
The Use of Colorimetric Sensor Arrays to Discriminate
between Pathogenic Bacteria
Claire L. Lonsdale1*, Brian Taba2, Nuria Queralto2, Roman A. Lukaszewski1, Raymond A. Martino2,

Paul A. Rhodes2, Sung H. Lim2*

1 Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom, 2 Specific Technologies, Mountain View, California, United States of America

Abstract

A colorimetric sensor array is a high-dimensional chemical sensor that is cheap, compact, disposable, robust, and easy to
operate, making it a good candidate technology to detect pathogenic bacteria, especially potential bioterrorism agents like
Yersinia pestis and Bacillus anthracis which feature on the Center for Disease Control and Prevention’s list of potential
biothreats. Here, a colorimetric sensor array was used to continuously monitor the volatile metabolites released by bacteria
in solid media culture in an Advisory Committee on Dangerous Pathogen Containment Level 3 laboratory. At inoculum
concentrations as low as 8 colony-forming units per plate, 4 different bacterial species were identified with 100% accuracy
using logistic regression to classify the kinetic profile of sensor responses to culture headspace gas. The sensor array was
able to further discriminate between different strains of the same species, including 5 strains of Yersinia pestis and Bacillus
anthracis. These preliminary results suggest that disposable colorimetric sensor arrays can be an effective, low-cost tool to
identify pathogenic bacteria.
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Introduction

Certain pathogenic bacteria that present high transmission and/

or mortality rates are considered high-priority bioterrorism agents

because of their potential for a major public health impact. For

example, Yersinia pestis requires only 10 organisms to infect a

human with pneumonic plague [1], and Bacillus anthracis spores

resist standard sterilization techniques, such as UV radiation, heat,

and various chemicals, as well as environmental damage [2,3,4].

Both pathogens are highly infectious in aerosol form and listed as

Category A bioterrorism agents by the Centers for Disease Control

and Prevention, and both must be handled under the rigorous

containment measures defined by the Advisory Committee on

Dangerous Pathogens (ACDP) for a Hazard Group 3 organism. In

the event of a suspected release, a rapid and reliable method to

detect these pathogens would allow a faster public health response,

especially if the test is inexpensive and simple to administer even in

an ACDP Containment Level 3 facility.

Current bacterial identification methods can be slow and

require highly trained personnel to operate sophisticated instru-

ments that are generally too expensive, delicate, or bulky to deploy

outside of a dedicated laboratory facility. Culturing remains a

standard technique for identifying microbiological species, but

typically requires 24 to 72 hours to support an initial diagnosis [5].

Immunoassay-based detection systems, such as ELISA, immuno-

fluorescence, and immunoradiometric assays, are fast and easy to

use, but require relatively large samples and may generate false

positives from non-pathogenic bacteria in the environment [6].

Nucleic-acid amplification assays use nucleic-acid probes that are

highly specific for individual pathogens and have a short assay

time, but often require a clean starting sample and hours of

incubation to detect and multiply the bacteria or DNA before the

test. Both immunoassay and nucleic-acid-based detection strate-

gies also require the preparation of reagents specific to the

pathogen of interest in advance. All of these tests become more

cumbersome when applied to particularly dangerous pathogens

that must be handled under strict biological containment protocols

or under the burden of protective equipment and clothing

required when responding to a potential aggressive release.

Recent advances in colorimetric sensor array (CSA) technology

open a promising new path to rapid and low-cost bacterial

identification via analysis of the volatile metabolites that are

outgassed by living microorganisms [7]. A CSA is a high-

dimensional chemical sensor consisting of a two-dimensional strip

of inert host material whose surface is embedded with an array of

chemoresponsive reagents that individually change color when

exposed to various analytes. A CSA is well suited for identifying

bacterial species in a closed environment, such as a Petri dish,

where headspace concentrations of individual metabolic volatile

organic compounds (VOCs) range from 300 to 50,000 ppb [8].

The U.S. Army Edgewood Chemical Biological Center used gas

chromatography-mass spectrometry (GC-MS) to profile the

relative concentrations of the metabolic VOCs emitted by Yersinia

and Bacillus, and found that the two organisms could be clearly

differentiated even by visual inspection of their chromatograms

[9]. In 2010, Suslick and co-workers reported that the pattern of

color changes of a previous-generation CSA in response to culture

headspace gas could discriminate 10 different bacterial species
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with 98.8% accuracy at inoculum concentrations exceeding 106

CFU/plate [7]. Since then, we have substantially improved CSA

sensitivity and stability by embedding indicators in a nanoporous

sol-gel matrix and expanding the array of indicators [10].

Unlike methods such as GC-MS that involve component-by-

component analysis, electronic-nose technologies like the CSA can

classify complex chemical mixtures without ever explicitly

identifying their individual components [11]. This is a major

advantage when analyzing culture headspace gas, where an

organism-specific metabolic signature is expected to manifest as a

characteristic concentration profile entangling dozens of diverse

VOCs, including aldehydes, amines, sulfides, and fatty acids

[12,13,14,15,16,17,18,19,20]. Other electronic-nose technologies

have attempted bacterial identification via headspace analysis,

including chemiresistors, metal oxides, and fluorescent chemsen-

sors [21,22,23,24,25,26,27,28,29,30,31]. However, previous gas

sensors lacked the requisite sensitivity and chemical diversity to

reliably detect and distinguish between different bacteria under

these conditions, and most of these studies used only a single time

Figure 1. Colorimetric sensor array. A: CSA consists of 80 different chemically responsive nanoporous pigments. B: Examples of four classes of
chemically-responsive dyes: (i) metal-ion-containing dyes that respond to Lewis basicity, (ii) pH indicators that respond to Brønsted acidity/basicity,
(iii) dyes with large permanent dipoles (e.g., solvatochromic dyes) that respond to local polarity, and (iv) redox indicators that respond to
electrochemical reaction.
doi:10.1371/journal.pone.0062726.g001

Figure 2. Experimental setup for solid media study. A: An incubator hosting the scanner. B: The scanner holding six Petri dishes housed within
a closed plastic box. All experiments were performed using standard safety protocols in an ACDP Containment Level 3 laboratory.
doi:10.1371/journal.pone.0062726.g002

Table 1. Bacteria detection time based on strain and
inoculum concentrations.

Detection Time

High concentration Low concentration

B. anthracis Ames 6.3 h (110,000 cfu) 7.7 h (11 cfu)

B. anthracis UM23CL2 7.7 h (83,000 cfu) 9.0 h (8 cfu)

B. anthracis Vollum 6.8 h (100,000 cfu) 7.7 h (10 cfu)

Y. pestis CO92 18.0 h (200,000 cfu) 30.0 h (22 cfu)

Y. pestis Java 9 15.0 h (87,000 cfu) 24.0 h (9 cfu)

Y. pseudotuberculosis YPIII 10.3 h (5,000,000 cfu) 16.0 h (50 cfu)

E. coli NCTC 12241 8.7 h (12,000 cfu) 11.0 h (120 cfu)

doi:10.1371/journal.pone.0062726.t001
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Figure 3. Color difference maps of B. anthracis Ames, Y. pestis CO92, Y. pseudotuberculosis, and E. coli. Each color represents the difference
between the indicator color intensity measured before exposure and the intensity measured at the indicated detection time for each species. For
visualization purposes, color difference maps are expanded from 4 to 8 bits per color (RGB range of 0–15 expanded to 0–255) [33].
doi:10.1371/journal.pone.0062726.g003

Figure 4. Species time response profiles. Selected time response profiles of four different bacterial species at both low and high concentrations.
At least six trials were collected per species.
doi:10.1371/journal.pone.0062726.g004
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sampling, foregoing any potential kinetic information. The current

generation of CSAs can sense a variety of VOC families at

concentrations ranging from low parts-per-billion to high parts-

per-million [10,32,33]. Moreover, the CSA can be configured to

include rapidly reversible reagents that allow the sensor to track

temporal fluctuations in headspace VOCs throughout the

bacterial growth cycle, constructing a highly discriminable kinetic

profile for each species in real-time.

In this study, we examined the ability of a current-generation

CSA to discriminate bacterial species and strains at substantially

lower inoculum concentrations than previously reported, even

under the strict biosafety protocols required to handle dangerous

organisms like Bacillus anthracis and Yersinia pestis.

Materials and Methods

Bacterial Culturing
Bacterial strains were purchased from the National Type

Culture Collection (Salisbury, U.K.) or obtained from culture

collections maintained at the Defense Science and Technology

Laboratory (Dstl). Bacillus anthracis strains Ames and Vollum and

Yersinia pestis were handled at ACDP containment level 3. The

ACDP containment level 2 bacteria, Bacillus anthracis UM23CL2

and Yersinia pseudotuberculosis, were also handled at containment

level 3 to avoid any bias due to the operating environment.

Escherichia coli and Bacillus anthracis were pre-cultured overnight in

L-broth at 37uC with shaking at 180 rpm. Yersinia species were

pre-cultured for 48 h at 28uC in blood agar base (BAB) broth.

Cultures were diluted with PBS to achieve the desired optical

density (OD600nm). Serial dilutions in PBS were performed to

enable the desired number of CFU per plate to be delivered in

100 mL. Culture was spread over the surface of TSA +5% sheep

blood agar plates (bioMérieux, Basingstoke, UK) at a concentra-

tion of 10–106 CFU, and the plates were then incubated at 37uC.

All bacterial strains were tested in triplicate at each concentration,

except Yersinia pestis CO92 and Bacillus anthracis Vollum which had

triplicate runs repeated on different days for a total of six

repetitions at each concentration.

Colorimetric Sensor Array
CSAs were fabricated by Specific Technologies as previously

reported [10,32]. The CSA incorporated 80 different indicators

covering a broad spectrum of chemical reactivity, including much

stronger dye-analyte interactions than simple physical adsorption.

Figure 5. Species concentration trajectories in LDA space. Trajectories for each species from low to high concentration are separable in LDA
space, suggesting that species can be identified independent of inoculum concentration. Six control trials (black) are located at the origin.
doi:10.1371/journal.pone.0062726.g005

Table 2. Species discrimination between 4 different pathogenic bacteria plus a control (95% confidence intervals in parentheses).

Species n Sensitivity Specificity Accuracy

B. anthracis 24 100% (86.2–100) 100% (90.3–100) 100% (94.0–100)

E. coli 6 100% (61.0–100) 100% (93.4–100) 100% (94.0–100)

Y. pestis 18 100% (82.4–100) 100% (91.6–100) 100% (94.0–100)

Y. pseudotuberculosis 6 100% (61.0–100) 100% (93.4–100) 100% (94.0–100)

Control 6 100% (61.0–100) 100% (93.4–100) 100% (94.0–100)

Total 60 100% (94.0–100)

doi:10.1371/journal.pone.0062726.t002
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As shown in Figure 1, the 8610 array included metal-ion-

containing dyes to sense Lewis basicity (e.g. amines), pH indicators

to sense Brønsted acidity/basicity (e.g. amines and fatty acids),

dyes with large permanent dipoles to sense local polarity (e.g.

alcohols), metal salts to sense redox reactions (e.g. sulfides), and

nucleophilic indicators to sense electrophilic analytes (e.g. alde-

hydes) [7]. For the complete list of indicators, see Supporting

Information Table S1. To extend shelf life, the CSA was sealed

inside an airtight nitrogen bag until actual use.

Immediately after bacteria plating, the CSA was unsealed and

affixed to the Petri dish cover. As illustrated in Figure 2, the CSA

was clipped to a 10630 microscope slide, which was mounted face-

down on the inside of the Petri dish cover atop thin strips of gasket

material that elevated the assembly above the cover’s surface to

allow headspace gas to diffuse over the CSA. The Petri dish was

placed cover-down on a flatbed scanner inside an incubator set at

37uC.

Safety Protocol
All manipulations and incubations were carried out in an

ACDP containment level 3 facility.

Image Processing
Using an ordinary flatbed scanner (Epson Perfection V600), the

CSA was imaged before initial exposure to volatiles and at 20

minute intervals after exposure, for up to 48 hours after exposure.

For each image, we extracted a 240-dimensional vector of 12-bit

RGB colors by taking the median of all pixels within a 20-pixel-

radius circle centered in each of the 80 indicator spots. Color

vectors were extracted using SpotFinder (Specific Technologies,

Mountain View, CA), a semi-automated spot-finding program

written in C#/C++, to manually position and orient a grid over the

spot array using a mouse, automatically segment each grid cell into

spot and background pixels using a global contrast threshold, and

estimate each spot’s center using a flood-fill centroid of its

segmented pixels. Color vectors could also be generated using

ImageJ, a public-domain image-processing program available

from the U.S. National Institutes of Health that was used to verify

a representative subset of SpotFinder output [34].

To construct a kinetic profile for each culture, we first

subtracted the color vector of a reference image of that culture

from the vectors of all subsequent images, creating a time series of

color differences which we smoothed with a Gaussian kernel

(s= 20 min). We ignored all images captured prior to the

reference image, which was taken 4 hours after initial exposure;

this choice gave most indicators enough time to finish changing

color in response to the headspace out-gas of the growth medium

itself. Finally, we subsampled the slopes of the smoothed color

differences for each of the 240 colors at 11 evenly spaced times

starting 4 h before and extending 6 h after the peak slope of a

trigger indicator that was preselected for its strong and nonselec-

tive response to generic bacterial growth, creating an initial kinetic

profile with 2640 features. Time to detect bacterial growth was

taken to be the time of the peak trigger indicator slope. Color

vectors were processed in Python using the NumPy and SciPy

packages [35,36].

Statistical Analysis
We validated the classifier performance using leave-one-out

cross-validation (LOOCV) to construct a training set for each trial.

For each training set, we reduced the feature set by applying a

two-tailed t-test to each feature (p,1025 for species, p,0.01 for

strain) for every pair of separable classes, and then trained a

support vector machine (SVM) to classify the reduced feature

Figure 6. Strain time response profiles at high concentrations. For each trial, red, green, and blue lines plot either the percent change in each
color from its initial intensity or the rate of the color change. Trial duration varied depending on species growth rate.
doi:10.1371/journal.pone.0062726.g006
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vectors by species or strain. The trained classifier was evaluated on

the kinetic profile of the corresponding test trial after projecting it

onto the features selected by the training set. Validated classifier

accuracy was the average misclassification rate across classes for

each test trial, with 95% confidence intervals computed using

Wilson’s score test. Statistical analysis was performed in R, using

the stats (t-test), e1071 (support vector machine), and binom

(confidence intervals) packages [37,38,39].

Results and Discussion

Different bacteria emit different metabolic volatiles in a time-

dynamic pattern over the course of their growth cycle. To exploit

this information we examined the kinetic profile of CSA response

to culture headspace VOCs [7]. When exposed to the headspace

of a recently inoculated culture, the CSA’s kinetic profile generally

tracked the bacterial growth curve and unfolded in four phases.

First, the CSA reacted to the VOCs released by the growth

medium itself. After this initial equilibration, reached within two to

three hours, the CSA response leveled off because the bacteria

were still in the lag phase and did not produce significant amounts

of VOCs. As bacteria entered the exponential growth phase,

indicator colors swung rapidly in response to the increase in

headspace volatiles caused by accelerating bacterial metabolism.

Finally, CSA responses converged to stable final values as bacteria

entered the stationary phase. For certain bacteria, such as Bacillus

anthracis, several indicators quickly reversed color soon after

reaching a peak response, presumably reflecting diauxic shift as

bacterial metabolisms adapted to depletion of preferred nutrients.

To extract a distinctive signature for each microorganism from

its kinetic profile, we sampled only the window of rapid color

change during the exponential growth phase. Since this exponen-

tial growth is triggered at different times in different trials,

depending on inoculum concentration, we temporally aligned

each trial’s kinetic profile by triggering its sample window at the

advent of an inflection in slope in that trial using a preselected

indicator. This is typically a CO2 detector whose color changed

strongly and nonspecifically in response to any bacterial growth.

As shown in Table 1, the sample window trigger time was

concentration-dependent, and trigger times at very low concen-

trations (10 CFU/plate) typically lagged trigger times at much

higher concentrations. Inoculum concentrations varied slightly for

different species due to technical difficulty in reproducing very low

concentrations, but we expect the CSA’s classification ability to be

robust to such variations. The population growth rate encoded in

the trigger latency was specific to each species, but this information

was not considered by the classifier, because the lag due to low

growth rate was inseparable from the lag due to low inoculum

concentration. Once the kinetic profiles were aligned, the species-

Figure 7. Strain separation in PCA space. A: PCA plot separating
three different strains of B. anthracis. B: Expansion showing the
separation among different strains at low inoculum concentrations. C:
PCA plot for two different strains of Y. pestis.
doi:10.1371/journal.pone.0062726.g007

Table 3. Strain discrimination within B. anthracis and Y. pestis.
(95% confidence intervals in parentheses).

Strain n Sensitivity Specificity Accuracy

B. anthracis Ames 6 100% (61.0–100) 100% (61.0–100) 100% (86.2–100)

B. anthracis
UM23CL2

6 100% (61.0–100) 94.4% (74.2–99.7) 95.8% (79.8–
99.8)

B. anthracis Vollum 12 91.7% (64.6–99.6) 100% (75.6–100) 95.8% (79.8–
99.8)

Total 24 95.8% (79.8–
99.8)

Strain n Sensitivity Specificity Accuracy

Y. pestis CO92 12 100% (75.6–100) 100% (61.0–100) 100% (82.4–100)

Y. pestis Java9 6 100% (61.0–100) 100% (75.6–100) 100% (82.4–100)

Total 18 100% (82.4–100)

doi:10.1371/journal.pone.0062726.t003
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specific responses of key colorimetric indicators became relatively

independent of inoculum concentration.

Either the color difference maps or the kinetic profiles could be

used to identify bacteria. All four bacterial species tested were

distinguishable by visual inspection of the color difference maps

(Figure 3) or time response profiles (Figure 4). For more

quantitative analysis, we used logistic regression to classify the

kinetic profiles, achieving 100% accuracy on all species (95%

confidence interval 94.0–100%), as described in the Materials and

Methods section and summarized in Table 2. Because the

classification was perfect, the confidence intervals were entirely

determined by the number of samples available for each

performance metric. We expect those intervals to continue to

narrow as more samples are added, since the kinetic profiles are so

visibly separable. To visualize the species clusters more directly, we

applied linear discriminant analysis (LDA) to the reduced kinetic

profiles. As shown in Figure 5, all four species could be separated

in LDA-space even at low inoculum concentrations, and followed

non-intersecting trajectories to increased separation at higher

inoculum concentrations. Note that for ease of visualization,

Figure 5 plots only 3 out of 4 linear discriminant axes, so apparent

distances between nearby clusters should not be interpreted

quantitatively.

Once a bacterial species has been identified, our data suggest

that the CSA can further discriminate individual strains within

that species (Figure 6). We successfully differentiated three

different strains of Bacillus anthracis and two different strains of

Yersinia pestis. For both species, the separations among strains are

obvious even by visual inspection of the time response profiles of

the raw color differences or slopes, as shown in Figure 6. At lower

inoculum concentrations, strains are harder to pick out by eye

from the time response profiles, but they can still be separated in

principal-component space as shown in Figure 7. Strain classifi-

cation accuracy was nearly perfect, as summarized in Tables 3–6,

with the only miss being a single misclassification of one sample of

Bacillus anthracis Vollum as Bacillus anthracis UM23CL2, out of 24

samples of 3 strains with initial inoculum concentrations ranging

from 10 CFU to 100,000 CFU. Time to detect the presence of

bacteria depended on species and concentration, ranging from 6 h

at higher concentrations to 8 h for lower concentrations for Bacillus

anthracis. Both species and strain could be identified 6 h after

detection.

In this report, we have demonstrated that our current-

generation CSA has the necessary sensitivity and selectivity to

identify both bacterial species and strain via headspace gas

analysis, starting at very low inoculum concentrations of about 10

CFU/plate for several strains (Table 1). Feature extraction and

LDA revealed that different strains within the same species have

unique VOC patterns, independent of inoculum concentration.

Although the results of this pilot study are very promising, there is

considerable room to improve the technology for practical and

reliable application. For example, the set of colorimetric indicators

should be tuned to maximize sensitivity to the metabolic volatiles

released by the species of interest; conversely, growth media could

be optimized to match their VOC production to the classes of

volatiles to which the CSAs are most sensitive. Replacing the open

Petri dish with a smaller, sealed sample chamber could speed

detection time by increasing metabolic volatile concentrations at

the sensor. Finally, all of these results must be validated on a much

larger and more diverse library of pathogenic and non-pathogenic

bacteria. Further development of this technology could ultimately

lead to a mobile handheld unit as small as a cell phone that would

safely sample and incubate a hazardous pathogen, track its

metabolic volatile production using a cheap and disposable sensor,

and automatically match its species and strain to an onboard

library of pre-recorded signatures.

Table 4. Confusion matrices of observed labels (row) and predicted labels (column) for species discrimination.

Control B. anthracis E. coli Y. pestis Y. pseudotuberculosis Total

Control 6 – – – – 6

B. anthracis – 24 – – – 24

E. coli – – 6 – – 6

Y. pestis – – – 18 – 18

Y. pseudotuberculosis – – – – 6 6

Total 6 24 6 18 6 60

doi:10.1371/journal.pone.0062726.t004

Table 5. Confusion matrices of observed labels (row) and
predicted labels (column) for B. anthracis strain discrimination.

B. anthracis
Ames

B. anthracis
UM23CL2

B. anthracis
Vollum Total

B. anthracis Ames 6 – – 6

B. anthracis UM23CL2 – 6 – 6

B. anthracis Vollum – 1 11 12

Total 6 7 11 24

doi:10.1371/journal.pone.0062726.t005

Table 6. Confusion matrices of observed labels (row) and
predicted labels (column) for Y. pestis strain discrimination.

Y. pestis
CO92

Y. pestis
Java9 Total

Y. pestis CO92 12 – 12

Y. pestis Java9 – 6 6

Total 12 6 18

doi:10.1371/journal.pone.0062726.t006
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