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Abstract

Unraveling the functional dynamics of phosphorylation networks is a crucial step in understanding the way in which
biological networks form a living cell. Recently there has been an enormous increase in the number of measured
phosphorylation events. Nevertheless, comparative and integrative analysis of phosphoproteomes is confounded by
incomplete coverage and biases introduced by different experimental workflows. As a result, we cannot differentiate
whether phosphosites indentified in only one or two samples are the result of condition or species specific phosphorylation,
or reflect missing data. Here, we evaluate the impact of incomplete phosphoproteomics datasets on comparative analysis,
and we present bioinformatics strategies to quantify the impact of different experimental workflows on measured
phosphoproteomes. We show that plotting the saturation in observed phosphosites in replicates provides a reproducible
picture of the extent of a particular phosphoproteome. Still, we are still far away from a complete picture of the total human
phosphoproteome. The impact of different experimental techniques on the similarity between phosphoproteomes can be
estimated by comparing datasets from different experimental pipelines to a common reference. Our results show that
comparative analysis is most powerful when datasets have been generated using the same experimental workflow. We
show this experimentally by measuring the tyrosine phosphoproteome from Caenorhabditis elegans and comparing it to the
tyrosine phosphoproteome of HeLa cells, resulting in an overlap of about 4%. This overlap between very different
organisms represents a three-fold increase when compared to dataset of older studies, wherein different workflows were
used. The strategies we suggest enable an estimation of the impact of differences in experimental workflows on the overlap
between datasets. This will allow us to perform comparative analyses not only on datasets specifically generated for this
purpose, but also to extract insights through comparative analysis of the ever-increasing wealth of publically available
phosphorylation data.

Citation: Boekhorst J, Boersema PJ, Tops BBJ, van Breukelen B, Heck AJR, et al. (2011) Evaluating Experimental Bias and Completeness in Comparative
Phosphoproteomics Analysis. PLoS ONE 6(8): e23276. doi:10.1371/journal.pone.0023276

Editor: Harish Pant, National Institutes of Health, United States of America

Received May 17, 2011; Accepted July 11, 2011; Published August 10, 2011

Copyright: � 2011 Boekhorst et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The Netherlands Proteomics Centre, a program embedded in The Netherlands Genomics Initiative, partially funded this project (http://www.genomics.
nl/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding
was received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Jos.Boekhorst@gmail.com

¤ Current address: NIZO Food Research, Ede, The Netherlands

Introduction

Phosphorylation of proteins is a key process in the complex

interaction networks forming a living cell [1]. Many forms of

adaptation in response to changing environmental conditions are

regulated through phosphorylation, and changes in phosphoryla-

tion networks are likely to be an important source of phenotypic

diversity [2,3]. Novel experimental techniques have resulted in a

huge increase in the amount of phosphorylation data available [4],

providing the basis for the analysis of phosphorylation as a systems

level property.

Analysis of phosphoproteomes from 11 yeast species (three

measured and eight predicted) has provided putative evolutionary

histories for the kinase regulation of protein complexes, and

showed that mutations that result in changes in kinase–substrate

interactions are an important source of phenotypic diversity [2].

Comparative phosphoproteomics has revealed significant evolu-

tionary and functional signals in the overlap between phospho-

proteomes [5], and the set of proteins with phosphorylation sites

identified in different species of eukaryotes is enriched for disease-

associated genes [6].

Although the evolutionary signal as well as the functional signal

is significant, in absolute terms the overlap between phosphopro-

teomes is small [5]. This small overlap is not only the result of real

differential phosphorylation (i.e. phosphosites present in one

species and not in another, or sites phosphorylated under one

condition but under another) but also of limitations of experi-

mental techniques. The same factors also impact evolutionary

analysis and function prediction of specific phosphosites on the

basis of comparative analysis: differential phosphorylation is only

meaningful when it represents a real difference in phosphorylation

status, and is not the result of missing data caused by biases in
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experimental workflows or the incomprehensive nature of the

datasets used.

In the generally used high-throughput (HTP) mass spectrometry

(MS) workflows, phosphorylation sites are potentially lost at all

intermediary steps of such an experiment going from a biological

sample to a list of putative phosphopeptides (fig 1): some

phosphoproteins are relatively difficult to purify, kinase and

phosphatase activity may still be ongoing to different degrees in the

lysates, enrichment for phosphopeptides favors certain amino acid

compositions in the phosphopeptides, etc. [4]. Targeted high-

throughput MS approaches like multiple reaction monitoring

(MRM) [7] can partly remove problems introduced by the

incomprehensive nature of conventional HTP MS-based experi-

ments. However, drawbacks are that a relatively small number of

sites can be monitored [4], and an MRM experiment does not

allow the identification of novel phosphosites, hence we will focus

on conventional HTP experiments in our study. We analyze the

impact of differences in experimental workflows on the observed

overlap between phosphoproteomes. We study both the overlap

between experiments investigating the same biological system

using different experimental techniques, as well as the overlap

between phosphoproteomes from different species.

An intuitive way to appreciate the amount of overlap between

phosphoproteomics experiments would be to relate the number of

phosphosites identified in both experiments to the total number of

phosphosites in the complete phosphoproteome. Such a ‘‘complete

human phosphoproteome’’ is an inventory of all amino acid

residues in the human proteome that are phosphorylated under

one or more conditions. However because of the incomprehensive

nature of experimental workflows and conditions this total size is

difficult to infer. Nevertheless we here implicitly obtain an estimate

of the size of this complete human phosphoproteome. We collect

data from a wide range of experiments, to estimate the relative

completeness of different phosphoproteomes or sub-phosphopro-

teomes (e.g. a functional network related phosphoproteome, the

phosphotyrosine proteome, or the phosphoproteome obtainable

with a single workflow). Subsequently we quantify the impact of

enrichment strategies by comparing the overlap between exper-

iments that analyze similar biological systems using different

enrichment strategies to a common reference experiment. We

conclude our analysis by applying our insights from intra species

comparative analysis to the analysis of phosphoproteomes from

different species. Earlier analysis [5] showed a significant but very

small overlap between phosphoproteomes from different species.

We test how much we can improve this overlap by quantifying the

overlap between the tyrosine phosphoproteome of human HeLa

cells [8] and the tyrosine phosphoproteome of C. elegans, acquired

using identical experimental workflows in a single laboratory.

Results and Discussion

The ever-expanding phosphoproteomes
Recent years have seen a rapid increase in high-throughput

phosphoproteomics techniques and strategies [9,10]. Yet, even

using the most-advanced approaches, a single LC-MS run does

not reveal all phosphosites in a biological sample: repeating the

experiment always reveals novel sites, often up to 50% in a

duplicate [11]. We here exploit this saturation effect to estimate

the completeness of phosphoproteomics datasets by plotting how

many unique/novel phosphosites are found relative to the number

of replicate experiments or the total number of phosphosites that

have been measured. We initially compared saturation in two

different cases.

First, we investigated four replicates of an experiment

measuring tyrosine phosphorylation in human stem cells (hESC)

[12] (955 different sites). We measure saturation by plotting the

number of combined replicates against the number of unique

phosphosites observed (fig 2). A steep increase in the number of

unique sites reflects that an additional replicate provides many

sites that had not been observed before. An increase of zero would

indicate the experiment has reached saturation, reflecting

reproducibility of the experimental workflow: all sites phosphor-

ylated under the specific conditions studied that can be detected

within the limitations of the experimental set-up have been seen at

least once. Replicate experiments of tyrosine phosphorylation in

hESC cells are highly saturated. Only 15% of the sites found in the

final repeat of the experiment had not yet been identified in earlier

runs. This saturation could indicate we are close to fully sampling

the tyrosine phosphoproteome of hESC under the specific

conditions of the experiment, but it could also in part reflect the

selective nature of the anti-phosphotyrosine (anti-Yp) enrichment

strategy used in the experiment (i.e. replicates consistently sample

the same subpopulation).

We assessed this data versus a combination of all human

phosphorylation sites reported by HPRD [13] and the phos-

pho.ELM [14] metadatabases (17693 different sites). For this

comparison we cannot use the procedure described above, as this

combined dataset contains phosphosites from a wide range of

experiments, many of which are low-throughput. In addition, the

total number of sites in the combined dataset is an order of

magnitude higher than the number of sites in the HeLa

experiment, hampering direct comparison. Instead, saturation is

determined by counting the number of unique phosphosites

relative to the total number of phosphosites measured. In short,

this is done by pooling phosphorylation sites, adding a copy of a

site to this pool for every observation of this specific site. For the

hESC experiment, the number of copies of a site in the pool is

equal to the number of replicates in which the site was observed.

Figure 1. Outline of a high-throughput mass spectrometry based phosphoproteomics workflow. The horizontal arrow represents the
number of phosphosites under analysis; the smaller arrows represent phosphosites lost at specific steps of the workflow. The arrow marked with a *
(phosphosites not measured because they are lost in the enrichment phase) is discussed in more detail in the main text.
doi:10.1371/journal.pone.0023276.g001
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For the complete human phosphoproteome it is equal to the

number of publications in which the site is reported (both

phospho.ELM and HPRD provide a list of Pubmed identifiers for

every site). We then start drawing random phosphorylation sites

from this pool, and plot the fraction of draws relative to the total

number of sites in the pool against the fraction of unique sites

observed so far. The resulting curve represents saturation: when a

system is nearly completely sampled, additional draws should

reveal hardly any novel phosphorylation sites. Note that we

randomly draw sites; the data presented in the saturation curves is

the average of 100 repeats of this procedure, explaining the

smoothness of the curve even in the cases where the total number

of sites is small (e.g. the saturation in functional phosphosites

discussed later).

This analysis confirms the relatively high saturation of tyrosine

phosphorylation in hESC cells (fig 3, red curve). In sharp contrast,

the current deposited human phosphoproteome is far from

saturation (fig 3, green curve), reflecting the many different

techniques used for identifying phosphosites and the myriad of

conditions that can be sampled (different cell lines, tissue etc., each

potentially with its distinct phosphoproteome). This difference in

saturation shows that although combining multiple measurements

of a specific biological sample results in a reproducible set of

phosphosites, we are still far away from a complete picture of the

human phosphoproteome.

The saturation graph follows a curve which could potentially level

off or continue to rise as more measurements are added. If this curve

would actually saturate, than we can estimate the size of the complete

human phosphoproteome by extrapolating from the saturation graph

of the 17745 unique phosphorylation sites currently reported by

HPRD and phospho.ELM. However several factors compound such

an analysis and the choice of function to fit would be arbitrary, and

would in fact determine if the graph levels off (and where) or not. This

estimation challenge is analogous to rarefaction estimates such as the

Chao estimator [15] which is used in ecology to estimate species

richness based on the number of observed species. Using the Chao

estimator we predicted a total of 57.384 phosphorylation sites in the

human phosphoproteome based on the combined HPRD and

phospho.ELM (3.2% of the total of 1.783.701 combined S, T and Y

residues in the human proteome). However, using a subset of

phosphosites as input for the Chao estimator (i.e. jackknifing)

consistently results in a lower estimate: using only half of the total

number of sites gives an average estimate of 24.402 phosphosites.

This unfortunately shows that the assumptions behind the Chao

estimator do not hold for the data. One explanation could be false

positive phosphosites: a false discovery rate of 1% in a high-

throughput MS experiment means that one in every 100 phosphosites

identified would appear falsely to be a novel phosphosite, even if a

complete human phosphoproteome was already known; as a result

the apparent number of unique phosphosites will keep increasing (i.e.

curves as presented in figures 3 and 4 will never become horizontal).

An alternative and more intriguing explanation is that all S, T or Y

residues are phosphorylated to a greater or lesser degree under one or

the other condition, an explanation that is analogous to the findings of

the ENCODE project [16] that most parts of the human genome are

transcribed to a lesser or greater extent. If such pervasive

phosphorylation is indeed occurring, we will eventually find all

residues in the human proteome to be phosphorylated if we

investigate more experimental conditions and keep improving

sensitivity of detection methods.

It thus seems that we cannot determine the exact size of the

complete human phosphoproteome. Nevertheless the level of

saturation of different types of phosphorylation sites reveals

interesting biological trends. The targeted sampling of the

phosphotyrosine phosphoproteome appears to be more compre-

hensive than the sampling of the larger and more complex

phosphoserine and phosphothreonine proteomes; the final 10% of

Figure 2. Saturation of the number of observed phosphosites
in four replicates of an anti-Yp experiment. Phosphorylation data
was taken from [12]. Labels on the horizontal axis represent the number
of technical replicates, the vertical axis the number of unique
phosphosites observed in these replicates. The crosses represent the
different ways the relevant number of replicates can be picked from the
total of four (there are four ways to pick one replicate, six ways to pick
two replicates, etc). Diamonds are the average number of unique sites
for that number of replicates. Generation and interpretation of the
figure is described in more detail in the main text.
doi:10.1371/journal.pone.0023276.g002

Figure 3. Saturation of the number of observed phosphosites.
The tyrosine phosphoproteome of hESC was taken from [12], complete
human phosphoproteome data from [13,14]. The horizontal axis depicts
the fraction of phosphosites sampled from the total dataset, the vertical
axis depicts the fraction of unique sites. The black line is the diagonal,
representing what the curves would look like if there would be no
saturation at all (i.e. every site would only be found a single time).
Generation and interpretation of the figure is described in more detail
in the main text.
doi:10.1371/journal.pone.0023276.g003
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draws for phosphotyrosines increases the number of unique sites

by 5.2% (122 sites), while for phosphoserines and phosphothreo-

nines this is 6.1% (760 sites) and 6.7% (197 sites), respectively

(fig 4A). This difference suggests that we are relatively close to a

complete picture of the tyrosine phosphoproteome. Combining

this with the assumption that the fraction of phosphotyrosines in

the phosphoproteome is between 0.1 and 1%, makes it tempting to

speculate on the size of the complete human phosphoproteome

based on the number of observed phosphotyrosines. However, we

have to keep in mind that (part of) the apparent saturation in

phosphotyrosines could reflect the more selective nature of

phosphotyrosine enrichment strategies (i.e. the majority of

phosphotyrosines is derived from analysis using anti-Yp enrich-

ments strategies, which might consistently select for a specific

subset of the tyrosine phosphoproteome).

Intriguingly, the saturation also displays a striking difference

between non-functional and functional phosphosites: sites that have

been experimentally shown to impact phenotypes are much closer

to saturation than non-functionally annotated phosphosites (fig 4B).

Although the list of functional phosphosites stems from classical

molecular biology and biochemistry experiments (compiled by [17]

through manual inspection of primary literature), the saturation

effect displays itself in high-throughput phosphoproteomics datasets:

a total of 41 observations of functional phosphosites in HTP-MS

experiments corresponds to 21 unique sites, while for phosphosites

of unknown function the same number of observation yields an

average of 33.7 unique sites (fig 4B). Randomization trials show that

this difference is highly significant (p,0.001) despite the relatively

small number of available functionally annotated sites. We have to

be careful to attribute this difference to functionality, as it could for

example reflect the high abundance of the phosphosite. Neverthe-

less, the high saturation of functional phosphosites suggests that we

are in fact closer to a complete ‘‘biologically relevant’’ human

phosphoproteome than the saturation curve of all observed

phosphosites implies.

Enrichment bias
Enrichment for phosphopeptides is a crucial step in a high-

throughput MS-based phosphoproteomics experiment because of

their low abundance and stoichiometry. The exact method of

enrichment has a significant impact on the phosphoproteome

measured: different techniques –based on antibodies, TiO2 or

IMAC using various metal ions- are thought to give overlapping

but distinct segments of a phosphoproteomes [10,18]. This effect is

likely a prominent factor in the saturation curves discussed above,

but its exact nature and the size of its contribution cannot be

readily determined from such curves. Furthermore, the applied

proteolytic enzymes can have an effect on the coverage of the

phosphoproteome. The negative phosphate group typically lowers

the digestion efficiency of trypsin that is typically utilized in

phosphoproteomics experiments. Therefore, alternative enzymes

may cover complementary stretches of phosphoproteins [11].

We analyzed the nature of impact of enrichment strategy (the

step indicated with a * in fig 1) by comparing the amino acid

composition of phosphopeptides found using the targeted anti-Yp

enrichment of phosphotyrosine peptides versus the composition of

phosphotyrosine-containing peptides obtained from more general

phosphopeptide enrichment strategies. The amino acid composi-

tion is significantly different for phosphopeptides enriched using

anti-Yp [19] and phosphopeptides enriched using the broader

TiO2 affinity enrichment of phosphopeptides (Table 1). For

example, the prevalence of tyrosine residues is more than three

times as high in the peptides detected by using anti-Yp when

compared to those detected in TiO2 affinity enriched fractions

[20], possibly influenced by the presence of multiple phosphory-

lated tyrosines in the same peptide. Conversely peptides purified

by the TiO2 enrichment strategy contain many more negatively

charged amino acids such as glutamate or aspartate, not

surprisingly as TiO2 is known to bind also acidic peptides [10].

The impact of enrichment strategies on the overlap between

different experiments cannot be quantified by directly comparing

two datasets, as the actual number of phosphosites in the samples

is not known and likely much larger (we do not know how many of

the phosphosites present in the sample were not measured, i.e.

false negatives): lack of overlap is a combination of both the

incomprehensive nature of the experiments and the impact of

enrichment strategies. We try to disentangle these two factors

through a common reference approach, in which differences in

Figure 4. Differences in saturation for different types of phosphosites. The horizontal axis depicts the fraction of phosphosites sampled
from the total dataset, the vertical axis depicts the fraction of unique sites. The black line is the diagonal. Figure 3A: phosphosites taken from
Phospho.ELM and HPRD [13,14]. Figure 3B: the functional subset is the functional fraction of Phospho.ELM and HPRD as defined by [17], the random
subset is taken from the high-throughput subset of Phospho.ELM and HPRD (sites are considered high-throughput when they have been identified in
an experiment identifying 50 or more phosphosites).
doi:10.1371/journal.pone.0023276.g004
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relative overlap between two datasets to a common benchmark

reflect the bias between these two datasets. As a reference we took

the tyrosine phosphoproteome described in [21] , which was

generated through anti-tyrosine enrichment (1992 phosphotyr-

osines from lung cancer cell lines). To this reference we compared

a dataset also generated using anti-Yp enrichment ([8], 798

phosphotyrosines in HeLa cells) and the phosphotyrosine compo-

nent of a dataset using TiO2 enrichment ([22], 82 phosphotyr-

osines from HeLa cells). The fraction of phosphosites present in

the large reference dataset is quite different for the anti-Yp

enriched dataset and phosphopeptides enriched using TiO2

affinity enrichment. From the anti-Yp experiment 38% of the

sites was also found in the reference, while for the TiO2

experiment only 16% was found. These ratios allows us to

estimate what the overlap would have been if two experiments

would have used the same techniques: when comparing TiO2-

derived datasets to anti-Yp derived we could correct for bias

introduced by enrichment strategy by multiplying the observed

overlap by 38/16 = 2.4.

The number of phosphotyrosines in the TiO2 dataset used in

this comparison is relatively small; this is a direct result of the low

abundance of phosphotyrosine compared to phosphoserines and

phosphothreonines, combined with an enrichment strategy that

does not specifically target phosphotyrosines. Still, procedures like

the one given above enable us thus to obtain a concrete estimate of

the size and nature of the enrichment bias, improving the usability

of the ever-increasing amount of phosphoproteomics data

available in the public domain for large-scale comparative analysis

into the dynamics and evolution of the phosphoproteome.

Inter-species comparative phosphoproteomics
Inter-species comparison of phosphoproteomes is confounded

by enrichment bias described above, as datasets from different

species were most likely obtained using different growth and

sampling strategies. Despite these hurdles we and others have

identified both a functional and an evolutionary signal in the

overlap between phosphoproteomes from different species of

eukaryotes [2,5,6]. Still, the absolute overlap is very low. In light of

the issues described above, it is likely that this overlap not only

reflects the speed at which phosphoregulation evolves, but in part

also reflects differences in experimental techniques as well as

sampling strategies and conditions.

Hence we test the size of the overlap using the same experimental

pipeline to compare phosphoproteomes from widely diverged

species. Specifically we measured the tyrosine phosphoproteome

of C. elegans and determined the overlap with the tyrosine

phosphoproteome of human HeLa cells as presented in [8]. We

minimized the impact of differences in experimental procedures on

the observed overlap by sticking as close to protocols used for the

measurement of the HeLa cell phosphoproteome (more details in

the methods section). We identified 226 unique phosphorylation

sites in C. elegans in a total of 131 different proteins (table S1). For 9 of

these sites (4%) an orthologous phosphorylation event was present in

the HeLa dataset. Kinases are strongly overrepresented in the

overlap: of the 9 conserved sites, 7 are located in a kinase, while for

the total 268 sites this is 25 (p,1e-06, Fisher’s exact test), showing

that the phosphorylation machinery itself is not only overrepre-

sented in the phosphoproteome compared to the complete

proteome of C. elegans (fig S1), but especially so in the conserved

fraction of the phosphoproteome.

The overlap of 4% between the C. elegans and human datasets is

similar to the overlap between yeast phosphoproteomes as

published recently by [2] who also employed comparable

experimental strategies. Although 4% is a low percentage, it still

represents a three-fold improvement over the overlap between

datasets from different species ([22] and [10]) analyzed in a

previous study: if we determine the overlap between these two old

datasets with the methods we used for the C. elegans and human

presented above, we find an overlap of only 1% (23 of the 2080

phosphosites in the old fly dataset have an orthologous site in the

old human dataset). Moreover, we need to keep in mind that we

can reduce the biases by using comparable experimental setup, but

we are still hindered by the non comprehensive nature of the HTP

MS experiment. Nevertheless the fourfold increase illustrates the

impact of technique on observed overlap and shows that inter-

species comparative phosphoproteomics can be fruitful as long as

datasets are generated using similar techniques. Barring that

possibility we conclude that differences in techniques should be

taken into account when interpreting comparative results, which

means that low overlap between species is not automatically

completely attributed to evolutionary events when technical

explanations also play a large role.

Summarizing conclusion
We have shown how saturation graphs can be used to visualize

the relation between the number of technical replicates of an

experiment and the number of unique phosphosites found, which

in turn can be of assistance in deciding whether or not to do

additional replicates. Combining multiple measurements of a

specific biological sample results in a reproducible set of

phosphosites, but we are still far away from a complete picture

of the human phosphoproteome. Another factor confounding the

comparative analysis of phosphoproteomics datasets are the biases

introduced at different points in the high-throughput phospho-

proteomics pipeline. We have presented a common-reference

based strategy that quantifies the bias introduced by different

enrichment strategies, and show that using the same experimental

pipeline greatly increases the power of inter-species comparative

phosphoproteomics.

We expect that both experiments specifically targeted at the

analysis of dynamics and evolution of the phosphoproteome as

well as the comparative analysis of the ever-increasing amount of

publically available phosphoproteomics data will be crucial in

elucidating the function of specific phosphorylation events and the

interplay between phosphorylation and the other dynamic

biological networks.

Table 1. Effect of enrichment strategy on amino acid
composition.

Prevalence (%)*

residue TiO2 anti-Yp

D 13.0 7.4

E 13.6 8.1

Y 1.2 4.2

S 13.6 9.4

Q 2.6 4.5

K 2.6 5.5

The amino acid composition of regions surrounding phosphorylated tyrosines
(5 residues on each side) found in experiments using anti-Yp enrichment (data
from [8,21,26]) was compared to the composition of areas surrounding
tyrosines found using TiO2 affinity (data from [22]). Only residues with a
significantly different prevalence are shown (p,0.01).
*the amino acid prevalence does not include the central tyrosine itself.
doi:10.1371/journal.pone.0023276.t001
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Materials and Methods

Datasets
The specific phosphoproteomics datasets used in the analysis are

mentioned in the main text and figure legends. Phosphosites were

mapped to reference proteomes to allow the combination and

comparative analysis of different datasets, resulting in small

differences in the number of sites used in our analysis and the

number of sites reported in their original publication. Data

handling was done using ad hoc Python scripts.

Inter-species comparative analysis
A phosphorylation event in a query species was considered to be

conserved in a target species when a sequence alignment of the

query protein with an orthologous protein from the target species

exactly aligns the phosphorylated site in the query protein with a

phosphorylated residue in the target sequence. Orthologous

proteins were identified using Inparanoid [23], sequence align-

ments were made using Muscle [24].

Amino acid prevalence
Amino acid prevalence was measured in the 10 residues

flanking a phosphosite (5 N-terminal and 5 C-terminal). The

phosphorylated residue itself was not included. The significance of

a difference in prevalence was determined though randomization

trials (10000 runs), in which sites were randomly assigned to a

purification strategy (the total number of sites in each set was kept

constant). P-values were corrected for multiple testing using

Bonferroni correction.

Analysis of the C. elegans phosphoproteome
The Bristol N2 strain was used as standard wild-type strain.

CB3241 was obtained from the Caenorhabditis Genetics Center.

Standard C. elegans culturing methods were used. Animals were

staged by hatching eggs overnight in M9 medium. Staged L1

larvae were cultured for 3 hours at the permissive temperature of

15uC and subsequently rinsed of the culturing plates and

incubated at the restrictive temperature of 25uC. Animals were

vacuum dried in a speedvac and the pellet was resuspended in 8 M

urea and sonicated (56300 at maximum intensity) in a sonication

bath. The supernatant was used for trypsin digestion. Proteins

were reduced with 1 mM DTT and alkylated with 2 mM

iodoacetamide. Prior to digestion the samples were diluted to a

final concentration of 2 M urea in a final concentration of 50 mM

ammonium bicarbonate. Proteins were digested overnight at 37uC
using trypsin (final concentration: 1.0 ug/ml).

Sample preparation and immunoprecipitation
Labeled peptides were desalted, dried down and re-dissolved in

IP buffer (50 mM Tris; pH 7.4, 150 mM NaCl, 1% NOG). Prior

to immunoprecipitation, pY99 agarose beads (Santa Cruz

Biotechnology Inc., CA) were washed in IP buffer. The peptide

mixture was added to the pY99 agarose beads and incubation was

performed overnight at 4uC. Beads were washed several times with

IP buffer and milliQ. Peptides were eluted with 0.15%

Trifluoroacetic acid for 209 at RT. Eluted peptides were desalted

and concentrated on STAGE-tips.

On-line nanoflow liquid chromatography
Nanoflow LC-MS/MS was performed using an Agilent 1100

HPLC system (Agilent Technologies, Waldbronn, Germany),

coupled to an LTQ-Orbitrap mass spectrometer (Thermo

Electron, Bremen, Germany). Dried fractions were reconstituted

in 15 mL 0.1 M acetic acid and delivered to a trap column (Aquatm

C18, 5 mm, Phenomenex, Torrance, CA, USA); 20 mm6100 mm

ID, packed in-house) at 5 mL/min in 100% solvent A (0.1 M

acetic acid in water). Peptides were subsequently transferred to an

analytical column (ReproSil-Pur C18-AQ, 3 mm, Dr. Maisch

GmbH, Ammerbuch, Germany; 40cm650 mm ID, packed in-

house) at ,100 nL/min in a 3 hr gradient from 0 to 40% solvent

B (0.1 M acetic acid in 8/2 (v/v) acetonitrile/water). The eluent

was sprayed via distal coated emitter tips (New Objective), butt-

connected to the analytical column. The mass spectrometer was

operated in data dependent mode, automatically switching

between MS and MS/MS. Full scan MS spectra (from m/z

300–1500) were acquired in the Orbitrap with a resolution of

60,000 at m/z 400 after accumulation to target value of 500,000.

The three most intense ions at a threshold above 5000 were

selected for collision-induced fragmentation in the linear ion trap

at normalized collision energy of 35% after accumulation to a

target value of 10,000.

MS data analysis
All MS2 spectra were converted to single .DTA files using

Bioworks 3.3. Runs were searched using an in-house licensed

MASCOT search engine (Mascot (version 2.1.0) software platform

(Matrix Science, London, UK)) against the Caenorhabditis elegans

predicted proteome with carbamidomethyl cysteine as a fixed

modification. Oxidized methionines and phosphorylation of

tyrosine were set as variable modifications. Trypsin was specified

as the proteolytic enzyme and up to two missed cleavages were

allowed. The mass tolerance of the precursor ion was set to 5 ppm

and that of fragment ions was set to 0.6 Da. Individual MS/MS

spectra from phosphopeptides were accepted for a Mascot score

$20.

Supporting Information

Figure S1 Overrepresentation of GOslim terms [25] of
phosphoproteins relative to the C. elegans proteome.
Overrepresentation is expressed as fold increase: 2log(fraction

_phosphoproteome) - 2log(fraction_proteome). The numbers in

the bars are the number of phosphoproteins associated with the

GOslim term, the numbers in italics to the right of every bar is the

significance (Fisher exact test, p-value after Benjamini & Hochberg

multiple testing correction).

(TIF)

Table S1 Phosphorylation sites in C. elegans.
(XLS)
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