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Abstract

Background: PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor,
scavenger receptor class B type I (SR-BI), and regulates its expression, localization and function in a tissue-specific manner.
PDZK1 knockout (KO) mice are characterized by a marked reduction of SR-BI protein expression (,95%) in the liver (lesser or
no reduction in other organs) with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be
atheroprotective using the high fat/high cholesterol (‘Western’) diet-fed murine apolipoprotein E (apoE) KO model of
atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI.

Principal Findings: Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic
‘Paigen’ diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO) mice showed increased plasma lipids
(33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids) and a 26%
increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease:
375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal
fibrosis was noted), were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle.

Conclusions: These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for
studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.
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Introduction

Hypercholesterolemia is recognized as one of the most

important predisposing risk factors for the development of

occlusive coronary arterial atherosclerosis and myocardial infarc-

tion [1]. Under typical experimental conditions, neither LDL

receptor nor apoE KO mice exhibit robust occlusive coronary

artery disease associated with myocardial infarction, heart

dysfunction and death during the first six months of life (see for

example [2]). After 8 months (chow diet) [3] or 5 months (Western

diet) [4] of age, apoE KO mice develop atherosclerotic lesions in

the proximal segments of coronary arteries, resulting presumably

from the extension of lesions present in the aortic root [4].

Occasional myocardial fibrosis has been observed in 10 month old

apoE KO mice [4]. In contrast, there is robust aortic root and

aortic atherosclerosis in these mice, and they are commonly used

as a model of human atherosclerosis [5,6,7].

High density lipoprotein (HDL) and its receptor, scavenger

receptor class B type I (SR-BI), have been described as

atheroprotective [8,9,10,11,12]. They participate in the trans-

port of cholesterol from peripheral tissues (e.g. atheromatous

plaques) to the liver and subsequent excretion into the bile, a

process called reverse cholesterol transport [13,14,15]. SR-BI is a

509 amino acid membrane-associated protein predominantly

expressed in the liver and steroidogenic organs, and also in

enterocytes in the small intestine, macrophages and endothelial

cells [15,16,17,18,19,20,21].

Several experimental models have shown that overexpression of

SR-BI in murine liver decreases the extent of atherosclerosis, even

though it decreases HDL-plasma cholesterol concentration

[22,23,24,25]. Partial or total loss of SR-BI increases atheroscle-

rosis in several murine models [12,26,27,28].

Mice deficient in both SR-BI and apolipoprotein E (SR-BI/

apoE double knockout (dKO) mice) fed a normal chow diet not

only exhibit dramatically enhanced hypercholesterolemia and

accelerated aortic root atherosclerosis [12], but also exhibit rapid

onset occlusive coronary artery atherosclerosis, myocardial

infarction and premature death (mean age of death ,6 weeks of

age) [11]. Thus, SR-BI/apoE dKO mice provide a very rapid,

small animal model that mimics many cardinal features of human

coronary heart disease [2,11,29].

PDZK1 is a four PDZ domain protein that binds to and

regulates the expression of SR-BI in a tissue specific manner

[30,31,32,33]. Loss of PDZK1 in PDZK1 KO mice is accompa-
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nied by an ,95% reduction in hepatic SR-BI levels and a

concomitant ,1.7 fold increase in plasma total cholesterol levels.

However, loss of PDZK1 does not affect SR-BI expression in

steroidogenic tissues [32] or macrophages [21]. These findings led

to the conclusion that PDZK1 is a tissue specific adaptor protein

for SR-BI, and joins ARH (autosomal recessive hypercholesterol-

emia gene) in a new class of tissue specific adaptor proteins for

lipoprotein receptors. ARH is an adaptor for the LDL receptor

[34] that regulates this receptor in a tissue specific fashion.

We have previously shown that PDZK1 is atheroprotective

in mice [21]. PDZK1/apoE dKO mice fed with a high fat/

high cholesterol diet (Western diet) develop increased aortic

root atherosclerosis compared to apoE single KO mice, but

fail to develop occlusive coronary artery disease and myocardial

infarction [21].

In this report, we examined the effects of 3 months of feeding

another atherogenic diet, the high fat, high cholesterol, cholate

containing ‘Paigen’ diet on PDZK1/apoE dKO mice and control

apoE single KO mice. We found that the Paigen diet induced a

more severe hypercholesterolemia and greater aortic atheroscle-

rosis in PDZK1/apoE dKO mice than in the apoE KO controls.

Strikingly, in contrast to the Western diet, the Paigen diet induced

development of occlusive coronary arterial atherosclerosis and

myocardial infarction in PDZK1/apoE dKO mice not seen in

apoE KO controls. Thus, the Paigen diet-fed PDZK1/apoE dKO

mice represent a new murine model of coronary heart disease

and suggest that PDZK1 may represent a valuable target for

therapeutic intervention.

Materials and Methods

Animal protocols were reviewed and approved by the

respective Animal Care & Use Committees at the Beth Israel

Deaconess Medical Center and the Massachusetts Institute of

Technology.

Animals
ApoE deficient mice (C57BL/6 background) were purchased

from Jackson Laboratories (Bar Harbor, ME), mated with

PDZK1 deficient mice (129 SvEv background), and backcrossed

for 6 generations into C57BL/6 background to generate the

PDZK1/apoE double knockout (dKO) and apoE single KO

mice as previously described [21]. As a result, experiments were

conducted using apoE single KO and PDZK1/apoE dKO male

mice with ,98.5% C57BL/6/1.5% 129 SvEv background.

Genotypes were determined by PCR using established protocols

([35] and Jackson Laboratories web site). For analyses of

lipoproteins (n = 8–25 as shown in Table 1) and atherosclerosis

(n = 8 per group) and cardiac morphology (n = 8 per group),

approximately 4-week-old animals were fed a ‘‘Paigen diet’’

from Harlan Teklad (Madison, WI) containing 7.5% cocoa

butter, 15.8% fat, 1.25% cholesterol, 0.5% sodium cholate for 3

months [36].

Morphologic and Biochemical Analyses
Mice were anesthetized. Blood was obtained by cardiac

puncture using heparinized syringes and centrifuged to obtain

plasma. Hearts were excised after a short in vivo perfusion with

PBS, weighted and frozen in OCT compound. Transverse frozen

sections (10 mm) were stained with Oil Red O/hematoxylin and

atherosclerotic lesions were measured by planimetry as the sum of

the cross-sectional areas using image measure/SPOT software

(Diagnostics Instruments, Sterling Heights, MI) in the aortic root

as previously described [12]. Coronary arteries were visually

scored according to the severity of their occlusion status as follows:

severely occluded (50–100%), partially occluded (10–50%) and

minor occlusions (0–10%) [37,38]. Cardiac fibrosis was evaluated

on cryosections stained with Mason’s Trichrome (Sigma, St Louis,

MO). Digital images of sections collected using a Nikon E600

microscope with a SPOT digital camera and software (Diagnostic

Instruments, Inc.) were analyzed using OpenLab software

(Improvision, MA) and color-based thresholding segmentation of

the images (32 bits/pixel, RGB). To calculate the percentage of

cardiac fibrosis, we defined total ventricular myocardial tissue area

as the total number of all blue and red pixels in the image,

excluding atrial tissue and all valve leaflets. Fibrotic area was then

defined as the total number of blue pixels. % cardiac fibrosis =

(fibrotic area/total tissue area) 6100 [37,39].

Immunoblots were performed as previously described [40].

Briefly, total liver samples (40–50 mg of protein/sample) were size-

fractionated by 10% SDS-PAGE and immunoblotted on nitro-

cellulose membranes with either polyclonal antipeptide antibodies

for SR-BI [16] or for actin (used as protein loading control,

Sigma). Antibody binding to protein samples was visualized by

enhanced chemiluminescence using Super Signal West Pico

Luminal reagents (Pierce, Rockford, IL). In order to determine if

the Paigen diet induced changes in the expression of hepatic SR-

BI, the relative amounts of SR-BI were measured using a Kodak

Image Station 440 CF and Kodak 1D software in liver samples

from apoE KO and PDZK1/apoE dKO mice fed chow or Paigen

diet for three months (three mice per group). The results were

normalized with respect to the level of actin expression in the

respective tissue samples.

Immunoperoxidase studies to determine the respective contri-

bution of macrophages and smooth muscle cells in aortic root

atherosclerotic lesions were performed using CD68 (Serotec) and

alpha smooth muscle actin antibodies (Thermo Scientific)

according to manufacturer’s recommendation. Five-mm fixed-

frozen sections were stained with the anti-CD68 or anti-smooth

muscle actin antibodies, followed by biotinylated either anti-rat or

anti-mouse IgG, visualized by immunoperoxidase staining, and

counterstained with Harris modified hematoxylin, as described

previously [32].

Total and unesterified cholesterol, phospholipids and triglycer-

ides were measured using kits (Wako Chemical, Richmond, VA).

FPLC size fractionation of plasma lipoproteins was performed as

previously described [41].

Table 1. Plasma lipid levels and body weights of apoE KO
and PDZK1/apoE dKO mice.

Genotype TC UC UC:TC PL TG Wt

apoE KO 1898662a 517614b 0.2760.004c 553623d 6768 2560.6e

PDZK1/apoE
dKO

2529682 770633 0.3160.01 751622 8569 2860.5

Four month old animals were fasted for 4 hours prior to sample collection.
Values are represented as mean6standard error from 8–25 animals (mean 20
animals) per group. Statistical significance was determined by pairwise
comparisons of each value from PDZK1/apoE dKO mice with apoE KO controls
by using unpaired Student’s t test. The abbreviations and units used are TC
(total plasma cholesterol, mg/dL), UC (plasma unesterified cholesterol, mg/dL),
UC:TC (plasma unesterified cholesterol to total plasma cholesterol ratio), PL
(plasma phospholipids, mg/dL), TG (plasma triglycerides, mg/dL) and Wt (body
weights, g).
a, b, c, eP,0.01
dP,0.05
doi:10.1371/journal.pone.0008103.t001

PDZK1 and Murine Heart Disease
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Statistical Analyses
A value of P,0.05 between experimental groups was consid-

ered to represent a significant difference using a 2-tailed, unpaired

Student’s t test or one-way ANOVA with Tukey’s multiple

comparisons post-test where appropriate. Reported values repre-

sent mean 6 standard error of the mean.

Results

We have previously shown that PDZK1 confers protection

against aortic root atherosclerosis in apoE KO mice fed an

atherogenic, Western-type, high fat/high cholesterol diet for 3

months [21]. Under these conditions, there was no evident

occlusive coronary arterial atherosclerosis nor cardiac damage. To

explore further the consequences of PDZK1 deficiency in apoE

KO mice on atherosclerosis and the heart, we subjected mice to a

more severe, cholate-containing atherogenic diet (Paigen diet).

Four week-old apoE single and PDZK1/apoE dKO mice were fed

a Paigen diet (7.5% cocoa butter, 15.8% fat, 1.25% cholesterol,

0.5% sodium cholate) for three months. At this stage, plasma was

obtained and mice were weighed and sacrificed to analyze the

extent of aortic root atherosclerosis and cardiac damage.

We previously showed that loss of PDZK1 causes a dramatic

reduction in hepatic SR-BI expression in otherwise wild-type mice

[32] or in apoE KO mice fed either a standard lab chow or a

Western-type diet [21]. However, the effect of PDZK1 ablation on

SR-BI levels in the liver of Paigen diet-fed animals was not known.

Western blot analyses of Paigen diet-fed animals (Fig. 1) showed a

dramatic decrease in the levels of SR-BI protein expression in the

livers of PDZK1/apoE dKO animals when compared to apoE

KO animals. Quantification experiments showed that the Paigen

diet did not change the expression of SR-BI in both apoE KO

mice (Relative fold change in SR-BI liver expression in apoE KO

mice fed Paigen diet versus chow diet = 1.2060.18, p = 0.34) and

PDZK1/apoE dKO mice (Relative fold change in SR-BI liver

expression in PDZK1/apoE dKO fed Paigen diet versus chow

diet = 1.1760.60, p = 0.79).

The dramatic reduction in hepatic SR-BI by ablation of the

PDZK1 gene in Paigen diet-fed apoE KO mice was accompanied

by increased plasma levels of total cholesterol (33%), unesterified

cholesterol (49%), and phospholipids (36%) as well as an increase

in the unesterified to total cholesterol ratio (14%) and total body

weight (13%) (Table 1).

Figure 2 shows the size distribution profiles of cholesterol in

plasma lipoproteins measured by FPLC. As previously reported

[3,5,6], most of the plasma cholesterol in apoE KO mice is carried

in VLDL-size particles. The plasma lipoprotein profile of

PDZK1/apoE dKO mice was similar, but the VLDL-size peak

was higher (Fig. 2). Under the conditions used for these

experiments (substantial dilution of the samples because of the

high total cholesterol levels), we did not detect HDL-size peaks in

any of the samples from PDZK1/apoE dKO mice, whereas we

occasionally observed a small HDL peak in apoE KO samples.

The unesterified to total cholesterol (UC:TC) ratio of FPLC

fractions from the VLDL region (not shown) indicated that the

UC:TC ratio was higher in PDZK1/apoE dKO mice, consistent

with the findings from total plasma measurements.

Hyperlipidemia is a risk factor for atherosclerosis and

coronary heart disease [1]. Because of the increased plasma

lipids in Paigen diet fed PDZK1/apoE dKO compared to apoE

KO mice, we next evaluated atherosclerosis in the aortic roots

and coronary arteries of these mice. Representative images of

frozen sections of aortic roots, in which neutral lipids were

stained with Oil Red O (top panels A and B), and quantification

of this staining as a measure of atherosclerosis (right top panel)

are shown in Figure 3. Both PDZK1/apoE dKO and apoE KO

mice showed significant amounts of atherosclerosis. There was a

26% increase in the average lesion area in the aortic roots of

PDZK1/apoE dKO mice compared to those of apoE KO mice

(0.825 mm260.057 versus 0.654 mm260.024, 8 animals per

group, P = 0.015). These results confirm our previous studies

showing that PDZK1 is atheroprotective in the apoE KO mouse

[21]. Immunohistochemical staining of the sections with

antibodies that recognize macrophages (CD68) and smooth

muscle cells (alpha-smooth muscle actin) showed that macro-

phages were overwhelmingly the most abundant cellular

component of the atherosclerotic lesions in both apoE KO and

PDZK1/apoE dKO mice, while smooth muscle cells were less

abundant (Figure 3, C–F).

A common feature of human heart disease is occlusive coronary

arterial atherosclerotic lesions and associated myocardial fibrosis.

Figure 1. Immunoblot analysis of hepatic SR-BI expression.
Mice with the indicated genotypes were fed a high fat/high cholesterol/
cholate-containing ‘‘Paigen’’ diet for three months. Livers were
harvested and subjected to immunoblotting using anti-SR-BI and
anti-actin (loading control) antibodies as described in Materials and
Methods.
doi:10.1371/journal.pone.0008103.g001

Figure 2. Lipoprotein cholesterol profiles from apoE KO and
PDZK1/apoE dKO mice. Plasma harvested from individual mice fed a
Paigen diet for three months was size fractionated using FPLC, and the
total cholesterol contents of the fractions (mg/dL plasma) were
determined by enzymatic assay. Profiles averaged from 2 independent
experiments for each genotype, each composed of pooled plasma from
six apoE KO (open circles) and six PDZK1/apoE dKO (filled circles) mice
per experiment are shown. Approximate elution positions of human
VLDL, IDL/LDL and HDL are indicated.
doi:10.1371/journal.pone.0008103.g002

PDZK1 and Murine Heart Disease
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However, there are only a few murine models that robustly

recapitulate these phenomena, especially after relatively short

times (,6 months) of disease development [2,11,29,42]. Notable

examples include the SR-BI/apoE dKO mice on chow diet [11]

and SR-BI/HypoE on a Paigen diet [42]. We previously did not

observe substantial coronary arterial occlusion nor myocardial

fibrosis in PDZK1/apoE dKO mice fed a Western diet for three

months [21]. We therefore explored the effects of the Paigen-diet

on these features of cardiac pathology. The extent of coronary

arterial occlusions in apoE single KO and PDZK1/apoE dKO

mice (Fig. 4, A–C) was assessed quantitatively by classifying the

coronary arteries observed in frozen, stained cross sections into

three categories depending on the severity of occlusions as follows:

severely occluded (50–100% of the lumen occluded), partially

occluded (10–50%) and minor occlusions (0–10%), as described

previously [37,38]. Occlusions were found in the mid- to distal

portions of the coronary arteries. Oil Red O staining showed that

these arteries were occluded almost exclusively by lipid-rich

lesions, with very few cells present in the lesions (Fig. 4B). In

addition, no thrombi were observed. Trichrome stained (Fig. 4C)

images of occluded coronary arteries taken from the infarcted

areas showed perivascular fibrosis, confirming that the infarcts

were the direct consequence of the occluded coronary arteries.

Figure 4 (right top panel) shows that in PDZK1/apoE dKO

relative to apoE KO mice there was a 375% increase in the

percentage of severely occluded (P,0.001) and with a concom-

itant 47% decrease in vessels with little or no occlusions

(P,0.001).

Occluded coronary arteries are commonly implicated in

myocardial infarctions in humans. To determine if the relatively

high abundance of severely occluded arteries in PDZK1/apoE

dKO mice were associated with higher incidence of myocardial

infarction, we stained cardiac sections of both PDZK1/apoE

dKO and apoE single KO mice with Masson trichrome to identify

areas of myocardial infarction and fibrosis (blue stain, Fig. 4, D–

E). ApoE single KO mice hearts showed no myocardial infarction

and only occasional, minimal amounts of fibrosis, while

myocardial infarctions were observed in 7 out of 8 (88%)

PDZK1/apoE dKO mice. Quantitative evaluation of fibrosis

indicated that there was ,12 times more fibrosis in cardiac

muscle of PDZK1/apoE dKO mice than in apoE KO mice

(6.39%62.2 vs 0. 52%60.2, P = 0.02) (Fig. 4, right bottom panel).

We did not observe evidence of gross cardiac dysfunction

(cardiomagaly or pulmonary edema) in either experimental

group. Indeed, no significant difference in cardiac size between

apoE KO and PDZK1/apoE dKO mice was observed (e.g., heart

weight to body weight ratios were 3.7560.10 mg/g in apoE KO

(n = 6) and 4.1160.25 mg/g in PDZK1/apoE dKO (n = 8) mice,

P = 0.27). A small percentage of mice died during the course of the

study, however the death rate was not statistically different

between the two genotypes (apoE KO: 4%, PDZK1/apoE dKO:

6.6%). The majority of deaths happened early in the course of the

study (less that a month of feeding).

These results suggest that the PDZK1/apoE dKO mice

subjected to Paigen diet represent a new animal model to study

atherosclerotic coronary heart disease.

Figure 3. Aortic root atherosclerosis in Paigen diet-fed apoE KO and PDZK1/apoE dKO mice. Hearts were harvested from Paigen diet-fed
apoE KO (A, C–D) and PDZK1/apoE dKO (B, E–F) mice as described in Methods (n = 8 per genotype). Left top panels: A–B: representative cross-sections
of Oil red O-stained aortic root lesions. (magnification, 620). Right top panel: quantification of aortic root atherosclerosis by planimetry. Unpaired
Student’s t-test was used to determine statistical significance. Bottom panels: immunohistochemistry of aortic root atherosclerotic plaques using
CD68 (C and E) or alpha-smooth muscle actin a-SMA) (D and F) antibodies show that macrophages compose the overwhelming cell population of
aortic root atherosclerotic plaques and that smooth muscle cells are rare in both apoE KO (C–D) and PDZK1/apoE dKO (E–F) mice. ‘‘L’’ indicates the
vascular lumen, arrows indicate representative positive cells (magnification, 6100).
doi:10.1371/journal.pone.0008103.g003

PDZK1 and Murine Heart Disease
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Discussion

In this study, we describe a new murine model of diet-induced

coronary heart disease, the Paigen-diet-fed PDZK1/apoE dKO

mouse. ApoE KO and PDZK1/apoE dKO mice were fed a high

fat/high cholesterol diet supplemented with cholate (Paigen diet

[36]) for three months to study the consequences of PDZK1 gene

inactivation on lipoprotein metabolism, atherosclerosis and

coronary heart disease. Previously, we had shown that PDZK1

deficiency enhances aortic root atherosclerosis in apoE deficient

mice on a Western-type high fat/high cholesterol diet, but did not

markedly induce occlusive coronary arterial atherosclerosis or

myocardial infarction [21]. Consistent with our previous results,

we found that PDZK1 is atheroprotective for apoE mice fed the

more severe Paigen diet. PDZK1/apoE dKO mice exhibited a

26% increase in the areas of aortic root lesions compared to apoE

KO mice. However, unlike the case with Western diet feeding

[21], we found that Paigen diet-fed PDZK1/apoE dKO, but not

apoE single KO, mice were characterized by substantial occlusive

coronary artery disease and the presence of myocardial infarctions.

The dramatic loss of hepatic SR-BI protein in the livers of

Paigen diet-fed PDZK1/apoE KO mice clearly contributed to

their dyslipidemia and possibly played a role to the relatively

unusual murine early onset occlusive coronary artery disease. In

addition, it is possible that the loss of PDZK1 in apoE KO mice

might influence atherosclerosis and coronary heart disease via, as

yet not identified, SR-BI-independent pathways.

Loss of PDZK1 in apoE KO mice resulted in elevated plasma

unesterified cholesterol, UC:TC ratio and phospholipids on both

Western diet- and Paigen diet-fed mice ([21], this study), but only

in the Paigen diet-fed PDZK1/apoE dKO mice did we observe

statistically significant elevations in total plasma cholesterol and

phospholipids. The influence of these differences in plasma

lipoproteins on the differences in occlusive coronary arterial

disease in these mice remains to be determined. We previously

showed that the inactivation of PDZK1 did not affect SR-BI

levels in two cell types known to be implicated in development

of atherosclerosis, macrophages and endothelial cells [21]. In

addition, loss of PDZK1 did not affect the uptake of lipid from

HDL in macrophages [21]. However, Shaul et al. have reported

that SR-BI dependent regulation of endothelial cell function (e.g.,

control of eNOS activity by extracellular HDL) is disrupted in the

absence of PDZK1 [43]. Thus, a disruption of SR-BI dependent

endothelial cell function might have contributed to the diet-

induced occlusive coronary artery disease.

Hyperlipidemia is a well known risk factor for coronary heart

disease [1]. Complete loss of SR-BI in normal chow-fed apoE KO

mice causes severe hypercholesterolemia associated with coronary

Figure 4. Effects of loss of PDZK1 on coronary atherosclerosis and cardiac fibrosis in apoE KO mice. Hearts were harvested from Paigen
diet-fed mice as described in Methods (n = 8 per genotype). Left panels: A–B: representative cross-sections of Oil red O-stained (A–B) or trichrome-
stained (C) myocardial coronary arterioles, showing unremarkable arterioles in apoE KO (A) and totally occluded arterioles in PDZK1/apoE dKO (B–C)
mice (magnification, 6100). The Oil red O stain shows that the coronary arteriole is occluded almost exclusively by lipid-rich lesions (B), while the
trichrome stain shows that the arteriole is surrounded by fibrosis in an area of myocardial infarction in a PDZK1/apoE dKO mouse (C). D–E: trichrome
stained sections of hearts showing areas of infarction/fibrosis stained blue in PDZK1/apoE dKO (E), while they are absent in apoE KO (D) mice
(magnification, 610). Right top panel: quantification of coronary artery occlusions in apoE KO and PDZK1/apoE dKO mice. Statistically significant
differences by ANOVA Tukey posthoc test comparing the two genotypes within a given group are indicated as: P,0.001. Right bottom panel:
quantification of cardiac fibrosis in apoE KO and PDZK1/apoE dKO mice. Unpaired Student’s t-test was used to determine statistical significance.
doi:10.1371/journal.pone.0008103.g004

PDZK1 and Murine Heart Disease
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arterial occlusion, myocardial infarction and premature death

[11], whereas PDZK1/apoE dKO mice fed either chow or

Western high fat diets do not exhibit cardiac fibrosis, myocardial

infarction nor premature cardiac death [21]. In the present study,

we show that feeding PDZK1/apoE dKO mice with the more

severe Paigen diet resulted in the formation of coronary occlusions

and cardiac fibrosis, but this was not associated with symptoms

of cardiac dysfunction (e.g., cardiomegaly) during the 3 month

duration of this study. The reason(s) for the less severe

pathophysiology in PDZK1/apoE dKO compared to SR-BI/

apoE dKO mice remain to be established. It might be attributed to

the atheroprotective effect of residual SR-BI expression that

persists following inactivation of the PDZK1 gene (5% in the liver,

50% in the small intestine and unchanged in steroidogenic organs,

endothelial cells and macrophages) [21,32]. In addition, the level

of hepatic expression of a minor SR-BI isoform, SR-BII [44], is

unaffected by the loss of PDZK1 [32]. One distinctive difference in

lipoprotein metabolism between chow-fed PDZK1/apoE and SR-

BI/apoE dKO mice that is likely to reflect differences in the tissue

specificity and/or absolute levels of SR-BI/II expression and

function is the large difference in the UC:TC ratios in their plasma

lipoproteins: ,0.8 in SR-BI/apoE dKO [45] and ,0.4 in

PDZK1/apoE dKO [21] mice (,0.25 in wild-type mice).

However, the relatively low absolute values and small relative

differences for the plasma UC:TC ratios in Paigen diet-fed apoE

KO (0.27) and PDZK1/apoE dKO (0.31) mice caste doubt on

the importance of this characteristic of plasma lipoproteins in

influencing coronary arterial atherogenesis and myocardial

infarction in this system.

The PDZK1/apoE dKO mouse model joins a growing list of

animal models that share features of classic human coronary heart

disease [11,29,42,46] and may thus prove useful for characterizing

mechanisms underlying disease development and testing ap-

proaches for prevention and treatment. Our findings also suggest

that PDZK1 itself might be an attractive target for pharmacologic

intervention for targeted therapies.
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