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Abstract

Amyloid-b precursor protein (APP) plays a central role in pathogenesis of Alzheimer’s disease. APP has a short half-life and
undergoes complex proteolytic processing that is highly responsive to various stimuli such as changes in cellular lipid or
energy homeostasis. Cellular trafficking of APP is controlled by its large protein interactome, including dozens of cytosolic
adaptor proteins, and also by interactions with lipids. Currently, cellular regulation of APP is mostly studied based on
appearance of APP-derived proteolytic fragments to conditioned media and cellular extracts. Here, we have developed a
novel live-cell assay system based on several indirect measures that reflect altered APP trafficking and processing in cells.
Protein-fragment complementation assay technology for detection of APP-BACE1 protein-protein interaction forms the core
of the new assay. In a multiplex form, the assay can measure four endpoints: total cellular APP level, total secreted sAPP
level in media, APP-BACE1 interaction in cells and in exosomes released by the cells. Functional validation of the assay with
pharmacological and genetic tools revealed distinct patterns of cellular fates of APP, with immediate mechanistic
implications. This new technology will facilitate functional genomics studies of late-onset Alzheimer’s disease, drug
discovery efforts targeting APP and characterization of the physiological functions of APP and its proteolytic fragments.
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Introduction

Amyloid-b precursor protein (APP) is multifunctional glycopro-

tein and a source of several proteolytically generated bioactive

peptides [1,2]. Amyloid-b peptide (Ab) is a major constituent of

amyloid plaques, a pathological hallmark of Alzheimer’s disease

[3]. In the nervous system, soluble Ab has prominent inhibitory

effects on synaptic function and plasticity [4,5]. Ab is derived from

amyloid-b precursor protein (APP) via sequential proteolytical

cleavages by b-secretase (BACE1) and c-secretase [6,7]. Other

fragments, such as sAPP-a, sAPP-b and APP intracellular domain

(AICD), have paracrine and cell-autonomous regulatory functions,

which remain incompletely characterized [8–11]. In addition to

peptides from the well-characterized a-, b- and c/e cleavages, also

other cleavage products of APP have been described in specific

conditions [12–15].

APP has a rapid turnover in most cells types [16,17], and

protelolytic processing plays a central role in APP’s lifecycle and

functions [2,18]. While nonamyloidogenic processing of APP by a-

secretases takes mostly place at the cell surface, amyloidogenic b-

and c-secretase-mediated processing of APP occurs within

intracellular vesicular compartments, especially endosomes [19–

21]. Therefore, endocytosis and subcellular vesicular trafficking of

APP are major determinants of the cellular fate of APP [22]. The

APP trafficking and processing system is highly responsive to

various aspects of cellular metabolism and stress, including

alterations in lipid, Ca2+ and energy homeostasis [17,23–27]. A

complex interplay of proteins interacting with APP determines its

cellular trafficking and fate. Particularly, there seems to be a large

number of cytosolic adaptor proteins that interact with the

cytosolic domain of APP and regulate its internalization and

further subcellular trafficking [28]. Moreover, interaction with

membrane lipids also modulates APP trafficking and processing

[29,30].

A variety of methods have been applied for studying the cell

biology of APP. Western blot and ELISA are the standard

methods to study proteolytic fragments of APP. In addition,

techniques like affinity capture-mass spectrometry offer an

unbiased way for characterization of components of the APP

interactome [28,31,32], while fluorescence resonance energy

transfer (FRET)-based techniques have proven useful for visual-

ization and studying dynamics of individual protein-protein

interactions based on physical proximity in living cells [33,34].

Studying the complex cellular regulation of APP, especially the

dynamic features, would benefit from development of novel tools

that can be used in live cells, preferably with high-throughput

capacity.
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Among the more than 200 currently known protein interactors

of APP [28], BACE1 has attracted perhaps the most attention

[35]. Since BACE1-mediated amyloidogenic cleavage of APP is

the rate-limiting step in generation of Ab peptide, better

understanding of the dynamics of APP-BACE1 interaction could

help explain cellular mechanisms involved in the early stages of

pathogenesis of Alzheimer’s disease. Moreover, the normal

physiological function(s) of APP and its proteolytic fragments

remain poorly understood. Better understanding of the molecular-

level regulation of APP-BACE1 interaction can provide novel

insight into the cellular functions of these proteins. Here, we have

developed a novel approach for studying APP-BACE1 interaction

using a protein-fragment complementation assay (PCA) based on

the small Gaussia princeps luciferase (GLuc) [36]. This sensitive

APP-BACE1 protein-protein interaction assay was combined with

alkaline phosphatase-based detection of secreted sAPP fragments

providing a four-readout multiplexed assay platform capable of

delivering mechanistic details on how APP is regulated in live cells.

Materials and Methods

DNA plasmid construction
The original humanized Gaussia princeps PCA plasmids [36] were

donated by Dr. Stephan Michnick (Université de Montréal,

Canada) and were constructed in the pcDNA3.1/zeo (Invitrogen)

backbone. The hGLuc-tagged APP695 constructs were generated

and donated by Dr. Oksana Berezovska (Massachusetts General

Hospital, Boston, MA). All APP constructs used in this study

expressed the neuronal APP695 isoform lacking the KPI domain.

The cDNA of BACE1 was a gift from Dr. Dora Kovacs

(Massachusetts General Hospital, Boston, MA). For APP and

BACE1 (both type 1 transmembrane proteins), the hGLuc

fragment was placed in the cytosolic C-terminus after a

(GGGGS)2SG linker. The APP-hGLuc constructs were further

modified by fusing the secreted alkaline phosphatase (AP) fragment

to the N-terminus replacing the endogenous APP signal peptide

[pEAK12-AP/APP plasmid was a kind gift from Dr. Stephan

Lichtenthaler (Ludwig-Maximilians-Universität München, Ger-

many)] [37]. The identity of all constructs was confirmed by DNA

sequencing.

Cell culture, transfection and RNAi
Mouse Neuro-2A (N2A) neuroblastoma cells (ATCC) were

cultured in DMEM supplemented with 10% (v/v) FBS (Invitro-

gen), 1% (v/v) L-glutamine-penicillin-streptomycin solution

(Lonza) at 37uC in a water-saturated air, 5% CO2 atmosphere.

N2A cells were transfected with JetPEI (Polyplus) according to the

manufacturer’s instructions. The transfection conditions were

optimized so that on average at least 80% transfection efficiency

was reached. Gene silencing was achieved by co-transfection of

plasmids encoding shRNA for mouse GGA3 or mouse VPS35

(OpenBiosystems/Thermo Scientific). Gene silencing efficiency

was tested in N2A cells using Western blotting.

Protein fragment-complementation assay
N2A cells were plated on poly-L-lysine-coated white-wall 96-

well plates (PerkinElmer Life Sciences). 125 ng of plasmid DNA

was used for transient transfection per well, divided as follows:

58.75 ng of GLuc1 reporter plasmid, 58.75 ng of GLuc2 reporter

plasmid, and 7.5 ng of pRC/CMV-b-galactosidase (bGal) as an

internal vector control. In case of co-transfection with shRNA

plasmids, the ratios were as follows: GLuc1 27 ng, GLuc2 27 ng,

shRNA 40 ng and bGal 6 ng. Experiments were carried out 48 h

after transfection with four replicate wells used per experimental

condition. Briefly, the cells were washed with warm PBS and

placed in phenol red-free DMEM (Invitrogen) without serum. Test

compounds were added to the medium, and the cells were

incubated for 2–24 h. Brefeldin A (BFA) and Bafilomycin A1 were

purchased from Sigma. BACE inhibitor IV was obtained from

Calbiochem and DAPT was from Biomol (Enzo Life Sciences).

Dynole 34-2 was purhcased from Tocris/R&D Systems. DMSO

was used as a vehicle control. For detection of the hGLuc PCA

signal, the cells were exposed to well-by-well injections of 25 ml

(final concentration, 20 mM) of native coelenterazine (Nanolight

Technology), and the emitted luminescence was detected imme-

diately by flash luminometry using a Victor3 plate reader

(PerkinElmer Life Sciences). Individual experiments were repeated

three or four times. After measuring the PCA signal, cells were

lysed for bGal assay with 40 ml of lysis buffer/well (120 mM Tris-

HCl, pH 7.5, 120 mM NaCl, 6 mM MgSO4, 6% Triton X-100)

and incubated for 30 min at room temperature with mild shaking.

Then, 45 ml of bGal substrate o-nitrophenyl-b-D-galactopyrano-

side (Sigma, 4 mg/ml stock in sterile water) solution was combined

with 55 ml of cleavage buffer (120 mM sodium phosphate, pH 7.0,

24 mM KCl, 2.4 mM MgSO4, and 2.4 mM DTT), and 100 ml of

this solution was added per well. The plates were incubated at +
37uC for a further 30 minutes and absorbance was read at

405 nm.

Secreted alkaline phosphatase (SEAP) assay
Conditioned media was collected at indicated time points and

clarified by centrifugation at 5,0006g for 10 min. Secreted sAPP

was measured by a chemiluminescent Secreted Alkaline Phospho-

tase reporter gene assay (SEAP Assay; Roche Applied Science)

according to the manufacturer’s instructions.

Multiplex PCA
PCA part was adjusted by changing the ratios of plasmids for

transient transfection. 125 ng of plasmid DNA was divided as

follows: 33.75 ng of GLuc1 reporter plasmid, 83.75 ng of GLuc2

reporter plasmid, and 7.5 ng of bGal plasmid. 42 h after

transfection, the cells were washed with warm PBS and placed

in 130 ml of phenol red-free DMEM (Invitrogen) without serum.

Test compounds were added to the medium, and the cells were

incubated for 6 h. Media was collected and cleared by centrifu-

gation at 5,0006 g for 10 min. The cells were placed in fresh

phenol red-free DMEM without serum and hGLuc PCA signal

was detected as described above. After measuring the PCA signal,

cells were lysed for bGal assay as described above. 25 ml of lysates

were collected to measure total cellular APP by SEAP assay. Then,

bGal assay was carried out as in a single-readout PCA.

Supernatant was split in 2 samples and analyzed separately:

25 ml of media was used to measure shed sAPP by SEAP assay and

75 ml was used to measure exosomal APP-BACE1 by PCA. PCA

and SEAP assay signals were normalized to bGal signals well by

well.

Western blots
For Western blots, cells were transfected on 6-well polystyrene

plates (Corning). 24 h after transfection, the cells were washed

twice with ice-cold PBS followed by scraping and extraction on ice

for 30 min in a buffer containing 10 mM Tris-HCl, pH 6.8,

1 mM EDTA, 150 mM NaCl, 0.25% Nonidet P-40, 1% Triton

X-100, 1 mM NaF and protease inhibitor mixture tablets (Roche

Applied Science). Cell debris was removed by centrifugation at

16,0006g. The protein concentrations were determined using the

BCA protein assay kit (Pierce/Thermo) and equal amounts of total

protein (25–40 mg) per lane were resolved in a 4–12% gradient
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Bis-Tris gels (Novex, Invitrogen) under reducing conditions. After

transfer to PVDF membranes (Amersham Biosciences/GE

Healthcare), the filters were probed with the following antibodies:

A8717 (Sigma; APP C-terminus), dNGluc (Proteintech Group Inc)

and GAPDH (Millipore). After incubation with horseradish-

conjugated secondary antibodies, the signal was developed using

ECL Western blotting detection reagent (Pierce/Thermo).

Isolation of exosomal vesicles
N2A cells were plated on 10-cm plates with full DMEM. Cells

were transfected at about 50% confluency. Cells were washed

once with pre-warmed PBS and placed in serum-free, phenol red-

free DMEM. 24 h later, the conditioned media was collected for

isolation of exosomes, and the cell extracts were prepared for

Western blot analysis. Conditioned media (pooled from 6 10-cm

plates) was centrifuged successively at 2006 g for 10 min to

remove floating cells, at 2,0006g for 10 min to remove dead cells,

at 10,0006 g for 30 min at 4uC to remove the cell debris. After

each step, the supernatant was recollected without disturbing the

pellets. The cell- and debris-free supernatant was centrifuged using

a Beckman Optima L-100K centrifuge and an SW41 Ti rotor at

100,0006 g for 70 min at 4uC to collect the exosomes. The

supernatant was gently removed and the exosomal pellet

resuspended in 1 ml of PBS. The collected PBS was centrifuged

again at 100,0006 g for 70 min at 4uC. After careful removal of

the PBS supernatant, the exosomal pellet was resuspended in 40 ml

of 1.5 X Laemmli buffer (75 mM Tris-HCl, pH 6.8, 3% SDS,

15% glycerol, 3.75 mM EDTA) with b-mercaptoethanol, and

analyzed by Western blotting.

Ab ELISA
For Ab determination, N2A cells were transfected with APP-

GLuc2 plasmid on 6-well plates (Corning), and 24-h conditioned

media (serum-free) collected 48 h post-transfection. The condi-

tioned media was cleared from debris and secreted Ab40 and Ab42

were quantitated by standard sandwich ELISA (pmol/L; IBL

International GmbH, Germany). Protein concentrations of the cell

lysates were determined using the BCA protein assay kit (Pierce).

The Ab values were normalized to total protein levels (mg). Each

experiment was carried out in triplicate.

Statistical analyses
Statistical analyses were performed using analysis of variance

(ANOVA; three or more groups, followed by Bonferroni’s post-

tests) or Student’s t test (two groups) in GraphPad Prism software.

Significance was placed at p,0.05.

Results

Protein-fragment complementation assay-based
detection of APP-BACE1 interaction in live cells

Because of its pathophysiological significance, we focused on

APP-BACE1 protein-protein interaction as the first readout of the

new assay system. Split luciferase PCA technology offers a suitable

experimental strategy for developing a live-cell assay for studying

APP-BACE1 interaction dynamics. We chose a PCA based on a

small Gaussia princeps luciferase (GLuc) reporter, as it provides a

highly sensitive and reversible detection method for protein-

protein interactions [36]. Humanized GLuc protein without the

16 N-terminal amino acids was split between the Gly93 and Glu94

residues, resulting in a 93 amino-acid (10.1 kDa) GLuc1 fragment

and a 76 amino acid (8.2 kDa) GLuc2 fragment. Since APP and

BACE1 are both type 1 transmembrane proteins with relatively

short cytosolic domains, we placed GLuc1 and GLuc2 tags in the

C-termini of APP and BACE1 in both orientations (Fig. 1A). In

order to maximize the topological flexibility of the GLuc

fragments, (GGGGS)2SG linker region was placed between the

C-terminus of the protein of interest and the GLuc fragments.

GLuc-tagged proteins were expressed normally in N2A cells as

shown by the Western blots (Fig. 1B). The GLuc-tags did not

interfere with proteolytic processing pattern of APP, as APP-

GLuc1 and APP-GLuc2 fusion proteins produced a- and b-C-

terminal fragments similarly to non-tagged APP (Fig. 1B).

When single GLuc-tagged APP and BACE1 constructs were

expressed alone in N2A (with control plasmids expressing free

GLuc1/2 reporter fragments), only very low background lumi-

nescence signal was detected when the cells were exposed to native

coelenterazine, the substrate of Gaussia luciferase (Fig. 1C). When

APP-GLuc1 was co-transfected with BACE1-GLuc2 plasmid, a

robust luminescence signal was detected (Fig. 1C). Similar signal

Figure 1. Protein-fragment complementation assay-based
detection of APP and BACE1 interaction in live cells. (A)
Graphical presentation of PCA reporter constructs of APP and BACE1.
hGLuc, humanized Gaussia luciferase fragment; SP, signal peptide; TM,
transmembrane domain. (B) Normal expression and proteolytic
processing of APP-GLuc2 and BACE1-GLuc1 fusion proteins in N2A
neuroblastoma cells. Cells were transiently transfected with indicated
combinations of expression constructs and analyzed for APP fragments
and BACE1 protein in cell lysates. Western blots were probed with APP
C-terminal antibody (A8717), dNGluc antibody (detects the GLuc1
fragment) and GAPDH as a loading control. (C) Validation of GLuc-based
PCA for detection of APP-BACE1 interaction in N2A cells. Cells were
transiently transfected with indicated combinations of expression
constructs. Luminescence signal was measured 48 h post-transfection
in live cells. Normalization of cell numbers and transfection efficiency
was done with an internal vector control (using a plasmid expressing b-
galactosidase). Control plasmids were empty GLuc1/2 plasmids
expressing the indicated GLuc fragment alone. The values are
normalized bioluminescence signals recorded from expressed pairs of
reporter constructs. Error bars represent the SEM, and statistical
significance was assessed using ANOVA. *** p,0.001.
doi:10.1371/journal.pone.0098619.g001
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was detected from cells co-expressing the APP-GLuc2 and

BACE1-GLuc1. To control for specificity of APP-BACE1 PCA,

we tested APP-GLuc2 and BACE-GLuc2 interaction with GLuc1-

tagged extracellular signal-regulated kinase 2 (ERK2), a mitogen-

activated protein kinase for which direct interaction with APP or

BACE1 has not been reported. As shown in Fig. 1C, there was

very low PCA signal generated by APP-ERK2 or BACE1-ERK2

suggesting that there was no direct interaction between these

proteins.

Next, we tested the dynamics of the APP-BACE1 interaction

assay using genetic means, based on previously established

regulators of APP metabolism. Previous studies have shown that

GGA3 is an important regulator of BACE1 trafficking from

endosomes for lysosomal degradation [38]. Depletion of GGA3

stabilizes BACE1 protein increasing its levels in the endocytic

compartment and therefore results in increased Ab generation.

Similarly, knockdown of VPS35, a retromer receptor involved in

endosome-Golgi trafficking of APP, was previously reported to

promote Ab generation [39]. Thus, we decided to use GGA3 and

VPS35 RNAi as the validation tool in BACE1-APP PCA assay

development. The knockdown efficiencies of GGA3 and VPS35

shRNA were determined by Western blotting. As compared to

control cells, the expression of the corresponding shRNA’s in N2A

cells reduced GGA3 protein level by 262% and VPS35 by 253%

(data not shown). When the GGA3 and VPS35 shRNA plasmids

were co-transfected with the PCA plasmids, the BACE1-APP PCA

signal was increased by 216% in GGA3 shRNA cells (Fig. 2A).

This indicates that GGA3 knockdown increases interaction

between BACE1 and APP. To confirm that the increased

interaction correlates with an increase in Ab production, we

analyzed conditioned media from cells expressing the BACE1-

APP PCA constructs and shRNA plasmids. Ab40 and Ab42 levels

in the conditioned media were increased by 301% and 262% in

GGA3 shRNA cells, respectively (Fig. 2B), confirming that the

increased interaction measured by the PCA resulted in increased

Ab generation. VPS35 shRNA cells did not show significant

increases in Ab secretion although the BACE1-APP PCA signal

was increased by 161% in VPS35 shRNA cells. These data show

that GLuc PCA can detect changes in APP-BACE1 protein

interaction in live cells.

Simultaneous live-cell detection of BACE1-APP
interaction and shedding of APP

Since APP ectodomain release by proteolytic cleavage is the

expected outcome of the BACE1-APP interaction, we sought for

ways to combine detection of proteolytic processing of APP with

the live-cell PCA assay. Alkaline phosphatase (AP) fused to the N-

terminus of APP (after signal peptide) has been previously used to

detect secreted APP (sAPP) fragments from the conditioned media

[37]. For simultaneous detection of BACE1 interaction and

proteolytic cleavage of APP, we generated a double-fusion

construct of APP, which contains an N-terminal AP fusion and

a C-terminal GLuc-fusion (Fig. 3A). This allows using a sensitive

luminescence-based assay (SEAP = secreted alkaline phosphatase

assay) for detection of sAPP fragments from the conditioned

media. The AP-APP-GLuc2 was expressed and processed

normally in N2A cells, as compared to the APP-GLuc2 construct

that does not have the AP fusion (Fig. 3B). Next, accumulation of

shed sAPP from cleared, conditioned media was analyzed. SEAP

assay detected sAPP from media as early as 2 h after media

change, and showed a linear curve of sAPP production at least up

to 18 hours (Fig. 3C; R2 = 0.9782).

Optimally the shedding assay would detect only sAPP-b
fragments derived from BACE1-mediated cleavage of APP. In

order to make the assay specific for analysis of sAPP-b, we tested

blocking of a-secretase-mediated processing of APP via genetic

means. We introduced the F615P mutation (according to APP695

numbering) close to the a-secretase cleavage site in the AP/APP-

GLuc2 construct. This mutation was previously reported to reduce

sAPP secretion by .60% [40]. We observed only a minor shift

towards b-cleavage, not a complete blockage of a-processing (data

not shown). This observation was supported by a recent study

showing that F615P mutation can only partially inhibit a-secretase

cleavage of APP [41]. Therefore, we decided that the APP

cleavage assay readout shall be the total sAPP (sAPP-a+sAPP-b) in

media as determined by the SEAP assay.

Next, we used pharmacological tools to functionally validate the

two-parameter assay. Brefeldin A (BFA) inhibits the transport of

secretory and membrane proteins from the ER to the Golgi.

Retention of APP in the early secretory pathway has been reported

to reduce the proteolytic processing of APP and shedding of sAPP

fragments to media [17,42]. In line with the previous reports,

treatment of cells with BFA strongly reduced sAPP shedding

(Fig. 3D; SEAP signal in the media). Interestingly, BFA increased

the interaction between APP and BACE1, likely due to their

Figure 2. Functional assay validation of GLuc PCA for APP-BACE1 interaction. For genetic assay validation of BACE1-APP PCA, plasmids
expressing GGA3 and VPS35 shRNA were cotransfected to N2A cells with plasmids encoding BACE1-GLuc1 and APP-GLuc2 reporters. (A) PCA signal
was measured at 48 h post-transfection. (B) Ab40 and Ab42 in conditioned media were determined by sandwich ELISA. The number of replicate wells
for PCA was four (96-well plate) and for Ab ELISA two (6-well plate). Error bars represent the SEM, and statistical significance was assessed using
ANOVA. * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0098619.g002
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accumulation in the ER (Fig. 3D, PCA data on the left panel).

Inhibition of b-cleavage of APP by BACE inhibitor IV, a BACE1

active-site binding compound, reduced the amount of total

secreted sAPP in media by 35% while increasing the APP-BACE1

interaction by 22% (Fig. 3E). This suggests that inhibitor-bound

BACE1 molecules can still interact with APP although the actual

enzymatic cleavage of APP is inhibited.

Endocytosis is required for internalization of APP and BACE1

from the cell surface [43–45] to the endocytic compartment where

BACE1 activity is increased by acidification of the vesicle lumen

[35]. Inhibition of endocytosis reduces APP internalization and

reduces Ab production in cell lines [19,46]. Dynole 34-2, a cell-

permeable small-molecule inhibitor of dynamin-dependent endo-

cytosis [47], significantly inhibited sAPP secretion (237%) but

increased APP-BACE1 interaction by 95% (Fig. 3F). This pattern

is similar to BACE1 inhibition and suggests that conditions

interfering with internalization of APP and BACE1 or inhibition of

BACE1 activity increase the interaction between the two proteins

although BACE1-mediated by proteolytic processing of APP is

reduced. Moreover, these data show that the two-readout

multiplex assay of AP/APP-BACE1 interaction and APP shedding

responds to known modulators of APP-BACE1 trafficking and

processing in a predictable manner.

Exosomal secretion of APP and BACE1 PCA reporter
proteins

One potential complicating factor for interpretation of the

SEAP assay signal from conditioned media could be the presence

of uncleaved APP holoprotein in the media. Exosomal release of

APP holoprotein, its metabolites and BACE1 by neuronal cells in

vitro and in vivo has been reported [48]. Also, overexpression may

result in enhanced exosomal release of reporter proteins.

Therefore, it is possible the SEAP assay signal represents the

combined pool of shedded sAPP and exosomal APP holoprotein,

although the exosomal fraction of APP holoprotein is likely to be

small as compared to the sAPP fraction. In order to monitor this,

we analyzed cell-free conditioned media for the presence of AP/

APP-BACE1 complex, as determined by the AP/APP-BACE1

PCA. As shown in Fig. 4A, there is a robust accumulation of AP/

APP-BACE1 PCA signal in cleared, conditioned media that

showed good linearity at least up to 18 hours (R2 = 0.9667). N2A

cells constitutively release exosomes enriched in Alix, a multive-

Figure 3. Multiplex assay for simultaneous live-cell detection
of APP-BACE1 interaction and proteolytic cleavage of APP. (A)
Graphical presentation of the multiplex PCA reporter constructs.
Alkaline phosphatase (AP) with a signal peptide was placed in the N-
terminus of APP-GLuc2. AP reporter is depicted in beige and GLuc
reporter in red color. The same colors are used in column graphs in
Fig. 3B–F for corresponding reporter data. (B) Normal proteolytic
processing of the AP/APP-hGLuc fusion protein in N2A cells. Cells were
transiently transfected with indicated combinations of various APP
constructs: APP-GLuc2 and AP/APP-GLuc2 and BACE1-GLuc1. Western
blots were probed with APP C-terminal antibody (A8717), dNGluc
(BACE1) and GAPDH as a loading control. (C) Sensitivity and linearity of
secreted alkaline phosphatase-sAPP (SEAP) assay from conditioned
media. N2A cells were transiently transfected with BACE1-GLuc1 and
AP/APP-GLuc2. Cells were incubated in serum-free media for up to
30 hours (inset graph shows data up to 60 h). AP activity in cell-free
conditioned media was detected using a chemiluminescent SEAP assay.
Normalization of cell numbers and transfection efficiency was done

with an internal vector control (using a plasmid expressing b-
galactosidase). The values are normalized chemiluminescence signals
recorded from expressed pair of constructs. The number of replicate
wells was four. Linearity of data was evaluated by regression analysis;
correlation coefficient (R2) was 0.98806. Error bars represent the SEM.
(D) Effects of brefeldin A (BFA) in the multiplex assay (PCA+AP data).
N2A cells were transiently transfected with BACE1-GLuc1 and AP-APP-
GLuc2, and treated with indicated concentration of BFA for 24 h before
measurement of PCA and SEAP signals (48 h after transfection). The
average values are displayed as percentage of change as compared to
vehicle-treated control cells. (E) Effects of BACE inhibitor IV in the
multiplex assay (PCA+AP data). N2A cells were transfected as in D, and
treated with indicated concentration of BACE inhibitor IV for 6 h before
measurement PCA and SEAP signals (48 h after transfection). The
average values are displayed as percentage of change as compared to
vehicle-treated control cells. (F) Effects of dynole 34-2 in the multiplex
assay (PCA+AP data). N2A cells were transfected as in D, and treated
with indicated concentration of dynole 34-2 for 6 h before measure-
ment PCA and SEAP signals (48 h after transfection). The average values
are displayed as percentage of change as compared to vehicle-treated
control cells. Error bars represent the SEM, and statistical significance
was assessed using Student’s t test (four replicate wells/experiment,
four independent experiments). * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0098619.g003
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sicular body protein commonly used as an exosomal marker [49].

To confirm that the AP/APP-BACE1 PCA reporters are found in

exosomes, we isolated exomes from the conditioned media using

the widely used method described by Théry et al [50]. As shown in

Fig. 4B, both AP/APP-GLuc2 and BACE1-GLuc1 PCA reporters

were found in Alix-positive exosomes purified from the media

using the serial ultracentrifugation method.

To verify that the presence of AP/APP-BACE1 PCA signal in

the conditioned media is associated with exosomal secretion, we

tested if inhibition of exosome biogenesis would decrease the

amount of APP-BACE1 PCA signal in the conditioned media.

Sphingolipid metabolism, ceramide in particular, is an important

regulator exosome biogenesis. Ceramide is the key regulator of

cargo segregation into distinct subdomains of the endosomal

membrane before budding of exosomal vesicles into multivesicular

endosomes [51]. Inhibition of neutral sphingomyelinase (nSMase),

which converts sphingomyelin to ceramide, by GW-4869 signif-

icantly inhibited accumulation of AP/APP-BACE1 PCA signal in

the conditioned media (262%; Fig. 4C). These data suggest that 1)

both APP and BACE1 holoproteins can be released from cells in

association with exosomes, and 2) that AP/APP-BACE1 PCA in

the conditioned media can be used as a readout of the exosomal

release activity of these proteins. Thus, analysis of exosomal

secretion of APP and BACE1 adds another multiplexing

dimension for analyzing APP trafficking in live cells.

Four-parameter multiplex assay for analyzing cellular fate
of APP

Separation of conditioned media from the cell monolayer allows

parallel analysis of multiple readouts. In addition to detection of

APP-BACE1 interaction in cells and in secreted exosomes, and

total sAPP in media, we used cell-based SEAP signal as a readout

of total cellular APP levels. Although a small fraction of the cell-

derived SEAP signal likely comes from intracellular sAPP

fragments, the vast majority of the signal is derived from APP

holoprotein (mature and immature). This is also supported by

previous reports [52]. Fig. 5A summarizes the workflow and

analyses of different samples in the four-parameter multiplex

assay. The average interassay variation was determined for each

assay readout by the Coefficient of Variation (%CV), the standard

deviation across multiple independent assays expressed as a

percentage of the mean (in AP-APP-Gluc2/BACE-GLuc1 trans-

fected cells with no experimental treatments). For total cellular

APP (SEAP) %CV was 12.562.5%, for shed APP in media

(SEAP) 17.164.8%, for APP-BACE1 interaction in cells (PCA)

9.963.2% and for exosomal APP-BACE1 complexes in media

(PCA) 12.260.9% (n = 4 replicate experiments). This variation is

acceptable for a cell-based assay using transient transfection,

according to the widely used criteria in high-throughput assay

development (well-to-well %CV should be less than 20%) [53].

We used pharmacological tools previously shown to affect

cellular trafficking of APP differentially to test the responsiveness

of the four-parameter multiplex APP assay. In addition to

compounds used in Figs. 3–4, we added three more compounds

for further functional validation. DAPT, a c-secretase inhibitor

[54], acts downstream of BACE1 in the sequential APP proteolytic

processing cascade, and is thus not expected to have significant

effects in the four-parameter multiplex assay, that mostly focuses

on events that operate upstream of c-secretase. Bafilomycin A1, a

vacuolar H+-ATPase inhibitor, reduces amyloidogenic processing

of APP [55]. Interestingly, bafilomycin A1 also increases cellular

release of exosomes [56], likely to compensate for the reduced

autophagic/lysosomal degradative capacity in the cells.

The compiled data in Fig. 5B show that the four-parameter

multiplex assay responds to all tested experimental conditions in a

predictable way, and that the cellular fates of APP in different

conditions are quite distinctive. For clarity, the sites of action of the

validation compounds are summarized in Fig. 5C. Brefeldin A

strongly reduces sAPP secretion due to its effects on early secretory

pathway trafficking. BFA results in accumulation of APP and

Figure 4. Exosomal secretion of AP/APP and BACE1 PCA reporter proteins. (A) Detection of AP/APP-BACE1 PCA signal in cleared, cell- and
debris-free conditioned media. N2A cells were transiently transfected with BACE1-GLuc1 and AP/APP-GLuc2. Cells were incubated in serum-free
media for up to 18 hours. PCA signals in cell-free conditioned media were detected at indicated time points. Normalization of cell numbers and
transfection efficiency was done with an internal vector control. The values are normalized bioluminescence signals recorded from expressed pair of
constructs. The number of replicate wells was four. The linearity was evaluated by regression analysis, correlation coefficient (R2) is 0.9971. Error bars
represent the SEM. (B) N2A cells were transfected with AP/APP-GLuc2 and BACE1-GLuc1 reporter plasmids. Exosomes were isolated from 30-h
conditioned media (inset graph shows data up to 60 h) by ultracentrifugation and the presence of AP/APP-GLuc2 and BACE1-GLuc1 reporters in
exosomes was analyzed by Western blotting using antibodies for APP (C-terminal antibody A8717), dNGluc (BACE1) and Alix as an exosomal marker.
Total cell extracts were analyzed in parallel with the isolated exosome fraction. (C) Pharmacological modulation of ceramide levels alters exosomal
secretion of AP/APP-BACE1 PCA reporters. N2A cells were transiently transfected with BACE1-GLuc1 and AP/APP-GLuc2, and treated with 10 mM of
GW-4869, the neutral sphingomyelinase (nSMase) inhibitor, for 24 h. PCA signal in cell-free conditioned media was measured at 48 h after
transfection. Normalization of cell numbers and transfection efficiency was done with an internal vector control. The average values are displayed as
percentage of change as compared to vehicle-treated control cells. Error bars represent the SEM, and statistical significance was assessed using
Student’s t test (four replicate wells/experiment, four independent experiments). *** p,0.001.
doi:10.1371/journal.pone.0098619.g004
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BACE1 to the ER, which in this assay is reflected as an increase in

APP-BACE1 interaction. BACE inhibitor IV and dynole 34-2

modulate the BACE1-cleavage of APP via different mechanisms

and have somewhat similar effects on the four assay readouts.

Inhibition of c-secretase by DAPT shows little effects on the four

readouts. Bafilomycin A1 has the strongest overall effects on APP

and BACE1 underscoring its strong impact on endocytic function

and lysosomal/autophagic clearance of proteins. Modulation of

sphingomyelin-ceramide conversion by GW-4869 not only affects

exosomal secretion of APP-BACE1 complex but also strongly

reduces sAPP shedding. Cellular levels of ceramide modulate the

function of lipid rafts [57], and may also directly affect b-cleavage

of APP via altered stability of BACE1 protein [58]. Altogether,

these data show that modulation of different sites of the cellular

trafficking machinery of APP and BACE1 produces distinctive

patterns that can be effectively recognized by the new live-cell

assay system.

Discussion

Here we describe a high-throughput capable live-cell assay

system that can rapidly give mechanistic insight into how cellular

trafficking of APP is altered by a given perturbation. The assay was

developed around live-cell detection of APP-BACE1 protein-

protein interaction. The final outcome of the APP-BACE1

interaction – whether APP is cleaved by BACE1 or not – is

determined by a wide range of factors. Various subcellular

trafficking events determine when, where and for how long APP

and BACE1 are allowed to interact within the cell [22]. Moreover,

the local microenvironment where the interaction takes place

determines whether BACE1 is able to cleave APP, as for example

lower intravesicular pH is required for optimal BACE1 enzyme

activity [35].

The APP interactome is very large, with many cytosolic domain

interactions that regulate its subcellular trafficking and proteolytic

processing [28]. New insights into the cellular regulation of the

interactions and trafficking of APP can improve our understanding

of normal physiological functions of APP and the cellular rationale

behind its complex proteolytic processing machinery. Better

understanding of the cellular fates of APP can provide new

information on how genetic and environmental factors contribute

to AD pathogenesis, and offer novel ways for restoring disease

pathology to the normal cellular state, e.g. via modulation of key

protein-protein interactions of APP. The outcome of our four-

parameter multiplex live-cell assay is a distinct fingerprint of the

cellular fate of APP, with immediate mechanistic insight, upon

changing pharmacological, genetic or metabolic conditions. This

feature combined with the high-throughput nature of the assay sets

this new technique clearly apart from the existing methods to study

cellular regulation of APP.

Expectedly, majority of the proof-of-concept data produced

using the novel live-cell APP multiplex assay is in line with

previously published reports in the field. Inhibition of the vacuolar

H+-ATPase by bafilomycin A1 produced the most robust increase

in APP-BACE1 interaction, likely due to reduced efficiency of

BACE1-mediated APP cleavage in endosomes with elevated

intraluminal pH [55,59]. c-secretase inhibition by DAPT had

minor effects on the overall pattern of APP interactions and a/b-

secretase processing, although a minor and consistent increase in

total cellular APP was observed. Similar observations have been

reported previously [60].

Genetic manipulation of proteins involved in vesicular traffick-

ing of APP and BACE1, such as GGA3 and VPS35, increased

APP-BACE1 interaction, which is in line with previous reports

Figure 5. Four-parameter multiplex assay for detection of
cellular fates of APP. (A) Workflow and separation of samples for
different analyses in the four-endpoint multiplex assay. Colors refer to
the parameter/analyte used in the multivariate analysis graph in Fig. 5B.
PCA and SEAP signals were read from both conditioned media and cell
monolayer (in fresh media) and represent the presence of BACE1-APP
complex and APP/sAPP species in different compartments. (B)
Multivariate analysis of PCA and SEAP data from cells treated with
brefeldin A, dynole 34-2, BACE1 inhibitor IV, DAPT, bafilomycin A1 and
GW-4869. N2A cells were transiently transfected with BACE1-GLuc1 and
AP/APP-GLuc2, and treated with indicated chemicals for 6 h (1 mM
BACE inhibitor IV, 0.5 mM DAPT, 10 mM Dynole 34-2) or 24 h (100 nM
bafilomycin, 5 mg/ml brefeldin A, 10 mM GW-4869) before measurement
of PCA and SEAP signals (48 h after transfection). The average values
are displayed as percentage of change as compared to vehicle-treated
control cells. Error bars represent the SEM, and statistical significance
was assessed using ANOVA (four replicate wells/experiment, four
independent experiments). * p,0.05, ** p,0.01, *** p,0.001. (C)
Schematic diagram showing the sites of action of the chemicals used in
multiplex PCA in Fig. 5B. Brefeldin A inhibits the transport of secretory
and membrane proteins from the ER to the Golgi. Bafilomycin A1, an
inhibitor of vacuolar proton ATPases, prevents intravesicular acidifica-
tion. Dynole 34-2 is an inhibitor of dynamin-dependent endocytosis.
GW-4869, neutral sphingomyelinase inhibitor, reduces the exosomal
secretion. BACE inhibitor IV and DAPT inhibit b- and c-secretase
cleavage of APP, respectively.
doi:10.1371/journal.pone.0098619.g005
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[38,61]. However, only GGA3 silencing had a strong effect on Ab
levels. There are controversial reports on how VPS35 silencing

affects Ab secretion; both increase [39] and decrease [62] of Ab40

generation has been reported. These discrepancies may be

explained by differences between cell lines or other experimental

conditions, such as transfection and gene silencing efficiency, used

in various studies. Moreover, in addition to its role in retrograde

endosome-Golgi trafficking, VPS35 may also be involved in

regulation of exosomal secretion [62]. In support of previous

findings [48,63], we also report the presence of APP, C-terminal

fragments and BACE1 in secreted exosomes. Our multiplex assay

system offers a novel, highly sensitive tool to study the dynamics of

exosomal secretion of APP and BACE1. In general, parallel

assessment of multiple pathways may provide new insight into

complex subcellular trafficking itineraries of APP. For example,

sphingolipid metabolism modulates trafficking and processing of

APP and BACE1 on multiple levels. Using the multiplex APP

PCA, the strong effects of nSMase inhibition by GW-4869 on both

shedding and exosomal secretion of APP were revealed, suggesting

the involvement of ceramide in both processes.

There are two obvious caveats with the multiplex APP assay.

First, analysis of sAPP is not specific to the sAPP-b form but

detects both the sAPP-a and sAPP-b forms. Using a mutation near

the a-cleavage site to block a-secretase cleavage is an attractive

strategy but this would require near-full inhibition, which cannot

be achieved with the F615P mutation [40,41]. Secondly, the assay

requires overexpression of APP and BACE1. Although this may

alter the natural trafficking and processing machinery or the

cellular localization of the reporters to some degree, it should be

noted that most cell lines and transgenic animal models used in

AD research similarly rely on overexpression of APP. Currently,

the assay relies on transient transfection but for more extensive

screening studies better control of the overexpression level of the

reporter proteins would require generation of a stable reporter cell

line.

Sporadic forms of neurodegenerative diseases are complex and

their etiologies cannot be narrowed down to a small number of

effector genes. Particularly, in the case of late-onset Alzheimer’s

disease (LOAD), which comprises more than 95% of the AD

patient population, the functional connections of the risk genes to

the known pathophysiological pathways of the disease remains

poorly understood. In the post-GWAS-era, a major bottleneck is

functional characterization of novel disease-associated genes. Cell-

based assays that facilitate rapid screening of functional connec-

tions of novel disease-associated genes to known pathophysiolog-

ical pathways of the disease could significantly accelerate this

process. Current methods used to study APP-related aspects of AD

pathogenesis mostly rely on analyzing protein complexes in cell or

tissue extracts. Live-cell methods are more suitable for studying the

dynamics of cellular trafficking of disease-associated proteins and

their protein interactions, and may reveal new subtle nuances in

cellular regulation of proteins of interest, while providing high-

throughput abilities. Our multiplex live-cell assay provides a

sensitive and dynamic reporter system that responds predictably to

stimuli known to modulate amyloidogenic processing of APP in

cells. This offers a novel and rapid way of addressing mechanistic

aspects of e.g. altered amyloidogenic processing of APP in cells.

Therefore, our novel assay platform offers significant advantages

for various screening approaches, from drug discovery to

functional characterization of late-onset AD risk genes.
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