in the suppression of A498
cell xenografts treated with IL-22.

Conclusions: IL-22 dose-dependently suppresses RCC cell line A498 cells in vitro and induces growth inhibition of A498 cell-
bearing mouse xenografts. These results suggest that the anti-RCC effects of IL-22 are at least partially mediated through
regulation of STAT1 signaling pathways and G2/M cell cycle arrest, rather than by inducing apoptosis and inflammatory
cytokines.
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Introduction

RCC is one of the most common malignant tumors arising in

the kidney [1,2]; chemotherapeutic agents typically have little or

no impact on this type of tumor [3–5]. In patients with RCC, there

is poor survival following the development of metastatic disease;

the 5-year survival rate for these patients is less than 20% [6,7].

Although immunotherapy with interleukin 2 (IL-2) and interferon-

a (IFN-a) has been the standard treatment in patients with

metastatic RCC, the response rate of patients with the disease to

such treatment is only 10,20%, and the addition of the

chemotherapeutic agent 5-FU does not notably increase the

survival rate [8–10]. Therefore, there is currently an ongoing

search for new and effective cytokine therapies for RCC.

IL-22, discovered and reported by Dumoutier et al. in 2000, is a

member of the IL-10 family of cytokines. IL-22 was identified as a

T-cell-derived inducible factor produced by IL-9-activated murine

T cells [11]. It has been found to represent an important effector

molecule for activated Th1-, Th22-, Th17-, and Tc-cell subsets,

natural killer (NK) and NKT cells [12–16]. In contrast to other

cytokines, IL-22 does not mediate autocrine or paracrine functions

between leukocytes, but instead serves as a mediator of

communication between these cells. IL-22 may exert multiple

effects on the immune system and may be involved in the acute

phase response, activation of the innate immune system, induction

of cell migration, inhibition of dentritic cell (DC) functions and

attenuation of allergic responses [15–20]. Recent studies have

shown that IL-22-producing T cells are more highly concentrated

in lung TB granuloma than in blood and lymphoid tissues and that

they contribute to anti-tuberculosis responses [12]. In addition,

high systemic levels of IL-22, as well as of IL-10 and C-related

Protein (CRP), in HIV-1C-infected Indian patients are associated

with low viral replication in vitro [21]. IL-22 mediates its effects via

a heterodimeric transmembrane receptor complex consisting of

IL-22R and IL-10R2. It sequentially regulates several intracellular

signal pathways including Janus kinase-signal transducers and

activators of transcription (JAK-STAT) pathways including

STAT3, Jak1 and Tyk2 [22–25].
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Some studies support the notion that IL-22 may play different

roles in different tumor cells. Although the growth of Colon 26/

IL-22 tumors in syngeneic mice did not differ from that of parent

tumors, survival of mice inoculated with Colon 26/IL-22 tumors

was significantly prolonged compared with the survival of mice

inoculated with parent tumors [26]. IL-22 inhibited the growth of

human mammary adenocarcinoma EMT6 cells both in vivo and in

vitro [27]. In some respects IL-22 acts synergistically with tumor

necrosis factor-a, IL-1b, and IL-17. For example, IL-22 was highly

expressed in non-small cell lung carcinoma, and the overexpres-

sion of IL-22 protected lung cancer cell lines from serum

starvation-induced and chemotherapeutic drug-induced apoptosis;

furthermore, administration of IL-22-RNAi significantly inhibited

human lung tumor cell growth in BALB/c nude mice [28].

Despite these intriguing results, the functions of IL-22 are not

clearly understood.

In the present study, we investigated the effects of IL-22 on

human RCC cell line A498 cells in vitro and in vivo and studied the

possible mechanisms underlying the anti-tumor effects of this

cytokine. We found that IL-22 dose-dependently suppresses A498

cell growth and that it inhibits the growth of A498 xenografts. We

also found that IL-22 induces G2/M cell cycle arrest without

causing cancer cell apoptosis. In addition, we showed that the

phosphorylation of STAT1 is increased and the phosphorylation

of ERK1/2 is attenuated in A498 cells exposed to IL-22. The

expression of tumor necrosis factor (TNF)-a and interferon (IFN)–

a were not increased vigorously in A498 xenografts treated with

IL-22. These results suggest that the anti-RCC effects of IL-22 are

directly mediated by regulation of the STAT1 signaling pathways

and G2/M cell cycle arrest rather than by induction of apoptosis

or inflammatory cytokines.

Results

IL-22 inhibits the growth of A498 cells in vitro
We used MTT assay to investigate the effects of rhIL-22 on

A498 cells and found that the final absorbance values at 570 nm

were 0.1254, 0.1092, 0.0945 and 0.0825 respectively after treated

with rhIL-22 at doses of 10, 20, 50 and 100 ng/ml. The

corresponding inhibition rates of A498 cells were 16.4%, 27.2%,

37.0% and 45% respectively and significantly lower than the

control. (Fig. 1A). The IC50 value was approximately 115 ng/ml.

These results indicate that rhIL-22 dose-dependently suppresses

the growth of A498 cells. Moreover, to confirm the contribution of

IL-22 on growth inhibition of A498 cells, monoclonal human IL-

22 antibody was used to neutralize IL-22. Interestingly, the growth

inhibition of A498 cells was revised to 9.7%, 10.4%, 9.4% and

11.3% with corresponding absorbance values of 0.1535, 0.1523,

0.1540 and 0.1508 respectively (Fig. 1A).

IL-22 suppresses tumor proliferation in A498 cell-bearing
mice

To determine whether IL-22 has anti-tumor effects in vivo,

56106 A498 cells were injected (s.c.) into the neck regions of

BALB/C nude mice. In the course of the experiment, we found

that the average volume of tumors was about 100 mm3 three

weeks after injection. The mice were treated with rhIL-22 (0.5 mg/

day) for seven days; control mice that also received tumor cell

injections were treated with PBS. Tumor diameter was measured

once per week after rhIL-22 injection for five weeks. RCC

xenografts were proved by the slice pathology without significantly

infiltrating of leukocytes. The average volume of the tumors of

rhIL-22-treated mice was significantly smaller than that of the

tumors of control mice at each time point (Fig. 1B).

To further understand the modulations in cytokines expression

in A498 xenografts after rhIL-22 treatment, blotting of TNF-a and

IFN-a was carried out. We found that both cytokines were barely

upregulated after rhIL-22 exposure compared with control

(p.0.05), indicating the suppression of A498 cell xenografts dose

not involve these cytokines (Fig. 2).

IL-22 induces cell cycle arrest in the G2/M phase
We investigated the effects of rhIL-22 on cell cycle regulation in

A498 cells. FACScan analysis of propidium iodide (PI)-stained

A498 cells revealed that after exposure to 50 ng/ml rhIL-22 for

24 hours, significantly more cells accumulated in the G2/M phase

Figure 1. Suppression of A498 cell growth in vitro and in vivo
by rhIL-22. A. IL-22 suppressed the growth of A498 cells in vitro in a
dose-dependent manner. The growth inhibition of A498 cells exposed
to IL-22 was revised by IL-22 antibody neutralization or by STAT1
specific siRNA transfection compared with the control (*P,0.05).
Compared with A498 cells transfected with STAT1 siRNA, the growth
inhibition of A498 cells treated with IL-22 antibody was not statistically
different after IL-22 exposure (P.0.05). N = 4 and mean6SD for all
groups. B. Suppressive effect of rhIL-22 on A498-cell-bearing xenografts
in mice. When tumors reached 100 mm3, rhIL-22 was injected into the
tail vein 0.5 mg /day for 7 days; control mice were injected with the
same volume of PBS. Tumor size was measured with a caliper each
week for five weeks; tumor volume was determined by measuring the
maximal (a) and minimal (b) diameters using a caliber and calculating
using the formula a6b2. After five weeks, mice were sacrificed under
deep anesthesia and the final volume of the tumors was measured.
*P,0.05 compared with control. N = 24 and mean 6 SD for all groups.
doi:10.1371/journal.pone.0020382.g001
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of the cell cycle (Fig. 3A). At a dose of 400 ng/ml rhIL-22, about

74% of the cells were arrested in the G2/M phase (Fig. 3B).

These results show that the extent of cell cycle arrest is dependent

on the dose of rhIL-22. Taken together the MTT results and the

cell cycle arrest data, these results show that IL-22 inhibits A498

tumor cell proliferation both in vitro and in vivo

IL-22 receptor detection by western blot assay
IL-22R expression has been found in many cancer cells [22–

25]. Concerning the growth inhibition of A498 cells both in vivo

and in vitro after IL-22 exposure, we reasoned that IL-22R might

be expressed and might play a functional role in A498 cells.

Therefore, we studied the expression of the IL-22R and functional

consequences of IL-22 exposure in A498 cells. To examine the

expression of IL-22R in A498 cells, we performed a western blot

assay using mouse IL-22 Ra1 antibody, which displayed a

measurable IL-22R expression in A498 cells. We also selected

HepG2 cells and human B cells served as positive control and

negative control cells of IL-22R respectively, which demonstrates a

selective expression of IL-22R in different cells (Fig. 4).

IL-22 regulates the STAT1 and ERK1/2 signaling pathways
We investigated the downstream intracellular signal mediators

of IL-22 action in A498 cells. Western blotting assays showed that

STAT1 was phosphorylated from the 5th minute after exposure of

the cells to rhIL-22 and that the phosphorylation of STAT1

(p-STAT1) reached its peak level 30 minutes after rhIL-22

exposure. In contrast to STAT1, ERK1/2 was dephosphorylated

in response to rhIL-22; this effect was maximal 30 min after rhIL-

22 exposure (Fig. 5A). Both the phosphorylation of STAT1 and

the dephosphorylation of ERK1/2 were amplified with increasing

doses of rhIL-22 (Fig. 5B). In this procedure, the concentration of

STAT1 in A498 cells was stable regardless of extension the rhIL-

22 exposure time. The results demonstrate that rhIL-22 activates

STAT1 and inhibits ERK1/2 pathways in A498 cells in a time-

and dose-dependent manner and that the biological functions of

the receptors for these pathways show time-dependent STAT1

activation and ERK1/2 deactivation evoked by rhIL-22. The

output of STAT1 protein in these cells treated with IL-22 is not

significantly increased indicating that STAT1 protein is not extra

synthesized in gene level during this procedure.

To confirm that p-STAT1 has an anti-RCC effect on A498

cells, the expression of STAT1 was knocked down by STAT1

specific siRNA transfection. It revealed that p-STAT1 was

maintained in a lower level in transfected cells after IL-22

Figure 2. Expression of IFN-a and TNF-a in A498 xenografts
after rIL-22 treatment. Western blot assay was performed to detect
the expression of IFN-a and TNF-a in the A498 cell xenografts. Neither
the expression of IFN-a nor TNF-a were increased significantly in A498
cell xenografts treated with rIL-22 (P.0.05 compared with control).
N = 2.
doi:10.1371/journal.pone.0020382.g002

Figure 3. A498 cell cycle arrest in the G2/M phase after rhIL-22
exposure. A. After 50 ng/ml rhIL-22 exposure for 24 h, significantly
more A498 cells accumulated in the G2/M phase of the cell cycle.
B. With increasing doses of rhIL-22, more cells accumulated in the G2/M
phase of the cell cycle. N = 3.
doi:10.1371/journal.pone.0020382.g003

Figure 4. Expression of IL-22R on the surface of cells by
western blot assay. Western blot assay was performed to detect the
expression of IL-22R on the surface of cells using mouse IL-22 Ra1
antibody. The results showed a measurable expression of IL-22R on the
surface of A498 cells compared with that of HepG2 cells and human B
cells, which served as positive control and negative control respectively.
N = 3.
doi:10.1371/journal.pone.0020382.g004
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treatment (87.2%63.6% decrease relative to control) compared

with that of negative control siRNA (Fig. 6) and significant lower

growth inhibition rates of these cells (11.3%, 15.7%, 17.2% and

21.4%) were observed when treated with 10, 20, 50 and 100 ng/

ml of rhIL-22compared with that of A498 cells without siRNA

transfection. Although the phosphorylation of ERK1/2 was still

attenuated during this procedure, the absolute contribution of

STAT1 pathway to the growth inhibition of A498 cells was

observed via the limited revision of these cells’ growth inhibition

by dephosphorylation ERK1/2 alone when STAT1 was knocked

down. Moreover, the cells transfected with negative control siRNA

had a comparative growth inhibition rate after exposure to rhIL-

22 with that of A498 cells (Fig. 1A).

Lack of apoptosis of A498 cells after IL-22 exposure
We next determined whether inhibition of tumor growth by IL-

22 involves the induction of apoptosis. We used FACScan to

measure annexin V binding in A498 cells treated with doses of

rhIL-22 ranging from 0 to 400 ng/ml for times ranging from 24 to

72 hrs. The analysis showed that the fraction of annexin-V-

positive/ PI-positive cells did not change significantly after rhIL-22

treatment, even at a dose of 400 ng/ml rhIL-22 and an exposure

time of 72 hrs (Fig. 7). Taken together with the results of the

FACScan analysis of the PI-stained cells, these data suggest that

IL-22 treatment induces cell cycle arrest in the G2/M phase but

does not induce apoptosis in A498 cells.

Discussion

In the current study, we investigated the effects of IL-22, a

member of the IL-10 cytokine family, on human RCC cell line

A498 cells in vitro and in vivo and studied the possible mechanisms

underlying the anti-RCC tumor effects of the cytokine. First, we

found that IL-22 receptors are expressed in A498 cells and that IL-

22 dose-dependently suppresses A498 cell growth and inhibits

A498 xenograft growth. Second, we observed that IL-22 induced

G2/M cell cycle arrest occurs without cell apoptosis. Moreover,

we showed that the phosphorylation of STAT1 is increased and

the phosphorylation of ERK1/2 is attenuated in A498 cells

exposed to IL-22. Indeed, the growth inhibition of A498 cells

exposed to IL-22 was partially revised to a relatively lower level

after STAT1 was knocked down, indicating that STAT1 pathway

plays a more important role in the growth inhibition of A498 cells

exposed to IL-22 than ERK1/2 pathway does. We also showed

that IL-22 did not enhance the anti-tumor immunity effectively in

vivo by increasing the expression of IFN-a and TNF-a in A498 cell

xenografts. These results suggest that the anti-A498 tumor effects

of IL-22 are directly mediated by up-regulation of STAT1 and

G2/M cell cycle arrest rather than by inducing apoptosis and

inflammatory cytokines.

Epidemiological studies have shown that the 5-year survival rate

of advanced RCC patients is only 9.5% [2]. RCC is resistant to

chemotherapy, and chemotherapeutic agents alone achieve a

clinic response rate of less than 10%. Treatment regimens

involving the administration of IFN-a have been used in patients

with RCC with therapeutic response rates around 4–33% [29].

The low response rate, toxicity associated with high-doses

regimens and low long-term survival rate of immunotherapy

emphasize the necessity of finding a new agent to deal with RCC;

the current lack of therapeutic agents for RCC that fulfill the basic

Figure 5. The regulation of STAT1 and ERK1/2 pathways by
rhIL-22. A. p-STAT1 and p-ERK1/2 levels after 50 ng/ml rIL-22 exposure.
B. p-STAT1 and p-ERK1/2 levels 15 minutes after administration of
various doses of rhIL-22. N = 3.
doi:10.1371/journal.pone.0020382.g005

Figure 6. STAT1 and ERK1/2 pathways in A498 cells transfected
with STAT1 siRNA by western blot assay. The expression of
p-STAT1 decreased by 87.2%63.6% in STAT1 siRNA transfected cells at
the 30th minute after IL-22 treatment and maintained in a lower level
compared with that of negative control siRNA (P,0.05). N = 2.
doi:10.1371/journal.pone.0020382.g006
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and necessary criteria for clinical treatment demand the

development of more effective drugs to combat this disease.

IL-22, which in humans is mainly produced by Th22-, Th1-

and Th17-cells, is strongly involved in immune regulation and

inflammatory responses [19,27,28,30]. IL-22 plays an important

role in inflammatory processes through up-regulation of acute

phase reactions and of pancreatitis-associated protein

[14,15,22,23,31]. However, there is some debate about the effects

of IL-22 on tumors. We suppose that IL-22 may play different

roles in different tumors and that discrepancies in experimental

results may be due to different cell types and diseases. The results

of the present study support the idea that IL-22 suppresses the

growth of A498 cells both in vivo and in vitro.

The functional IL-22 receptor complex consists of two receptor

chains, IL-22R and IL-10R2. IL-22R2 is broadly expressed in

various tissues [24,32], and the expression of the IL-22R chain

determines whether a cell will be a target of IL-22. In our study,

we detected measurable expression of IL-22R in A498 cells and

showed that IL-22 suppressed the growth of RCC cells in a dose-

dependent manner. Similar effects were obtained in A498

xenograft tumors.

Although IL-22 is produced by immune cells, unlike other

cytokines it does not affect immune cells directly but instead

regulates the functions of their target cells, increasing the innate

immunity of tissue cells, protecting tissues from damage and

enhancing their regeneration. The signal transducer and activator

of transcription 1 (STAT1) plays a critical role in carcinogenesis by

mediating various biological responses and has been implicated as

a tumor suppressor [33]. Both carcinogen-induced and trans-

planted tumors are increased in STAT1 knockout mice cpmpared

with wild-type control mice [34,35]. Zhu demonstrated that SNPs

in the STAT1 gene (homozygotes of the minor alleles at SNP

rs867637, rs3771300, or rs2280235) are associated with a risk of

developing hepatocellular carcinoma in Chinese people [36].

While, Specific inhibition of ERK1/2 phosphorylation by a

variety of natural and synthetic compounds has been shown to be

effective in anticancer strategy in the treatment of breast cancer

[37,38].To better understand the molecular mechanisms that

underlie the anti-RCC tumor effects of IL-22, we assessed the

phosphorylation of STAT1 and ERK1/2 in A498 cells after rhIL-

22 treatment. Our western blotting assays showed that p-STAT1

was founded in A498 cells at the 5th minute and reached its peak

level 30 minutes after rhIL-22 exposure. While ERK1/2 was

dephosphorylated in response to rhIL-22; this effect was maximal

30 min after rhIL-22 exposure. It suggests that rhIL-22 activates

STAT1 and inhibits ERK1/2 pathways in A498 cells in a time-

and dose-dependent manner and that the biological functions of

the receptors for these pathways show time-dependent STAT1

activation and ERK1/2 deactivation evoked by rhIL-22.

Concerning the concentration of STAT1 protein in A498 cells

after IL-22 exposure was stable independent on the vary dose of

IL-22 and longer exposure time, we believe that IL-22 induce

STAT1 pathway activating directly rather than act on gene level.

Hence, the STAT1-ERK1/2 pathway participates, at least in

part, in the inhibition of A498 cell growth that occurs after IL-22

binding to and activation of IL-22R. To further understand the

role of STAT1-ERK1/2 pathway in the growth inhibition of

A498 cells exposed to IL-22, the expression of STAT1 was

deleted in A498 cells by STAT1 specific siRNA. The phosphor-

ylation STAT1 was decreased by 87.2% after treated with IL-22

compared with the controls and independent to dephosphorylat-

ed ERK1/2 pathway.The results show that the growth inhibition

of A498 cells with STAT1 deletion was only partially revised in

these cells treated with IL-22 compared with the controls

(p.0.05), which indicates that the activation of STAT1 pathway

is the major mechanism involved in the growth inhibition of

A498 cells rather than dephosphorylation of ERK1/2. Dysfunc-

tional STAT1 may contribute to cancer development and

progression, while at the same time the ERK1/2 pathway

regulates a common set of cell death regulators such as BCL-2,

BCL-XL and BIM, indicating that it plays a role in cell cycle

control [39–41]. ERK1/2 inhibitors would therefore be expected

to function as anti-tumor agents [37,38]. Concerning the lack of

contribution of ERK1/2 pathway to the growth inhibition of

A498 cells exposed to IL-22, it can be hardly concluded that IL-

22 could serve as a reasonable ERK1/2 inhibitor for A498 cells.

(Figure S1: a schematic diagram for STAT1-ERK1/2 pathway

work in this procedure.)

Figure 7. Lack of apoptosis in A498 cells after rhIL-22 treatment. A. Treatment of A498 cells with 50 ng/ml rhIL-22 for 24 h did not induce
apoptosis as measured by annexin V or PI-positive cells. B. Treatment of A498 cells with 50 ng/ml rhIL-22 for 72 h did not induce apoptosis. N = 3.
doi:10.1371/journal.pone.0020382.g007
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We propose that the STAT1 pathway is activated in A498 cells

after IL-22 treatment. Because activation of the STAT1 pathway

usually leads to apoptosis, we further investigated whether IL-22

suppresses the proliferation of RCC cells by inducing apoptosis or

cell-cycle arrest. Our results showed that IL-22 did not induce

apoptosis in A498 cells but instead was associated in a dose-

dependent manner with cell cycle arrest in the G2/M phase.

Our results also showed a tumor growth inhibition effect in vivo

when exposure to IL-22. After treated with IL-22, the A498

xenografts were significantly smaller than that of control mice. In

this study, we used BALB/c nu mice as tumor-bearing host and

the tumors were confirmed in pathology. To further understand

the function of inflammatory cytokines in this procedure, IFN-a
and TNF-a were analyzed by western blotting assay. It was found

that the levels of TNF-a and IFN-a remained unchanged in A498

xenografts after IL-22 treatment compared with that of controls

(p.0.05). TNF-a was originally described as an endotoxin-

induced, macrophage-derived protein with different effects

depending on the tumor type to which it is administered [42].

The results of minimal changes of TNF-a and IFN-a in A498

xenografts tissue after IL-22 exposure suggest minimal immuno-

cytes recruitment in this procedure. The tumor infiltration

leukocytes were rare in both IL-22 treatment tumors and controls

probably due to the adoption of athymic BALB/c nu mice as the

xenograft host. Hence, we reasoned that IL-22 act as an

immediate anti-A498 cell actor in this procedure rather than a

promoter cellular immunity. However, we do not deny that other

unknown anti-A498 cells mechanisms take part in this procedure

and further research in this field is necessary.

Several studies focusing on the effects of IL-22 on cancer cells

have shown similar results. IL-22 could significantly prolong the

survival of mice bearing Colon 26 cells, though it did not inhibit

the growth of colon cancer cells [26]. IL-22 could reduce the

growth of mammary adenocarcinoma (EMT6) cells; this growth

reduction was associated with the inhibition of ERK1/2 and Akt

phosphorylation and the induction of G2/M phase cell cycle arrest

[27]. Interestingly, in contrast to its protective role in some cells,

IL-22 seems to serve as a tumor promoter in other human tumor

cells, likely as a result of its regulation of different intracellular

signaling pathways in different cell types. The growth of HepG2

human hepatocellular carcinoma cells was promoted by IL-22

through the activation of STAT3, ERK1/2 and the induction of

antiapoptotic proteins [32]. IL-22 also protected lung cancer cell

lines from serum-starvation-induced and chemotherapeutic drug-

induced apoptosis by activation of STAT3 and its downstream

antiapoptotic proteins and inhibition extracellular signal-regulated

kinase 1/2 [28]. Based on these results, we presume that the

different observed effects of IL-22 depend on its activation of

different cell signaling pathways in different tissue types. Recently,

the association between IL-22 genetic polymorphisms and the risk

of colon cancer was investigated; it shows that one haplotype

containing the rs1179251 G allele with the incidence of 21.03%,

which enhance the IL-22 exposure, gave an estimated 52%

increase in risk of colon cancer for individuals [30]. However, the

SNP (rs1179251) is a non-coding (intronic) SNP. Therefore, it is

uncertain whether IL-22 plays the role of a potential promoter in

colon cancer [30]. Due to the controversial biological effects of IL-

22 in tumor cells, it is necessary to carry out further research on

this topic.

In summary, we have demonstrated that IL-22 inhibits the

growth of A498 cells (RCC) both in vivo and in vitro, at least

partially by activating the STAT1 pathway directly rather than

acting on gene level in these cells. The anti-A498 cells effects of IL-

22 were associated with cell cycle arrest in the G2/M phase.

Apoptosis and immunocytes recruitment were not found to be

involved in this process. We suggest that IL-22 may be an effective

agent for human RCC A498 cells growth inhibition; further, the

STAT1 pathway could be an interesting target for improving

patient responses in RCC. The data presented here support this

conjecture, although additional experimental on other RCC cell

lines and clinical evidence will be required to advance this

hypothesis.

Materials and Methods

Cell culture
The human A-498RCC cell line was purchased from Cell Bank

of China Union Medical University (Beijing, China) and cultured

in 5% CO2 humidified atmosphere at 37uC in complete RPMI-

1640 medium (GIBCO, UK) supplemented with 25 mM HEPES,

2 mM L-glutamine, 1% non-essential amino acids, 100 mg/ml

penicillin, 100 mg/ml streptomycin and 10% heat-inactivated fetal

bovine serum (FBS).

Growth inhibition assay
Exponentially growing A498 cells were seeded at 1,000 cells/

well in a 96-well microculture plate. Multi-dosage of recombinant

human interleukin 22 (rhIL-22, ADL), 10 ng, 20 ng, 50 ng and

100 ng respectively, were added after cell adhesion for 4 hrs

followed by continuous incubation for 3 days. Cells treated with

PBS served as controls. 20 ml MTT (5 mg/ml) was added to each

well and the plate was incubated at 37uC for another 4 h, after

which 10% HCl-SDS (100 ml) was added to each well. The plate

was kept at 4uC overnight. Cells were then harvested and cell

proliferation was determined using a 96-well plate reader to record

the absorbance at 570 nm. The percentage inhibition of A498

cells was calculated using the following formula: % inhibitio-

n = (absorbance of control well2absorbance of IL-22 well)/

absorbance of control well6100%.

Monoclonal human IL-22 antibody (300 mg/well, R&D) was

used to confirm the contribution of IL-22 to A498 cells growth.

The percentage inhibition of A498 cells treated with different

doses of rhIL-22 was re-calculated with the similar procedures.

Growth inhibition activity of IL-22 on A498

xenografts. BALB/C nude mice provided by SLAC

Laboratory Animal (Shanghai, China), were studied after

approval from the Medical ethics committee of Beijing

Friendship Hospital, Capital Medical University. Three- to four-

week-old mice were maintained in high-efficiency particulate air-

filtered cages in a pathogen-free facility. A498 cells were washed

once and resuspended in serum-free medium. 56106 cells in

matrigel (BD Biosciences, San Jose, CA) were injected into the

neck region; mice were examined the day after injection. When

the tumor size reached 100 mm3, rhIL-22 was injected into the tail

vein (0.5 mg /day for 7 days). Control mice were injected with the

same volume of PBS. Tumor size was measured with a caliper

each week for 5 weeks; the tumor volume was determined by

measuring the maximal (a) and minimal (b) diameters using a

caliber and calculated by using the formula a6b2. After five weeks,

mice were sacrificed under deep anesthesia and the final volumes

of the tumors were measured.

Flow cytometric analysis of cell cycle status
A498 cells (16104) were seeded on 10-cm dishes and incubated

for 24 hrs in serum-free medium. Cells were then treated with 25,

50, 100, 200 or 400 ng/ml of rhIL-22 for 24 hrs or with PBS as

control. The cells were then collected, fixed with 70% ethanol at

220uC overnight, washed 3 times with PBS and incubated at
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37uC for 30 min in 7-amino-actinomycin D (7-AAD) staining

solution (BD Biosciences Pharmingen). Cell counts in each phase

of the cell cycle were estimated using a FACSCalibur (Beckton

Dickinson) and Cellquest 3.0 software.

Western blotting analysis of IL-22R on the surface of cells
A498 cells (16106) were seeded into 6-well plates and cultured

for 6 hours in serum-free medium. Total cell lysates were prepared

on ice in a buffer containing 50 mM Tris-HCl (pH 8.0), 150 mM

NaCl, 1% Nonidet P-40, 0.5% deoxycholic acid, 0.1% SDS and

1 mM EDTA. Proteins were isolated by 10% SDS-PAGE and the

concentration of protein was assessed using the Bradford dye-

binding protein assay (Bio-Rad, Richmond, CA, USA), and SDS-

polyacrylamide gel electrophoresis was performed. Mouse IL-22

Ra1 antibody was purchased from R&D system. Anti- b-actin

monoclonal antibody (Abcam, Cambridge, UK) was used as an

internal loading control. The immune complexes were detected

using the ECL plus Western Blotting Detection System (Amer-

sham, Aylesbury, UK).

Hepatoma cell line HepG2, purchased from Cell Bank of China

Union Medical University (Beijing, China) and cultured as A498

cells, was served as positive control of IL-22R. As for negative

control, we selected human B cells purified from human spleen.

The splenic tissue was gathered from a patient with informed

consent who was performed splenectomy due to splenic rupture.

The procedure of B cells purification was followed the statement of

LeÂcart [43]. The purified B cells populations were confirmed

CD19+ .98% by flow cytometry assay. The detection procedure

of IL-22R on the surface of these cells was similar as showed

above.

Western blotting analysis of p-STAT1 and p-ERK1/2 after
IL-22 exposure

A498 cells (16106) were seeded onto 6-well plates and cultured

for 6 hours in serum-free medium. Cells were then treated with

10 ng/ml, 20 ng/ml, 50 ng/ml and 100 ng/ml rhIL-22 for

5 min, 10 min, 15 min, 20 min, and 30 min respectively or with

PBS as control. Total cell lysates were prepared in a buffer

containing 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1%

Nonidet P-40, 0.5% deoxycholic acid, 0.1% SDS and 1 mM

EDTA on ice. Samples were sonicated for 30 seconds and boiled

at 95uC for 5 min. Proteins were isolated by 10% SDS-PAGE and

the concentration of protein was assessed using the Bradford dye-

binding protein assay (Bio-Rad, Richmond, CA, USA), and SDS-

polyacrylamide gel electrophoresis was performed. phospho-

STAT1 (Tyr701)/STAT1 (9H2) antibody and phspho-ERK1/2

(Thr202/Tyr204)/MAPK (Erk1/2) antibody were purchased

from Cell Signaling. Anti- b-actin monoclonal antibody (Abcam,

Cambridge, UK) was used as an internal loading control. The

immune complexes were detected using the ECL plus Western

Blotting Detection System (Amersham, Aylesbury, UK).

STAT1 small interfering RNA
STAT1 small interfering RNA (siRNA) sequences were used to

removal the contribution of STAT1 on cells growth. STAT1 siRNA

sense sequence r(CACGAGACCAAUGGUGUGG)d(TT) or

STAT1 target siRNA anti-sense sequence r(CCACACCAUUG-

GUCUCGUG) d(TT) ( all from Qiagen) was used to knock down

STAT1 expression (DNA target sequence: AAC ACG AGA CCA

ATG GTG TGG; GenBank accession no. NM-139266, nucleo-

tides 893–913). A scrambled sequence was used as a negative

control sequence. The STAT1 siRNA transfection was per-

formed following the Qiagen TransMessenger transfection protocol

(Qiagen Inc, Valencia, CA). Cells were transfected with siRNA and

incubated for 48 hrs. The same dose of IL-22 treated siRNA

transfected A-498 cells as above shows and proteins expression such

as STAT1, p-STAT1 were assessed by Western blot assay.
Growth inhibition activity of IL-22 on A498 cells

transfected with STAT1 siRNA. A498 cells transfected with

STAT1 siRNA was used to confirm the role of STAT1 in cell

proliferation after treated with IL-22. The 1,000 cells/well of

STAT1 siRNA A498 cells were exposure to IL-22 with the same

concentration gradient. The growth inhibition assay was

performed as A498 cells’.

Flow cytometric analysis of apoptosis
A498 cells (16106 /well) were seeded onto 6-well plates. After

allowing 6 hours for the cells to adhere, the cells were treated with

rhIL-22 (with the dose of 25, 50, 100, 200 and 400 ng/ml

respectively) for 24 or 72 hrs respectively. The cells were then

trypsinized, washed with binding buffer, and incubated with FITC-

labeled annexin V antibody for about 20 min at 37uC in the dark.

The cells were resuspended and 1% FCS and 10 ml of propidium

iodide (PI)3 solution (1 mg/ml) were added. Flow cytometry was

performed in a FACScan with a single cell gate (BD Biosciences).

The dot plots in quadrants quantified the percentage of cells.
Western blotting analysis of IFN-a and TNF-a in A498

xenografts. The tumor tissues were harvested after the mice

were sacrificed and the samples were immediately frozen and

crushed into powder in liquid nitrogen. Ice-cold lysis buffer (T-

PER, Pierce) with protease inhibitor (Complete Mini, Roche) was

added and then kept on ice for 30 min. Proteins were isolated by

10% SDS-PAGE and the protein concentration was estimated by

Bradford dye-binding protein assay (Bio-Rad, Richmond, CA,

USA) in accordance with the manufacturer’s protocol.

The protein (30 mg) were dissolved in 10–12% polyacrylamide-

SDS gels and transferred onto a nitrocellulose membrane. The

membrane was immersed in blocking buffer (5% non-fat dry milk/

1% Tween 20 in 20 mM TBS, pH 7.5) for 1.5 h at room

temperature and incubated with the appropriate primary antibod-

ies, mouse monoclonal anti-TNF-a (1: 50) and IFN-a (1:100) (Santa

Cruz Biotechnology, Santa Cruz, CA, USA) in blocking buffer

overnight at 4uC, followed by incubation with complementary

secondary antibody. Proteins were detected by the ECL plus

Western Blotting Detection System (Amersham, Aylesbury, UK).
Statistical analysis. All experiments were carried out in

triplicate, and continuous variables are expressed as mean 6 SD.

For statistical analysis, continuous variables that met the criteria

for a normal distribution were determined using a two-tailed

Student’s t-test. Statistical analysis of the results of the flow

cytometry experiments was performed using the Fisher’s exact test

and two-sided tests. The x2 test was used for numeration data.

Significance for all tests was established at P,0.05.

Supporting Information

Figure S1 Schematic diagram for the mechanism of IL-
22 effect on A498 cells. After IL-22 bind with IL-22R and IL-

10R2, the IL-22 receipt compound is formed and the activation of

STAT1 and deactivation of ERK1/2 pathway were followed,

which results the growth inhibition of A498 cells.

(TIF)
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43. Lécart S, Morel F, Noraz N, Pène J, Garcia M, et al. (2002) IL-22, in contrast to

IL-10, does not induce Ig production, due to absence of a functional IL-22

receptor on activated human B cells. Int Immunol 14: 1351–1356.

Interleukin22 Suppress Renal Cell Carcinoma Growth

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e20382


