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Abstract

Pacific salmon include several species that are both commercially important and endangered. Understanding the causes of
loss in genetic variation is essential for designing better conservation strategies. Here we use a coalescent approach to
analyze a model of the complex life history of salmon, and derive the coalescent effective population (CES). With the aid of
Kronecker products and a convergence theorem for Markov chains with two time scales, we derive a simple formula for the
CES and thereby establish its existence. Our results may be used to address important questions regarding salmon biology,
in particular about the loss of genetic variation. To illustrate the utility of our approach, we consider the effects of
fluctuations in population size over time. Our analysis enables the application of several tools of coalescent theory to the
case of salmon.
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Introduction

Pacific salmon include several commercially important, and

endangered species. These semelparous species exhibit complex

life histories. They typically spend several years in the ocean, then

come back to fresh water to reproduce and die [1]. Reproduction

typically happens once a year and spawning generally takes place

in late summer to early fall [2]. Adults of Pacific salmon invariably

die after reproduction but individuals of different ages might

reproduce in the same breeding season. This life history poses

challenges for the application of standard population genetics tools

since the population dynamics are not captured by either the

standard overlapping generation model [3,4] or the standard non-

overlapping generation model [5,6]. In particular, it is of interest

to understand how the ancestral genetic process called the

coalescent [7,8,9,10] applies to salmon.

Salmon population sizes are diminishing as a result of fishing

and loss of habitat. Recently, the role of hatcheries in restoring

endangered salmon populations to sustainable levels has been

debated [11]. Conservation efforts are guided by both demogra-

phy and genetics. A successful conservation strategy should take

the ecology of the species into account and evaluate the minimum

population size required for persistence for a specific amount of

time with high probability [12]. Yet, management of decreasing

genetic variation is also critical for conservation efforts, and

population genetic models have played an important role in

developing better conservation strategies [13,14]. We analyze such

a genetic model using the theory of the coalescent.

Coalescent theory is a sample-based approach and is concerned

with making inferences about the genetics of populations under a

statistical framework [15]. The coalescent is a backward-time

stochastic process that models the ancestry of a sample of size n,

back to the most recent common ancestor of the entire sample

[7,8,9,10]. The coalescent makes detailed predictions about

patterns of genetic variation in the sample, and it has been

invaluable for understanding the effects of genetic drift and other

evolutionary forces in a broad range of models, including the

Wright-Fisher model and the Moran model [7,8]

In his seminal papers, Kingman [7,8] analyzed the process of

joining of lineages backward in time and showed that the genealogy

of a sample is described by a simple stochastic process that he called

the n-coalescent. The coalescent is a continuous-time Markov

process that exists in the limit as the population size N tends to

infinity with time rescaled in a particular way [8]. In the case of the

Wright-Fisher model, time is measured in units of Ne = N

generations [8]. In other models Ne is proportional to N [16].

When the coalescent exists in the limit N??, with time rescaled

by Ne, the ancestry of a sample of finite size (n) is composed of n21

independent, exponentially-distributed coalescence times, each

ending with a coalescent event between a random pair of lineages.

When there are i ancestral lineages the rate of coalescence is i(i21)/

2 and the expected time to a coalescent event is 2/(i(i21)). For a

review of coalescent theory, see [17] or [18].

One of the advantages of Kingman’s coalescent is its robustness

[19]. It is the limiting ancestral process for a diverse array of

population models [20,21]. A theory about Markov processes with

two time scales by Möhle is very useful in obtaining such results

[21,22]. The coalescent has been established for models that

involve diploidy and two sexes [22], strong migration [23], partial

selfing [21,24], and for populations composed of very many

subpopulations [25]. These studies have concluded that if time is

appropriately scaled then the distribution of the time to common

ancestry is the same as that of Kingman’s standard coalescent

model.
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The concept of rescaling of time in the coalescent process

naturally leads to a new type of effective population size. A

population is said to have a coalescent effective population size

(CES) if its ancestral process converges to the Kingman coalescent

in the limit as the population size tends to infinity with time

measured in units of Ne generations [16,20].

In general, the effective size of a population is defined as the size

of an ideal (Wright-Fisher) population that would show the same

behavior as the population of interest, in terms of loss of genetic

variation due to random drift [6,26]. Depending on the measure of

genetic drift considered, three different effective population sizes

have previously been defined: variance effective size [27],

eigenvalue effective size [28,29] and inbreeding effective size

[6,26]. Sjödin et al. (2005) argued that the CES should be preferred

over other definitions of effective size, because its existence implies

that all aspects of genetic variation in samples of any size should be

consistent with the predictions of Kingman’s coalescent.

In this paper, we study a model of a typical Pacific salmon life

history. We assume that there are two juvenile and three adult age

classes, but the results generalize readily to other numbers of age

classes. We analyze the backward-time ancestral process, and

prove convergence to a continuous-time coalescent process. The

proof is based on a theorem for Markov chains with two time

scales [21,22] which establishes weak convergence to the standard

Kingman’s coalescent with the appropriate rescaling of time. We

deduce the coalescent effective population size and discuss the

significance of this quantity in understanding the biology of

salmon. We also extend the theory to include changes in

population size over time, and obtain results that are helpful in

interpreting some previously reported computer simulations [30].

Methods

1. Model
We will use a generalized Wright-Fisher model that aims to

capture the life cycle of Pacific salmon, and is similar to previous

models for semelparous organisms [30,31,32]. We consider an

age-structured, haploid population of size N. In most population

genetic models, the population size refers to the sum of all

individuals at a particular time. To illustrate our definition of

population size N, let us consider an example. In each

reproductive season, thousands of eggs are laid yet only a tiny

fraction of these eggs survive beyond the early stages of

development. In a chinook salmon population, an average female

lays 4000 eggs and age-specific survival values, s(x), are 0.05, 0.1,

0.8, 0.8, 0.8 (following the parameters estimated in [33]). Now,

consider that 500 females laid eggs in a given breeding season. Out

of 200,000 eggs that were laid, 10,000 offspring will hatch to be in

the first age class. Of these 10,000 offspring, 1000 will survive to

the second age class. Given that 80 percent of these will survive to

ages 3, 4, and 5, there would be 800, 640 and 512 in these age

classes, respectively. Therefore, the total population size N would

be equal to 10,000+1,000+800+640+512 = 12,952. Thus, we

disregard those 190,000 individuals that did not make it into the

first age class. The theory that we develop below is not closely tied

to how the population size is defined, though. Any consistent

definitions of the population size could be adopted as all

parameters of the model are defined relative to the total

population size N.

For concreteness, the population is divided into five age classes.

We assume that no reproductively active individual survives

beyond age five even though a more general treatment with an

arbitrary number of age classes is possible. The number of

individuals in age class i is denoted by Ni. For spring chinook

salmon, empirical data from Marsh Creek in Central Idaho

suggests that the spawners are between ages three and five [34] so

we assume that individuals in the age classes one and two are

juveniles. These juveniles generally spend close to two years in

freshwater before moving to the ocean. Hence, all the newborns

have parents that are either three, four or five years old and we

denote the proportion of newborns that have been produced by

parents in age class i by pi such that
P5
i~3

pi~1 (Figure 1).

A critical assumption of this model is that the total population

size N is constant over time. This is an unrealistic assumption in

general and especially for salmon where fluctuations in the

population size are known to be a major factor in reducing genetic

variation [30]. Below, we relax this assumption to account for

rapid fluctuations in the population size. Constant population size

assumption also implies that the number of individuals in each age

class and the proportion of the newborns that are parented by

individuals in the different age classes remain unchanged. In the

next section where we allow fluctuations in population size over

time, we similarly assume the number of individuals in each age

class to be linearly proportional to the total population N at time t.

Each year a certain proportion of the population dies either

after reproducing or due to other causes. We denote the number of

individuals that die in a given age class i by Di. Since the total

population size and the age structure is constant through time, the

size of age class i+1 is equal to Ni+1 = Ni2Di for all i less than five.

Furthermore, no individual in the population survives beyond age

five and hence N5 = D5. For convenience, we introduce the

parameter ci, which is defined as the number of individuals dying

in age class i that die each year divided by the total population size

N. In the limit as the total population size tends to infinite, the

following relation holds

ci~
Di

N
and Di&O Nð Þ

where O(N) represents the standard order notation.

Since none of the individuals spawning in generation t are able

to survive to generation t+1, the parents of all newborns are among

the Di dying individuals. Within each age class, reproduction is

according to the Wright-Fisher model such that any one individual

out of the Di adults is equally likely to be the parent of each of the

piN1 offspring produced by the adults in the ith age class. In the

Wright-Fisher model, the number of offspring of an individual

follows a multinomial distribution. Therefore, the expected

number of offspring produced by adults in a given age class is

Figure 1. Schematic drawing of the model. The arrows represent
the evolution of the system in one time step forward in time. The
individuals labeled with Di represent the group that does not survive to
the next age class. The D1 individuals that do not survive to the second
age are not shown but implied in the figure. The proportion of age class
one produced by these individuals are represented with pi.
doi:10.1371/journal.pone.0013019.g001
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equal to piN1/Ni. Similar models were previously used to analyze

the population genetics of semelparous organisms using forward-

time approaches [30,31,32,35,36,37,38,39,40].

To understand how the ci parameters are calculated, let us

consider the same example used to illustrate the calculation of

population size N. In that example, the age-specific survival values,

s(x), were 0.05, 0.1, 0.8, 0.8, 0.8. The total population size N was

12,952 and there were 10,000, 1,000, 800, 640, and 512

individuals in age classes one through five, respectively. In this

example, ci parameters would be 0.69 (9,000/12,952), 0.02 (200/

12,952), 0.01 (160/12,952), 0.01 (128 / 12,952), and 0.04 (512/

12,952). In more general terms, the age-specific survival values s(x)

are related to ci parameters as follows:

si~

P
j~iz1

cjP
j~i

cj

:

(i) The Ancestral Process. We will consider a sample of two

lineages from age classes i and j, where i and j are not necessarily

distinct and we follow the distribution of the time to their common

ancestor in this population. First, let us consider a just single

lineage that is not in age class one. In the previous year, this

lineage must have been in age class i21. When the lineage is in

age class one in the current year, it must be a direct descendent of

a lineage in age class k with probability pk (See Table 1 for a list of

definitions of parameters). This single-lineage process defines a

discrete time Markov chain with the following transition matrix:

j~

0 0 p3 p4 p5

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0
BBBBBB@

1
CCCCCCA

Note that all states of this Markov chain can be visited after a finite

number of time steps. Also, each state has a positive probability of

occurrence after a finite number of transitions. These properties

imply that this is an irreducible, recurrent and aperiodic Markov

chain.

We now consider the ancestral process of two lineages sampled

randomly without replacement from the population. An added

complication, and the focus of our interest in this case, is the

possibility that these two lineages coalesce. At any generation t,

each of these two lineages can be in any of the five age classes or

they could have coalesced (in which case one need not keep track

of which age class they are in). This gives a total of 26 possible

states. We order these 26 possible states lexicographically such that

the sample space (V) will be:

V~ 11ð Þ, 12ð Þ, . . . , 15ð Þ, 21ð Þ, 22ð Þ, . . . , 25ð Þ, . . . ,(51), . . . 55ð Þ,Cf g

State (ij) means that the first lineage is in age class i and the second

one is in j and they have not already coalesced. Note that we have

distinguished the state in which the first lineage is in age class i and

the second lineage is in age class j from the state in which the first

lineage is in j and the second is in i. The state C indicates that the

two lineages have reached their common ancestor and coalesced.

Once the lineages coalesce they remain in that state indefinitely

and therefore the coalescent state C is an absorbing state of this

stochastic process. Also note that given enough time the lineages

can move to any of the other 25 states if they have not already

coalesced. Due to the particular nature of the semelparous life

style, a pair of lineages can coalesce at time step t if and only if they

are both in the first age class in time step t21.
(ii) Weak Convergence to Kingman’s Coalescent. In this

section, we prove that the ancestral process for a sample size of two

converges to a continuous time process with rate of coalescence

equal to one, as in Kingman’s coalescent. We obtain the time

scale, or effective population size, of this process using a

convergence theorem for Markov chains with two time scales by

Möhle (1998a, 1998b). Möhle considered a sequence of discrete

time homogeneous Markov chains XN~ XN rð Þð Þr[N0
with finite

state space and transition matrix:

PN~AzB=Nzo 1=Nð Þ,

where the transition matrix is decomposed into two matrices A
and B such that:

Table 1. Definition of the terms used in the paper.

Parameters Definition

N Total population size

Ne Effective population size

Nb Effective number of breeders

Ni Number of individuals in age class i

ci Ratio of individuals dying at age i to the total population size

Di Number of individuals dying at age i

pi The proportion of newborns produced by parents in age class i

j Transition matrix of the Markov chain that describes the movement of a lineage among age classes backwards in time

fl Kronecker product

MN(t) Population size at year t

Q Proportion of individuals in the first age class to the total population size

g Generation Length

Xi Proportional contribution of spawners in year i to the next generation

doi:10.1371/journal.pone.0013019.t001
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A~ lim
N??

PN ,

B~ lim
N??

N PN{Að Þ

He showed that if A, B, and P~ lim
m??

Am exist then the discrete

time Markov chain converges weakly to a continuous-time Markov

process described by:

P tð Þ~ lim
N??

P
Nt½ �

N ~ lim
N??

AzB=Nzo 1=Nð Þð Þ Nt½ �

~P{IzetG~Pe PBPð Þt

in which etG represents the matrix exponential and G is the

infinitesimal generator or the rate matrix and is equal to the

product of matrices PBP = G.

We let PN be the 26626 transition matrix for the Markov chain

describing the movement of two labeled lineages with the finite

state space V. The entries of this matrix correspond to single time

step transition probabilities between the elements of the state

space. For example PNð Þ1,26 is the probability of coalescing in one

time step given that the first and the second lineage are in the first

age class. The full transition matrix PN can be decomposed into

two matrices A, which represents the fast-time–scale events and B,

which represents slow-time–scale events. In biological terms, this

decomposition is based on the fact that there are two fundamental

types of events. The first type is the movement of lineages between

age-classes. These happen with probabilities of O(1) per unit time.

The second type is the coalescence event. Each time both lineages

are in age class one they have a chance to coalesce with probability

of O(1/N). Because of the order-of-magnitude difference in these

probabilities, the lineages are expected to spend most of their time

moving around different age-classes before eventually coalescing.

The entry corresponding to the coalescence probability when both

lineages are in the first age class can be calculated as:

Bð Þ1,26

N
~
X5

i~3

p2
i

ciN

On the other hand the fast time-scale processes of movement

between age classes will be determined by the matrix A which will

have the following structure:

A~

a1,1 . . . a1,25 0

..

.
P

..

. ..
.

a25,1 . . . a25,25 0

0 . . . 0 1

0
BBBB@

1
CCCCA:

This matrix represents the transition matrix for a Markov chain

for which the state space can be separated into two disjoint

communicating classes. One of them includes the coalescence state

and the other class includes all the other states. Consider the

matrix A’ obtained by deleting the last row and column of the

matrix A. This matrix is ergodic since there is a non-zero

probability of transition to all the other states in a finite number of

time steps regardless of the initial state. Furthermore, if we let j
nð Þ

1

and j
nð Þ

2 be the n-th power of the transition matrix describing the

movement of a single lineage between age classes, then the n-step

transition matrix A’ð Þn is equal to the Kronecker product of j
nð Þ

1

and j
nð Þ

2 . Then, we can write the following limit as the number of

time steps tends to infinity:

lim
n??

A’ð Þn~ lim
n??

j
nð Þ

1 6 lim
n??

j
nð Þ

2 :

Recall that the Kronecker product between two matrices is a

special case of tensor products. If V and U are two m-by-n matrices,

the Kronecker product of these matrices denoted by V6U is

equal to a m2-by-n2 matrix with the following block structure:

V6U~

v11U . . . v1nU

..

.
P

..

.

vm1U . . . vmnU

2
664

3
775:

It is much easier to compute lim
n??

j
nð Þ

1 than to compute lim
n??

A’ð Þn

so using the Kronecker product simplifies the calculation of the

matrix P.

Since all of the entries of j
nð Þ

1 are positive recurrent for a finite n,

there is a unique stationary distribution which can be obtained by

considering the expected return time [41] and determined by the

following vector:

lim
n??

j
nð Þ

1 ~
1P5

i~3

ipi

,
1P5

i~3

ipi

,
1P5

i~3

ipi

,
p4zp5P5
i~3

ipi

,
p5P5

i~3

ipi

0
BBB@

1
CCCA:

Given this stationary distribution, the existence of the limit matrix

P follows directly. By obtaining the limiting matrix P, for fast time-

scale events, and the matrix B for the slow time-scale coalescence

events, the weak convergence to Kingman’s coalescent can be

established using Möhle’s convergence theorem.

We will not derive the matrix exponential explicitly, but instead,

we will concentrate on obtaining the scaling factor that will reduce

the system to the Kingman’s coalescent. The inverse of this scaling

factor times the population size N gives the coalescent effective

population size. The coalescence rates correspond to the entries of

the last column of the rate matrix G when time is measured in

units of generation length. These entries can be calculated as

G1,26~
X26

i~1

X26

j~1

P1iBijPj26:

Since the 26th column of matrix P is all zeros except for the entry

in the last row, which is equal to one,

G1,26~
X26

i~1

X26

j~1

P1iBijPj26~
X26

i~1

P1iBi26~

P5
i~3

p2
i

ci

P5
i~3

ipi

:

When time is scaled by the population size multiplied by the

generation time, the coalescence times will follow an exponential

distribution with rate given by this equation. Hence, one can

rescale time by this factor and reduce this system to the Kingman’s

A Coalescent Model for Salmon
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coalescent, in which the rate of coalescence is equal to one for a

pair of lineages. When this rescaling factor exists, the coalescent

effective population size is given by

Ne%
3p3z4p4z5p5ð Þ
p2

3
c3

z
p2

4
c4

z
p2

5
c5

:

Thus, the effective population size is a function of the relative

contributions of each age class and the relative mortality rate.

Therefore, the age-dependent fecundity and expected generation

time are the determinants of the effective population size in this

population.

Some special cases are helpful in understanding the expression

above. If all individuals live for exactly 5 years, the sole

reproducing age class will be the fifth age class such that

p3 = p4 = 0 and p5 = 1. The number of individuals in each age

class will be equal and N1 = N2 = N3 = N4 = N5. Therefore, the

proportion of individuals dying in the last age class will be equal to

c5 = 0.2. The coalescent effective population sizes in this scenario

and the standard Wright-Fisher model are equivalent and we have

Ne = N.

In understanding the population dynamics of Pacific salmon,

the CES has several advantages over the classical work on

populations with overlapping generations. The classical approach

is to approximate the variance in the contribution of a cohort to

future generations and hence to calculate the variance effective

size [42,43]. Yet, in our particular system of interest, calculating

the exact inbreeding coefficients require a greatly increased

complexity [44] hence the practical importance of this approach

is low in our model. Furthermore, the existence of the coalescent

effective population size is a more general and stronger condition

about the genetic structure as previously analyzed [16].

(iii) The Impact of Fast Fluctuations in the Population

Size. Fluctuations in the population size from year to year are

considered a major factor decreasing genetic variation and hence

it is critical to address how these fluctuations could affect the long-

term effective population size of salmon [30]. If the relative

contribution of each year’s breeders to the next generation is

constant regardless of the fluctuations then the effective population

size is roughly equal to the harmonic mean of the effective number

of breeders (Nb = (c3+c4+c5)*N) per year [30,37]. Yet, if the

contributions to the next generation are directly proportional to

the effective number of breeders then the multi-generation

effective population size is approximated by their arithmetic

mean [30]. Hence the demographic assumptions are strongly

correlated with the effect of fluctuations in population size.

In this section, we relax the assumption of constant population

size. Under a model of deterministically varying population size,

where g is a function describing the population size fluctuations in

time, the coalescence rates will be proportional to the inverse of

the function g. Hence by accounting for this variation in the

coalescence rates by a non-linear change in time-scale, it is possible

to show convergence to the n-coalescent [45,46,47]. A more

challenging problem is to allow stochastic variation in population

size. It is helpful to classify these stochastic changes in the

population size relative to the timescale that the coalescence events

are taking place [16].

Stochastic fluctuations may occur on the same timescale as

coalescence. In this case, the changes in the population size occur

on an evolutionary timescale and when there is historical evidence

for population expansion and/or shrinkage this type of modeling is

appropriate. The variation in the population sizes is generally

modeled by a discrete Markov chain, which itself can be

approximated by a continuous-time process satisfying certain

assumptions. Then the scaled ancestral process can be shown to

converge to a stochastic time change of the Kingman’s coalescent

[48,49].

Salmon populations fluctuate considerably from year to year, so

we model the fluctuations in the population size as taking place on

a fast time scale compared to coalescence, which takes place on the

time scale of Ne generations. We will denote the total population

size by MN tð Þ at year t. We assume that despite the fluctuations,

the population size remains relatively large at all times such that

MN tð Þ is proportional to a large population size N and

MN tð Þ~xjN where xj is a proportionality constant. The sequence

of MN tð Þ’s for t = (0, 1, …,) represent the population sizes

backwards in time with MN 0ð Þ being the current population size

from which two alleles are sampled. For simplicity, we also assume

that the population size MN tð Þ for all t to be independent and

identically distributed random variables. We denote the probabil-

ity that the population size at a given generation t to equal a

specific value by qj such that

qj:P MN tð Þ~xjN
� �

where xj can take on finitely many values so that there are a fixed

number of discrete and finite possible values for MN tð Þ. This

assumption is possibly unrealistic since the population sizes at any

given year probably depend on the sizes in the last few years. Yet,

the methods we use in this section are general and with some effort

can be applied to deduce the long term CES when the sequence of

MN tð Þ are modeled in a manner other than the simple case we

consider.

The existence of the coalescent effective population size is quite

powerful as one can directly apply previously developed tools of

coalescent theory to the particular salmon model under consid-

eration. This is a major advantage of using the coalescence

effective size as opposed to inbreeding or variance effective

population sizes since a separate analysis would be required to

incorporate the fluctuations in the population size into these other

measures of effective size. Our treatment follows Sjödin et al.’s

(2005) discussion of the fast fluctuations in the standard Wright-

Fisher model. An analysis of general reproduction models where

the fluctuations in population size can be modeled by a first-order

Markov chain can be found in [50].

To derive the long-term coalescent effective population size, the

effect of fluctuations on the coalescence probability should be

considered. All other demographic parameters of the original

model are assumed to remain constant in time, and the relative

sizes of the age classes grow and shrink in linear proportion to the

total population size. In other words, pi and ci are constant

throughout the history of the sample and
MN tð Þ

MN tz1ð Þ~
Ni tð Þ

Ni tz1ð Þ
for all t where Ni tð Þ is the size of the i-th age class at time t. Then

the probability of observing no coalescence events in Ne tð Þ½ �
generations is given by

P(no coalescence in Ne tð Þ½ � generations)~

E P
Net½ �

t~1
1{Q2

X
i

1

ciMN tð Þ

" #

where Q is the proportion of the individuals in the first age class to

the total population size. The independence of each year’s

population size and the results from previous section imply that

A Coalescent Model for Salmon
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E P
Net½ �

t~1
1{Q2

X
i

1

ciMN tð Þ

" #
~ 1{Q2

X
j

X
i

qj
p2

i

cixjN

 ! Net½ �

~ 1{Q2
X

j

X
i

qj

p2
i

P
k

kpk

cixj

P
k

p2
k

ck

1

Ne

0
BBB@

1
CCCA
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This result suggest that if time is rescaled by the coalescent effective

population size as derived in the previous section the rate of

coalescence will be equal to Q2
P

j

P
i

qj ipi
xj

. Recall that in the

standard treatment of the Wright-Fisher model when time is

rescaled by the population size, the coalescence rate is equal to one.

To account for the discrepancy in the dynamics, the relevant multi-

year coalescent effective population size N�e can be calculated as
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This result suggests that the long term coalescent effective

population size is proportional to the harmonic mean of the

population size at individual years, similar to the standard result for

an unstructured Wright-Fisher population [51].

Results

In natural populations of Chinook salmon, the contribution and

the number of reproducing three-year-old individuals are

generally smaller compared to the fourth and fifth age classes,

and so these individual have comparably less influence on the

overall genetic structure [34]. To explore the effect of variation in

some of the parameters in the model, we fixed two parameters (p3,

c3) and the relative number of individuals reproducing at age four

(c4) at biologically relevant, representative values and analyzed the

change in coalescent effective population size as we vary the other

parameters (Figure 2). For a given value of age specific fecundity,

increasing the relative abundance of reproducing individuals (c5)

increased the CES. The increase in c5 corresponds to an increase

in generation length. The increase in CES as the generation length

gets longer agrees with previous results using a forward-time

genetic model [37]. On the other hand, for a fixed value of c5 there

is not a monotonically increasing relationship between CES and

Figure 2. Coalescent effective population size as a function of the size of the last age class and the relative contributions to the first
age class. The coalescent effective population size is graphed as p4, p5 and c5 are allowed to vary and the other parameters are fixed. The total
population size is 1000 (N = 1000). The other parameters are c3 = 0.05, c4 = 0.1, p3 = 0.1 and p4+p5 = 0.9. The projection onto p52c5 plane was shown.
doi:10.1371/journal.pone.0013019.g002
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p5. A disproportionately large p5 compared to p4 would mean

higher variance in reproductive success among age classes, as an

individual in the fifth age class would contribute a disproportion-

ately large number of offspring compared to an individual in the

fourth age class. This is also in agreement with previous studies on

sockeye salmon (Oncorhyncus nerka) and steelhead trout (Oncorhyncus

mykiss) [52,53,54]. Similarly, these experimental studies suggested

that variability in reproductive success is the main cause of low

effective population size in these organisms using inbreeding

effective population size.

We compared two previously known equations for estimating

effective population size in populations with fluctuating size with

the estimates from CES derived in the previous section. The first

equation is derived under the assumption that spawners in each

year contribute equally to the next generation regardless of their

abundance and is simply given by

Equation 1: Ne&g ~NNb

where g is the generation length and ~NNb is the harmonic mean of

effective number of breeders in individual years [30,37]. The

second equation can be derived under the assumption that each

year’s spawning population contributes to the next generation in

one to one proportion to the number of spawners and is given by

Equation 1: Ne&g �NNb

where �NNb represents the arithmetic mean of the effective number

of breeders in the individual years [30,37].

We compared the predictions of our estimate of effective

population size with the predictions of Equations 1 and 2. We

simulated a time-series of population sizes for 52 years. For spring

chinook salmon, the total number of returns to the Columbia

River system in the last fifty years ranged between 20,000 to

200,000 individuals [34]. We used these figures as estimates of the

upper and lower bounds for the total population size N.

Specifically, we generated the population sizes by sampling

uniformly from the interval between 20.000 and 200.000. In the

calculation of the long term CES, we used the following

parameters: p3 = 0.04, p4 = 0.25, p5 = 0.71, which correspond

roughly to the mean frequencies of spawners of ages 3, 4, and 5

respectively in the Marsh Creek population of spring chinook

salmon years [30,34]. By choosing this set of parameters, we made

the assumption that the relative contribution of the spawners in

each age classes to the first age class is equal to the mean frequency

of the breeding individuals in each age class. We chose Q= 0.5,

c3 = 0.01, c4 = 0.05, c5 = 0.15 which are reasonable estimates for

the salmon life history and also results in roughly equivalent

variance across age classes in the number of offspring per breeding

individual. The results of the comparisons between the different

measures of effective size for a particular set of simulated

population sizes are given in Figure 3. Under a wide range of

parameters that are plausible for salmon, the qualitative behavior

of the different estimates of the coalescent effective size was

essentially the same as long as Q was greater than or equal to 0.5

(data not shown). Previously, Waples’ computer simulations

suggested that effective population size agreed better with the

harmonic mean method and was generally lower than both the

Figure 3. Comparison of different estimates of effective population size in response to fluctuation in population size. (A) A time-
series of simulated effective population sizes for 52 years is shown. The simulations were done by uniformly sampling from the interval between
20,000 and 200,000. Each unit on the y-axis represents 1000 animals. The black line corresponds to the simulated population size N, the red line is the
approximate number of effective number of breeders Nb = (c3+c4+c5)*N. The arithmetic mean and harmonic mean are calculated using the effective
number of breeders. (B) The simulated population sizes are divided into 12 generations, each with a 4 year length. For each generation the effective
population size is calculated using three different methods. A: Arithmetic Mean (Equation 2), H: Harmonic Mean (Equation 1) C: Coalescent Effective
Population. Each unit on the y-axis represents 1000 animals as in panel A.
doi:10.1371/journal.pone.0013019.g003
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harmonic and the arithmetic mean methods [30] and our results

agree with this observation (Figure 3).

Discussion

We have shown that for certain models of semelparous age-

structured organisms, the ancestral process for a sample of size two

converges to a continuous-time process as in Kingman’s

coalescent, if time is rescaled appropriately. We have established

this result using a separation of time scales approach combined

with a novel method using Kronecker products to simplify the

calculation of the limit process. This convergence holds in the limit

as the total population size tends to infinity and the sizes of the

age-classes relative to the total population size remain constant.

The use of the Kronecker product enables direct generalization of

our results for a sample size of n, so long as sample size is small

such that multiple coalescence events are negligible. The latter

point is essential to proving that the coalescent effective size exists

[55]. Although we state it without proof, in our model, multiple

coalescence events will not occur in the limit because we assume

Wright-Fisher reproduction and the number of potential parents is

proportional to N.

For concreteness, we analyze a model with five age classes out of

which two represent juvenile age classes. However, the theory can

be generalized in a straightforward manner to a general finite

number k of age classes, some of which are non-reproducing. A k

by k transition matrix j for the ancestral process of a single lineage

should be considered and the Kronecker product of two of these

transition matrices needs to be taken to obtain the fast-process

matrix in the decomposition of the Markov chain for the ancestral

process of two lineages. The calculation of the effective population

size will then be essentially the same as in our model.

Coalescent theory has recently been extended to incorporate the

consequences of evolutionary factors such as recombination

[56,57], selection [58,59] and spatial subdivision of populations

[60,61,62,63,64] among other things. Our study has shown that

for certain models of semelparous age-structured organisms, the

ancestral process for a sample of size two converges to Kingman’s

coalescent with appropriate rescaling of time. Consequently, our

result enables many of these previously developed tools of

coalescent theory to be applied to address questions regarding

salmon population biology. As an illustrative example we

demonstrated how the rapid fluctuations in population size would

affect the long-term behavior of the population.

For mathematical tractability, we have assumed that the age

structure in the population is stable and the relative contribution of

the age classes to the newborns is constant over time, even as the

size of the population changes. We also assumed that within each

age class the reproducing individuals have a symmetric joint

multinomial distribution of their offspring. In natural populations

the variance in the number of offspring could be very high and this

would result in a very different ancestral process [65,66,67,68,69].

In addition, the relative sizes of the different age classes might

change over time. Therefore, it is of interest to test the validity of

these assumptions about age structure and reproductive variance.

If these assumptions do not hold, one might expect a smaller

effective population size compared to the harmonic mean since the

time to the common ancestor would be shorter.

The model we analyzed has several other simplifying assump-

tions. We assumed a haploid population structure but our results

should hold for a diploid population as long as there are no major

differences in age structure or variability in reproductive success

among the sexes [22]. Yet, these are known to be variable among

sexes in natural populations; for example the spawners in age class

three were predominantly males in spring chinook salmon

population from Marsh Creek [34]. An extension of the

coalescence model we analyzed here could be used to address

the possible effects of such sex-specific differences.

In our model, we also assumed no subdivision of the population.

In fact, the estimates of population sizes we used in our simulations

correspond to the metapopulation size of chinook salmon that are

destined to spawn in numerous local populations. Even though we

don’t have a clear understanding of the extent of genetic material

exchange between these subdivided populations, a detailed

analysis of the potential effects of population subdivision would

be essential. Coalescent theory has been successfully applied to

study the effects of spatial subdivision of populations

[59,60,61,62,63] and our work should enable future studies to

address these issues for the case of Pacific salmon.

Our analysis of semelparous age structure also reveals a

connection between this model and the strong migration limit

which is concerned with migration among demes [23,70]. In the

strong migration limit, the population is divided into a finite

number of colonies or demes and the size of each deme is assumed

to be large. The movement between demes is described by a

backwards migration matrix such that the ij-th entry of the matrix

corresponds to the probability that an individual in deme i

migrated from deme j where i and j are not necessarily distinct.

Strong migration assumption implies that random drift is much

weaker than migration when the population size tends to infinity.

In both our model and the strong migration limit, coalescence

takes place on much more slower time scale compared to the

movement between age classes and migration respectively.

Under strong migration, the effective size is equal to total

population size when the migration is conservative, which means

that at each time step the number of individuals leaving any given

colony and the number of individuals arriving to the same colony

is equal [70]. In our model, an analogous result holds for multiple

parameter sets but one particular choice of parameters that results

in N3 = N is p3 = 3c3, p4 = 4c4, p5 = 5c5. This particular set of

parameters implies that if the relative contribution of the age

classes is weighted appropriately to the relative numbers of

reproducing individuals then the coalescent effective size is equal

to the population size. This conclusion is in agreement with

previous analysis using forward-time population genetic models

[30].

Our model for Pacific salmon captures the life history traits

similar to those seen in plants with seed banks. Various models

that try to capture the dynamics of these seemingly unrelated but

fundamentally similar organisms have been previously compared

[39]. Kaj et al. (2001) [71] developed a coalescent model for plants

with seed banks and found that the scaled ancestral process in that

model also converges weakly to the Kingman’s coalescent with

time a change under the assumption of constant population size.

The ancestral process for seed banks also includes both a fast time-

scale ‘‘configuration process’’ and coalescence events in a slow

time scale. In contrast, our model is specifically tailored to the

dynamics of Pacific salmon populations, allowing for different sizes

in different age classes as well as the more realistic assumptions of

presence of juvenile age classes, and allowing only a subset of

individuals in a given age class to reproduce. We also obtained a

simple expression of the coalescent effective population size and

extended our results to the case of variable population size.

Kobayashi and Yamamura (2007) [72] have considered an age-

structured population where the movement between age classes is

similar to that in our model. They analyze spatial structure where

each deme has age structure. They derived an effective population

size although their system does not converge to Kingman’s

A Coalescent Model for Salmon

PLoS ONE | www.plosone.org 8 September 2010 | Volume 5 | Issue 9 | e13019



coalescent. The main difference between their study and ours is

the assumptions regarding the reproductive scheme. They have

assumed that reproduction is similar to the standard age-

structured model [73,74].

In this work, we have derived a simple expression for the

coalescent effective size for a different reproductive scheme that

captures the life cycles of semelparous organisms. The existence of

the coalescent effective size readily allows extensions to include the

effects of various evolutionary forces such as rapid fluctuations in

population size. Our results could also be extended to explore the

possible effects of spatial structure on Pacific salmon populations.
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66. Möhle M, Sagitov S (2001) A classification of coalescent in neutral population

models. Annals of Applied Probability 29: 1547–1562.

67. Sagitov S (1999) The general coalescent with asynchronous mergers of ancestral
lines. Journal of Applied Probability 36: 1116–1125.

68. Pitman J (1999) Coalescents with multiple collisions. Ann Probab 27:
1870–1902.

69. Eldon B, Wakeley J (2006) Coalescent processes when the distribution of

offspring number among individuals is highly skewed. Genetics 172: 2621–2633.
70. Nagylaki T (1980) The strong-migration limit in geographically structured

populations. J Math Biol 9: 101–114.

71. Kaj I, Krone S, Lascoux M (2001) Coalescent theory for seed bank models.
Journal of Applied Probability 38: 285–300.

72. Kobayashi Y, Yamamura N (2007) How to compute the effective size of
spatiotemporally structured populations using separation of time scales. Theor

Popul Biol 71: 174–181.

73. Sagitov S, Jagers P (2005) The coalescent effective size of age-structured
populations. Annals of Applied Probability 15: 1778–1797.

74. Felsenstein J (1971) Inbreeding and variance effective numbers in populations
with overlapping generations. Genetics 68: 581–597.

A Coalescent Model for Salmon

PLoS ONE | www.plosone.org 10 September 2010 | Volume 5 | Issue 9 | e13019



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


