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Abstract

The identification of the sound sources present in the environment is essential for the survival of many animals. However,
these sounds are not presented in isolation, as natural scenes consist of a superposition of sounds originating from multiple
sources. The identification of a source under these circumstances is a complex computational problem that is readily solved
by most animals. We present a model of the thalamocortical circuit that performs level-invariant recognition of auditory
objects in complex auditory scenes. The circuit identifies the objects present from a large dictionary of possible elements
and operates reliably for real sound signals with multiple concurrently active sources. The key model assumption is that the
activities of some cortical neurons encode the difference between the observed signal and an internal estimate. Reanalysis
of awake auditory cortex recordings revealed neurons with patterns of activity corresponding to such an error signal.
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Introduction

Auditory scenes are generally composed of sounds produced by

multiple sources. The observed complex auditory signal is a

superposition of these sources, making the identification of the

individual sound elements a non-trivial problem (Fig. 1A). While

humans generally perform better than machines do in recognizing

auditory objects in complex scenes, it is not yet known how our

nervous system performs this task in real time.

In one family of computer algorithms, the blind source

separation algorithms (Fig. 1B), source elements are identified

using only the information extracted from the observed signal.

These approaches make no parametric assumptions about the

superimposed signals in the auditory scene. Without such prior

information, the amount of data necessary to identify the sources

present in a scene is large, making them not compatible with the

real time requirement for biological systems.

An alternative family of computer algorithms assumes that

the elements that are present in a scene belong to a large, but

finite, dictionary of known sounds (Fig. 1C) [1,2,3,4,5,6]. By

making this assumption, the number of observations required to

identify a source is substantially reduced, making them more

suitable for biological systems. These algorithms assume that the

observed auditory scene originated by a time-varying linear

combination of just a few elements that belonged to the

dictionary (Fig. 1D). Then, the dictionary elements are selected

such that an appropriate linear combination would reconstruct

the observed signal with the highest fidelity. As the elements

present in an auditory scene have to be part of the dictionary,

these algorithms require a very large number of dictionary

elements. However, if the dictionary is large enough, there are

multiple combinations of elements that would reconstruct the

observed signal with the same high fidelity (Fig. 1E–F). To

enforce uniqueness of the solution, those algorithms require

additional minimization of a secondary cost function. Since a

typical auditory scene is composed of only few elements, this

secondary objective is taken as the number of active dictionary

elements. Due to this additional cost function the number of

identified dictionary elements is small, and therefore these

algorithms provide possible models for sparse codes in sensory

brain regions [7].

A particular auditory scene activates only a few from the large

number of neurons available in the auditory cortex

[8,9,10,11,12], which matches the behavior of sparse coding

algorithms. However, we do not know which of these algorithms

the auditory system really implements, and what are the

mechanisms the brain uses to select the dictionary elements that

are present in a scene.

In this paper, we propose a new dictionary-based algorithm, the

Corrected Projections Algorithm (CPA). It only uses the

minimization of the difference between the sensory representation

of the incoming sound and an internal estimate to identify the

sources present in the auditory scene. CPA does not explicitly

minimize the number of active dictionary elements; the sparse

representation is a direct consequence of the model design. The

estimated parameters indicate the presence or absence of a

particular dictionary element and its behavior matches certain

aspects of the psychophysics of auditory stream perception. Here,

we propose the hypothesis that the architecture of the corticotha-

lamic circuit matches an efficient circuit implementation of CPA,

and we show cortical recordings that are consistent with the

proposed role of auditory cortex in the implementation of CPA.
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Figure 1. Identification of sources present in complex auditory scenes using large dictionaries. (A) Auditory scenes are composed of
sounds generated by different sources. (B) Blind source separation methods estimate the sources present in a scene based only on the observed scene.
(C) Other algorithms assume that the sources present in a scene are part of a very large dictionary of possible sources (represented by the collection of
pictures and the associated sounds). (D) These algorithms also assume that the sources present are combined linearly, (vectors~BBk multiplied by the time
varying amplitude Ak(t)), to generate the time varying scene (time-varying vector~yy(t)). (E) Algorithms as in D create an estimate of the observed signal
by combining elements of the dictionary, each one weighted by an time varying estimated parameter hk(t). For large dictionaries, there are multiple
estimated parameters that create an estimate of the observation that matches equally well to the observed signal (represented by the different
combinations of vectors inside the large square that generate the same well-matched estimate ŷy(t)). A single solution is chosen by minimizing the
number of active dictionary elements (vector combination inside the smaller square). (F) At each time step, a new set of parameters hk(t) is estimated
that reflect the contribution of the identified dictionary element to the current auditory scene Ak(t). The other estimated parameters hk(t) are zero.
doi:10.1371/journal.pone.0024270.g001
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Results

CPA works on superimposed sound sources
CPA uses similar assumptions as previous source identification

algorithms (Fig. 1D), mainly that the stimulus originated from

linear combination of the sources [1,2,3,4,5,6]. For illustrative

purposes, we will assume an auditory scene where each sound

source k has a characteristic frequency spectrum ~BBk, which is

stationary over time [13]. For non-stationary spectra the feature

vectors ~BBk may also be generalized to the spectrotemporal

domain, or even to include higher order cues of complex signals

like speech. The shape of the spectrum originating from each

source is assumed to be stationary, but the amplitude Ak(t)
fluctuates in time (Text S1: Definition of auditory scene),

that is at any instant t, the superposition of several of these sources

creates the observed signal ~yy(t).

~yy(t)~A1(t)~BB1zA2(t)~BB2zA3(t)~BB3z:::zAn(t)~BBn ð1Þ

We assume that each source generates its sounds independently

of other sources. Therefore, the amplitude modulations Ak(t) of

the different objects are uncorrelated. We assume that the system

has previously learned a large dictionary of n possible sound

elements ~BBi (n..f, where f is the number of features of the signal

~yy(t), in this case, f will be the number of frequency bands of the

spectrum) that includes the sources ~BBk that generated the signal

~yy(t). CPA receives as input T samples of the observed signal ~yy(t)
and, based on temporal fluctuations of the contributing dictionary

elements [14], outputs a unique set of parameters hi, i = 1..n

(Fig. 2). The parameters hi estimated by CPA will take the value of

one, if the corresponding dictionary element is part of the auditory

scene, or zero, if it is not.

CPA finds a unique set of presence parameters by
minimizing estimation error

Similar to previous algorithms [1,2,3,4,5,6], CPA creates an

estimate ŷy(t) about the current auditory scene and determines the

parameters hi by finding the set of parameters that minimize the

square error between the estimate ŷy(t) and the observed signal

~yy(t). Previous algorithms’ estimates ŷy(t) had the same structure as

the model of the auditory scene, mainly (cf. equation 1)

ŷy(t)~h1(t)~BB1zh2(t)~BB2z:::hn(t)~BBn ð2Þ

There are two main differences of CPA with such previous

algorithms. The first one is the way the estimate ŷy(t) is generated.

The CPA estimate is

ŷy(t)~h1(~yy(t):~BB1)~BB1zh2(~yy(t):~BB2)~BB2z:::hn(~yy(t):~BBn)~BBn ð3Þ

Each dictionary element is additionally weighted with its

similarity ~yy(t):~BBi; forming the time-varying projection of the

vector~yy(t) onto the vector ~BBi (Fig. 2A and Text S2: Corrected
projections algorithm). The second difference is in the way

that multiple observations are processed. In the standard

algorithms, the estimated parameters hi(t) are generated at the

sampling rate of the input. In contrast, CPA estimates a single set

of parameters hi for all T observed samples (Fig. 2B). CPA

estimated parameters do not indicate the instantaneous contri-

bution of a dictionary element, but its presence or absence in an

auditory scene (Fig. 2C). Therefore, we called the CPA

parameters hi presence parameters.

The inclusion of the similarities~yy(t):~BBi in the estimate ŷy(t) is the

key element that causes this minimization to yield a unique set of

presence parameters hi, without requiring any additional con-

straints (Text S2: Corrected projections algorithm). This

uniqueness property of CPA contrasts to other algorithms that

require additional constraints to find unique solutions [1,2,3,4,5,6].

CPA presence parameters are binary variables that
indicate the presence of known sound sources in a scene

If signals that match the sources in the scene are part of the

dictionary (Fig. 3A), and if the sources present ~BBk are orthogonal,

minimizing the average error will identify sources present in a

scene by finding the correct set of the presence parameters hi

(Fig. 3B–E). A correct identification consists of hk = 1 for each

one of the few sources participating in the scene and hi = 0 for the

large number of dictionary elements that are not part of the scene

(Text S3: Proof that CPA detects the elements present in
a mixture). This typical binary behavior of the presence

parameters hi makes apparent that CPA works as a recognition

algorithm, meaning it finds specific dictionary elements represent-

ing identified sources. Although the orthogonality requirement

seems restrictive, it applies only to the dictionary elements ~BBk that

are present in a particular scene and not to the whole dictionary,

which would have limited the number of dictionary elements to

the number of features of the dictionary elements. Moreover, CPA

is robust to small deviations from orthogonality in the present

sources ~BBk, which is the case for most pairs of vectors if the

number of features f of the input signal is large enough, potentially

allowing the use of very large dictionaries (see Text S4: Effects
of auditory scene complexity and dictionary size on CPA
performance and Fig. S1 for a case in which there is more

overlap). If the sources in a scene can be represented by

orthogonal elements, a common approach is to estimate them

using Principal Component Analysis (PCA). However, PCA might

require larger amounts of input data than CPA because PCA does

not incorporate prior information from a dictionary (Fig. S2).

The presence parameters of CPA indicate the presence or

absence of learned sound objects that are already part of the

dictionary. An element that has not been encountered before will

not be recognized, as there won’t be a single presence parameter

with a value of 1 indicating its participation in the scene. Instead, it

will appear as small values over multiple presence parameters

(Fig. S3).

CPA estimated parameters are invariant to sound
intensity

CPA still identifies the elements present (Fig. 3F–H), even if the

contribution of one of the sources is quieter than the other sources.

The presence parameters hi hence indicate the presence or

absence of a source ~BBi, independent of the magnitude Ai(t) of the

source’s contribution to the auditory scene, for all observed T

samples. This is different from previous algorithms [1,2,3,4,6],

which would have yielded a time-varying parameters hi(t) that

indicates the instantaneous contribution of the corresponding

dictionary element ~BBi to the auditory scene at that moment in

time.

CPA solves problems that cannot be solved by template
matching

The observed signal is generally not a good match to the

respective dictionary elements that generated it because the sound

Corticothalamic Model for Sound Stream Separation

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e24270



of the scene is a superposition of multiple objects. A standard

method for pattern recognition, template matching, identifies the

sources present in a scene by calculating how similar the

instantaneous spectrum ~yy(t) is to each of the n possible sound

sources and identifying the sources present as the most similar

ones. When the contributions of the present sources to the signal

~yy(t) are equally large, we can recognize that the elements ~BBi with

the largest similarity ~yy(t):~BBi are the elements that participated in

the mixture (Fig. 3I–J). However, the similarities give a more

ambiguous picture of the elements present than the presence

parameters of CPA (compare Fig. 3E with Fig. 3J). In the case

where one of the elements is quieter than the other (Fig. 3F–H),

the similarities fail to identify the more quiet source (Fig. 3K–L),

as the observed scene is more similar to other dictionary elements

that were not present than to the more quiet element that

participated in the scene.

Iterative implementation of CPA is computationally
efficient

The original formulation of CPA is not a realistic model for the

brain’s sensory system because it requires storing all the T

observations of an auditory scene. The original CPA also cannot

handle dictionaries with large number n of elements because it

requires the inversion of a square matrix of n dimensions, which is

numerically ill- conditioned for large n (Text S2: Corrected

projections algorithm). However, the fact that in CPA the

minimization of the difference between the observed signal ~yy(t)
and the estimate of that signal ŷy(t) yields a single solution for hi,

permits to use an efficient and numerically robust implementation,

which is similar to a Kalman filter [15]. A similar implementation

cannot be straight-forwardly generalized to previous algorithms

[1,2,3,4,5,6] because the minimization of the estimation error does

not yield a unique solution for the parameters hi(t).

This efficient implementation of CPA, which we call iterative

CPA or iCPA (Fig. 4), exploits the fact that sound samples ~yy(t)
appear sequentially in time to reduce the memory requirements and

computational complexity. Instead of storing all the observations of

the incoming signal~yy(t) up to time T-1, it stores an internal estimate

of the n presence parameters h(T{1) based on the past T-1

samples. The previous parameters h(T{1) combined with the

current projections (~yy(t):~BBi)~BBi create a new estimate ŷy(t), analogous

to Fig. 2B and equation 2. The presence parameters h(T{1) are

updated proportionally to the f-dimensional difference between the

incoming signal~yy(t) and its estimate ŷy(t),

h(T)~h(T{1)zDh(T) ð4Þ

where

Dh(T)~K(T)(~yy(T){ŷy(T)) ð5Þ

Figure 2. The Corrected Projections Algorithm (CPA). (A) At each time step, CPA calculates the projections ~yy(t):~BBi

� �
~BBi of the observed signal

~yy(t) onto all the dictionary elements ~BBi . (B) CPA uses the linear combination of all projections ~yy(t):~BBi

� �
~BBi , each combined with a non-time varying

presence parameter hi , to generate an estimate ŷy(t) of the signal~yy(t). (C) The minimization of the minimal square error between all T observations
~yy(t) and the T estimates ŷy(t) yields a single solution for the presence parameters hi . The elements that are present in a scene are indicated by a value
of one and absent elements are marked with a value of zero.
doi:10.1371/journal.pone.0024270.g002
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Figure 3. CPA identifies overlapping sources. (A) Two elements ~BB5 and ~BB10 were selected from a dictionary of 18 elements. (B–C–D) Each one
of these elements were amplitude modulated and the amplitude modulated signals were added to create the auditory scene~yy(T). The signals were
equally loud. (E) CPA is able to identify the two dictionary elements that generated the signal by a large magnitude in the respective presence
parameters. (F–G) The elements from the dictionary were again used to generate an auditory scene, but with the amplitude of one of the elements
reduced 10-fold. (H) CPA still correctly detected the presence of the quieter element. (I–J–K–L) CPA outperforms template matching. (I–J) For
the case where the elements are equally loud (case C–D), the two elements present could have been identified as the most similar ones to the
observed signal and they could have been detected as the peak values in the RMS of the similarities. (K–L) This method failed in the case of a quiet
element (F–G), as there were other elements with larger root-mean-square similarity than the quiet element.
doi:10.1371/journal.pone.0024270.g003
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is the n-dimensional error signal of the presence parameters. If the

parameters h(T{1) already generate an estimate ŷy(t) that is similar

to the signal~yy(t), the parameters will not be updated. The error in

the presence parameter Dh also depends on the n by f sensitivity

matrix K(T). K(T) represents the uncertainty about the stored

presence parameters h(T{1). In case there is a large uncertainty

about the presence parameters, K(T), which depends on the

dictionary elements~BBi and the observed signal~yy(t), will have a large

value. In this case, the presence parameters will be updated by a

large amount, even for a small estimation error (~yy(T){ŷy(T)).

ICPA is mathematically equivalent to the non-iterative CPA.

However, iCPA is numerically better conditioned, because it

requires the inversion of a much smaller f by f matrix (see Text
S5: Recurrent implementation of CPA), where f is the

number of features of the input signal. Therefore, iCPA can

handle very large dictionaries (Fig. 5A), as it does not invert a very

large n by n matrix which is necessary for non-iterative CPA.

CPA performance degrades with larger dictionaries and
number of simultaneously present sources

CPA and iCPA assume a single dictionary element to represent

each individual source present in an auditory scene. Therefore, the

number of dictionary elements necessary in CPA is very high in

order to represent all the sources that the system expects to

encounter. Large dictionaries cause a deviation of CPA from its

ideal behavior because larger dictionaries have more dictionary

elements that are not present in the auditory scene. CPA uses a

tiny bit of these spurious elements to generate its estimate of the

observed signal ~yy(t), thereby reducing the contribution of the

presence parameters of the elements that are actually present in

the scene. This effect of the spurious elements increases with the

total number of dictionary elements (Fig. 5B). Although

diminished, the presence parameters of the elements that are part

of the auditory scene are still much larger than the elements not

present, allowing for perfect recognition. ICPA performance

degrades as the number of sources present in a given auditory

scene increases (Fig. 5C), since the multiple sources generate

higher levels of overlap. Higher levels of overlap causes the scene

to be more similar to other non-present dictionary elements

therefore also reducing the presence parameters for the actual

elements present. In order to handle larger dictionaries and more

complex scenes, the auditory objects require representations with

larger number of features (Fig. 5D) because as the number of

features of the dictionary elements increases, the dictionary

elements will be closer to being orthogonal and iCPA presence

parameters will be closer to the ideal estimate, i.e. ones and zeros

(Fig. 5B). As shown in Text S4: Effects of auditory scene
complexity and dictionary size on CPA performance, the

deviations from the ideal behavior for the presence parameters

depends inversely on the square root of the number f of features.

Iterative implementation of CPA is robust
The improved numerical robustness of iCPA permits the

identification of real world sources, in which the description of a

signal as a time varying spectrum is a good approximation

(Fig. 6A–F). For the cases in which the spectrum is non-stationary,

for example a source that consists of a frequency sweep, the simple

feature space based on only the instantaneous spectrum would fail.

ICPA is also robust to the presence of unknown dictionary

elements in an auditory scene because an element that is not part

of the dictionary and, hence, is not represented by a large activity

of a single presence parameter, shows up as a low activity profile

that is spread across multiple dictionary elements (Fig. S3). This

widespread low activity profile impairs the detection of the known

elements if the new element is too loud (Fig. S4). The widespread

low level activity profile could be used to indicate the presence of a

new sound source that needs to be acquired [3].

Auditory cortex has the connectivity to implement iCPA
The original formulation of CPA as an optimization problem is

difficult to relate directly to a mechanistic model of brain

processing. We therefore used iCPA to identify analogies to a

dynamical model of a neuronal circuit. The operations necessary

for iCPA can be implemented through synaptically connected

networks of neurons. The iterative implementation of CPA (Fig. 4)

receives as input the f variables of the signal ~yy and expands the

Figure 4. The architecture of the thalamocortical system
matches an efficient iterative implementation of CPA. ICPA
uses the previous estimate of the presence parameters hi(T{1) (light
blue circles; corresponding to each one of the dictionary elements
~BBi,i~1,2,3) to generate an estimate ŷy(T) of the current stimulus~yy(T).
The error in the estimate ~yy(T){ŷy(T) is converted into an error in the
presence parameters Dh(T) (black circles). This transformation requires
a large population Dh(T) (displayed as the black circles) that tracks the
error in the prediction for each dictionary element (i~1,2,3) and
another population K(T) (magenta circles) that represents the uncer-
tainty of each of these elements, matching the expansion in number of
cells seen in the cortex, compared to the number of inputs from the
periphery. The population K(T) receives as input the projections
~QQ(T)i,i~1,2,3 into the dictionary elements, which can be calculated
from the current stimulus ~yy(T). The error in the parameters Dh(T) is
sent via the massive thalamocortical feedback connection (orange) to
be integrated into an updated parameter.
doi:10.1371/journal.pone.0024270.g004
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variables into the much larger number of variables Dh and K
associated with the number n of dictionary vectors ~BBk. The

variables Dh and K depend on the dictionary elements and they

tend to be sparser than the input ~yy(T).

ICPA also requires a massive feedback signal Dhk
i i = 1,..,n,

k = 1,..,f to estimate the presence parameters hi. Both requirements

comply with the characteristics of the auditory cortex since a) it

expands the number of neurons associated with auditory

representations and shows increased sparseness [8,9,10,11,12]

compared to more peripheral areas [16] and b) sends massive

corticothalamic projections [17] that could provide the feedback

necessary for CPA. We thus hypothesize the primary auditory

cortex to be the first place where neural activity represents the

errors Dh of the presence parameters as well as the associated

uncertainties K. Therefore, we analyzed differential behavior of K
and Dh in order to understand how cortical neurons might

represent these signals and to be able to identify such units from

physiological recordings. The variables K and Dh were decom-

posed into single components that could be mapped into cortical

neuron activity. Although there are multiples ways to represent a

matrix, we choose a representation that assigned to each of these

‘‘neurons’’ a preferred frequency, corresponding to the features of

the vectors of the dictionary elements (see Identification of

elements in the model as cortical cell activity for more

details).

The parameter error Dh behaves differently from the
uncertainty parameter K

The elements of K should have a large value if the input~yy is low

for a period of time because, when there is not enough

accumulated information about which sources are present, the

algorithm should adjust the parameters h(T) by a large margin, as

the estimated presence parameters are likely to be different from

the actual presence parameters. As more samples of input ~yy are

collected, the estimated presence parameters h(T) will better

match the real presence parameters, and they should not require

much adjustment. This should be reflected in smaller values for

the elements of K. Therefore, the behavior of K matches the time

course of the uncertainty about which sources are present; in the

silence preceding a scene there is a large uncertainty about which

sources are present. As the scene continues, there is more

information and the uncertainty diminishes. We therefore labeled

the elements of K the uncertainty associated elements.

The error in the presence parameter Dh depends not only on K
but also on the estimation error~yy{ŷy (equation 5), which causes

a difference in behavior between Dh and K. In order to illustrate

Figure 5. ICPA is a robust estimator. (A) iCPA identifies two random non-orthogonal sources of f = 400 features using a large dictionary of
n = 68000 possible sources. (B–D) Dependence of iCPA on number of elements present, in a scene, size of the dictionary, and number
of features. The values of the estimated presence parameters for the elements that generated the signal are shown in blue and for the elements
that did not generate the signal are shown in red. The error bars indicate the full range of values. (B) iCPA can handle large number of dictionary
elements. The figure was generated using 2 sources and a signal dimension of f = 400. (C) ICPA fails if the number of simultaneously present sources
increase. The figure was generated using f = 100 and n = 3200 dictionary elements. (D) The performance of iCPA improves as the number f of features
increases. The figure was generated using 2 sources present and a dictionary of n = 1600 elements.
doi:10.1371/journal.pone.0024270.g005
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this behavior, we have simulated the responses of a train of clicks

(Fig. 7A), each click consisting of a single dictionary element. The

train of pulses was preceded by a brief period of silence. During

the silent period preceding the train, the estimated signal ŷy

(Fig. 7B) is close to zero. Therefore, the estimation error~yy{ŷy has

a very low value in the absence of input as both the input~yy and the

estimate ŷy are close to zero. The estimation error~yy{ŷy is very high

as the click train starts and again decreases as the estimate ŷy

becomes a better match to the input signal ~yy (Fig. 7B). The

estimation error ~yy{ŷy decays as the correct single presence

parameter is estimated (Fig. 7C).

The error in the presence parameter Dh is calculated by

multiplying the uncertainty K by the estimation error ~yy{ŷy. The

low level of activity of ~yy{ŷy preceding the start of the stimulus

makes the presence parameters Dh less spontaneously active than

the uncertainty K. The effect of the decay of~yy{ŷy also causes the

presence parameters Dh to decay even more than uncertainty K.

These two effects are illustrated by the simulation results in

Fig. 7D–F–H. In the absence of input, the elements of the

uncertainty K (Fig. 7D) have larger activity than the error in the

presence parameter Dh (Fig. 7F). The evoked activity decreases

for both types of signals as the train of clicks continues, but with

the error in the presence parameter Dh decaying more strongly

than the uncertainty K. The estimation error ~yy{ŷy hence causes

the parameter error elements Dh to have less activity than the

uncertainty elements K both in the absence of input and while the

auditory scene is not changing (Fig. 7H).

ICPA makes a prediction about the differential behavior of

neurons representing the parameter error Dh and sensitivity K in

the absence and presence of sensory information. We therefore

asked if the auditory cortex would show cells with activity similar

to Dh that depended on the error estimate~yy{ŷy. The effect of the

error estimate would cause these cells to show less response both in

the absence of sound and during repetitive sounds than nearby

cells that would represent the uncertainty associated variables K.

Although other models [4,18,19] as well state that the cortex

represent error estimates ~yy{ŷy, iCPA furthermore predicts the

existence of the two distinct response populations.

Auditory cortical response matches the behavior of the
Dh(T) and K(T)

As a first step to test for the hypothesis that the thalamocortical

circuit implements iCPA, we reanalyzed single units from the

awake rat auditory cortex [10] in response to a train of clicks. In

the absence of sensory stimulus, different cortical cells show

different levels of spontaneous activity [9,20,21] and different

levels of activity in response to a repetitive sound [22]. In

agreement with the prediction of iCPA, cells with high

spontaneous firing rates (Fig. 7E) adapted less than cells with

lower spontaneous firing rates (Fig. 7G and Fig. 7J for population

data), indicative of the multiplicative effect of the error estimate

~yy{ŷy. A simple model in which a cell’s spiking threshold

determines both the spontaneous activity and the degree of

adaptation would also produce a strong correlation between the

evoked responses and adaptation. However, both the model

(Fig. 7I) and the neural recordings (Fig. 7K) exhibit weaker

correlations between the evoked responses and adaptation. ICPA

provides a computational explanation for this correlation between

two seemingly unrelated features of activity in primary auditory

cortex.

This data does not indicate if the elements Dh are represented

by different populations of cells than the uncertainty associated

elements K, or if there is a continuum in how strongly the

estimation error modulates a cell’s activity. By recording from

identified neural populations, it will be possible to test if the

parameter error elements Dh and uncertainty associated elements

K are represented by distinct neural populations.

Discussion

We proposed a new algorithm, called CPA, which identifies the

sources present in a complex auditory scene. CPA belongs to a

family of algorithms that identify the few elements from a large

dictionary of possible sources that are used to reconstruct the

signal. CPA differs from similar algorithms in that the estimated

parameters indicate only the presence or absence of the

corresponding dictionary element in the mixture and are

independent of the magnitude of the contribution of the dictionary

elements to a particular scene. The parameters do not change on

the fast time scale of sensory input fluctuations and match the

psychophysics of auditory stream perception. We have shown that

CPA can be implemented as an iterative estimator, in which the

current estimate about which sources are present is corrected

depending on the mismatch between a new sensory observation

and an estimate on what the scene should be. The iterative CPA

predicts that the expanded cortical representation should show

responses that represent the error in the presence parameters and

others that signal the uncertainty about the presence parameters.

Cortical recordings of awake behaving rats included both response

types predicted by the model.

Model limitations
CPA implies that a single auditory source is represented by a

single dictionary element, which is in contrast to other sparse

representation approaches where a single source can be repre-

sented by more than one dictionary element [1,2,3,4,5,6].

Therefore, auditory scenes in CPA are represented extremely

sparse (for an example see Fig. 5A, where 2 elements out of 68000

are active), which seems at odds with the lower levels of sparseness

in auditory cortex, although high levels of sparseness have been

reported [16]. Below (section Sparse activity in the auditory
cortex) we argue how this problem could be resolved.

In order to identify a source, CPA also requires that each single

element that corresponds to a source should already be part of the

dictionary. If such element is not yet part of the dictionary, CPA

will, of course, fail to recognize this sound in that the source won’t

be assigned a single presence parameter. However, an unknown

source evokes small values over multiple presence parameters

(Fig. S3) providing an indication that something unfamiliar is

being presented which could be added to the dictionary. In order

to create the dictionary, the animal should be continuously

acquiring the sources that it is exposed to. Although there are

multiple algorithms that are capable of learning these sparse

overcomplete representations [3,5,23], it is not clear what

algorithm is used by the brain to create the dictionary.

Concerning the implementation of iCPA, we have argued in

favor of the hypothesis that the auditory cortex is the place where

Figure 6. ICPA quickly identifies real auditory sources. Sounds produced by a cricket (A–C) and by a violin (D–F) were combined to create a
complex scene (G–H). The dictionary elements that represented the violin and the cricket (B and E) were the average spectrum. (I) Using one second
of data, iCPA calculated a presence parameter that was larger for the elements that represented the cricket and the violin. See also Audio S1, S2, S3.
doi:10.1371/journal.pone.0024270.g006
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the conversion from a signal estimation error into a presence

parameter error occurs. We base this hypothesis on the sparseness

of the response and the massive corticothalamic feedback. Also,

other implications of iCPA for activity signaling errors in the

presence parameters seem to coincide with reported features of

auditory cortex (see sections Two types of neuronal respons-
es in auditory cortex and Cortical activity as estimation
error), and these features have not been reported for other brain

areas. However, this all is far from being a proof that the algorithm

is implemented in the corticothalamic system. Specifically

feedback is a quite general feature across different levels of the

auditory system, including inferior colliculus [24]. Also, other non-

primary areas have very selective responses to sounds [25].

Finally, the model cannot yet deal with non-stationary auditory

scenes in which sources dynamically appear and disappear on a

slow time scale. However, an extension to such a situation could be

implemented rather easily by introducing a slow temporal decay of

the presence parameters.

Sparse activity in auditory cortex
Although responses in auditory cortex are sparse

[8,9,10,11,12], meaning that only a minority of cells respond

to any particular stimulus, the levels of sparseness mostly

observed in auditory cortical recordings are not as extreme as

we would expect from a representation of CPA’s presence

parameters. There are two reasons for this apparent discrep-

ancy between the cortical recordings and the predictions from

iCPA. The first one is that in iCPA the sparseness is maximal

for the presence parameters h. However, the uncertainty of the

parameters K and the error in the parameters Dh, which we

hypothesize to be represented in cortex, are less sparse, because

they are driven by the estimation error (~yy(T){ŷy(T)) and the

projections (T), which are non-sparse signals. Nevertheless,

very particular subpopulations (L3) of neurons in auditory

cortex do show very high levels of sparseness, compatible with

representations of presence parameters(see Fig. 6 in [26]).

Secondly, the particular level of sparseness measured on the

response of a single neuron involved in the representation of

presence parameters depends on the particular neural code that

is used. If a particular presence parameters is represented by

the activity of a subset of neurons, each single cell could be part

of multiple of such subsets, with the activity of each neural

ensemble representing a single presence parameter [27,28].

Simultaneous recordings of large a number of neurons would

be needed to identify the particular neural population code

used to represent the presence parameters [11,12]. CPA

predicts that the presence parameter activity will be sparser

for auditory sources recognized by the animal as opposed to

new sources, because a new source is represented by multiple

small presence parameters and not by a single large one (see

Fig. S3, S4).

Cortical activity as estimation error
The iterative implementation of CPA, as well as other

frameworks of cortical function [4,18,19] propose that cortical

activity encodes the difference between the sensory signal and an

estimate of that signal. This estimate is calculated using an internal

model of the world. When this internal model approximates the

external world well, the estimate will be a close match to the

incoming signal. A system that is actively refining its internal

model would show a paradoxical reduction of cortical activity,

compared to a system where the internal model is not being

refined. Consistent with this theoretical framework, the auditory

cortex evoked activity is reduced during auditory discrimination

tasks, where the animal might be improving its internal model,

compared to passive hearing conditions where this improvement is

not required [10,29,30]. Moreover, our model predicts that the

reduction should be confined to the cells that represent the error in

the parameters, as they receive as input the difference between the

sensory signal and an estimate of that signal (Fig. 4). This

contrasts with cells that represent the uncertainty that do not

receive such input, and should not show such reduction. We

postulate that the parameter error elements can be identified by

their low spontaneous activity. In fact, suppression of evoked

activity during behavior was confined to low spontaneously active

cells, matching the prediction from iCPA (see Supplementary

Figure S4 in [10]).

Two types of neuronal responses in auditory cortex
ICPA makes a prediction about two types of behaviors in

cortical cells, with one type encoding the error in the presence

parameters and a second type encoding the associated uncertainty.

We postulate that these two populations could be distinguished by

their levels of spontaneous activity and we found that the

spontaneous activity can be used to determine the level of

adaption, which according to iCPA differs for the two cell

populations. There are two pairs of known candidates. One pair

consists of the fast spiking interneurons and the regular spiking

neurons in which fast spiking interneurons have higher firing rates

than regular spiking neurons [20]. The other pair are lower layer

cells and upper layer cells in which lower layer cells have higher

spontaneous firing rates than upper layer cells [9,21]. According to

iCPA, the high spontaneous cells drive the behavior of the low

spontaneous ones. Therefore, the high spontaneous population

should have shorter sound evoked latencies than the low

spontaneous ones. In fact, the fast spiking neurons have been

reported to have shorter latencies than regular spiking neurons

[31] and lower layer neurons also have shorter latencies than

upper layer neurons [21]. Selective recordings of these populations

of neurons during the performance of sound identification tasks in

complex scenes might narrow down the possible populations that

are involved in representing uncertainty and the error in the

parameters.

Figure 7. ICPA behavior of uncertainty encoding elements and error encoding elements matches the behavior of cortical neurons.
(A–C) Simulation of iCPA in response to a train of clicks. (A) The click was simulated by a single dictionary element that was presented
periodically as indicated by the arrows. (B) The observed signal~yy(T) was initially different from the estimate ŷy(T). When the train of clicks continued,
the estimated signal approximates the observed signal. (C) A (single) correct dictionary element is identified. (D–F–H–I) (D) Example of an
uncertainty encoding element of K(T) showing its higher spontaneous activity and lesser adaptation in response to the click than (F) the example of
an error encoding element of Dh(T). (H) Spontaneous activity (before click train) and adaptation in response to the click are correlated when the K(T)
(magenta) and the Dh(T) elements (black) are grouped together. (I) The correlation between the evoked activity (response to the first click) and the
adaptation was weaker. (E–G–J–K) Activity recorded in the awake rat auditory cortex in response to a 5 click/sec train shows similar relationships
between spontaneous activity and adaptation. Similar results occurred in response to a 20 click/sec train (Fig. S5) and after subtracting the
spontaneous activity from the evoked responses (Fig. S6). The asterisk indicates a Spearman rank correlation with significance p,0.01.
doi:10.1371/journal.pone.0024270.g007
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Role of corticothalamic feedback
The proposed model provides a mechanism for how the

corticothalamic system solves the source identification problem in

agreement with the observed physiology of stream segregation in

auditory cortex [32,33]. The model suggests that source

identification in complex scenes combined with attention-modu-

lated auditory cortical activity [34] allows to selectively attend to a

source when multiple sources are simultaneously present, solving

the cocktail party problem. Furthermore, we provide a computa-

tional hypothesis for the massive feedback connections in the

corticothalamic loop. This feedback is a fundamental property of

the proposed circuit. Our model, in fact, predicts that blocking

corticothalamic feedback would impair the capability to identify a

source in complex auditory scenes. We propose that these

connections convey error signals about which few out of the large

number of dictionary elements are present. Therefore, this error

signal should show fast adaptation, as the correct presence

parameters are estimated. Other models consider that the

corticothalamic feedback represents the estimate about the

observed signal [3,4,19]. In those models, the feedback signal

should show no adaptation.

Features used to characterize auditory sources
We have used the spectrogram to characterize the auditory

sources [13] and showed that it was sufficient to identify some

natural sounds. The spectral structure is a powerful feature for the

segmentation of natural sounds [35]; large spectral overlap impairs

the separation of sources in humans [36]. Cortical neurons show

tuning to complex spectrotemporal features [37] which could be

included as extra features for the dictionary element. Beyond

spectral and spectrotemporal features, source separation is also

supported by spatial cues [38], which we have not included in the

present approach. This extra information can be incorporated into

the current framework by generalizing a dictionary element into

several positions [2].

Experimental evidence of new source acquisition
In order to be able to identify sources in a complex auditory

scene, CPA requires that all the sources present are already stored

as dictionary elements. Therefore, the auditory system should be

learning samples of all the sounds that it encounters to improve its

performance of sound identification in complex scenes. Although

we do not know how extended this learning of sound is, a recent

study has shown that humans, without being aware, learn a

random spectro-temporal modulations of noise [39] with only a

few presentations and retain that information for several weeks.

This is consistent with the idea that the auditory system is

continuously acquiring new sounds and incorporating them to a

dictionary. A prediction from the CPA algorithm is that masking

by an unknown sound should be more effective than masking by

known sounds.

Presence parameters as auditory streams?
We note that the presence parameters h(T) do not reflect the

fluctuating contribution of a particular dictionary element to the

auditory scene, but are calculated considering all previous

observations. The presence parameters are updated after each

new observation and the value corresponding to an element

present starts growing at the onset of the auditory scene. The

estimated presence parameters converge to a constant value

although the amplitudes of the sources fluctuate in time. The

presence parameters keep their values, even if their contributions

temporarily fall to zero (Fig. 6). In this sense, the slow buildup and

continuity of the presence parameters matches the psychophysics

of auditory streams [35], more than the quickly fluctuating

parameters estimated by other algorithms (Fig. 1E–F) [1,2,3,4,6].

We thus may interpret the ‘‘active’’ presence parameters as

auditory streams. Although it is possible to calculate a stable

presence parameter based on the fluctuating parameters calculated

by other algorithms (see equation 2), these derived quantities are

not used by those algorithm. In the case of iCPA, the presence

parameters are essential for the functioning of the algorithm and

appear on the feedback loop. One prediction of iCPA is that the

corticothalamic feedback elements’ responses should be amplitude

invariant and reflect the psychophysics of auditory streams.

CPA for other modalities?
Analyzing scenes composed of amplitude modulated sources is a

problem that also appears in other modalities, such as olfaction

[14]. The olfactory bulb also receives a large feedback signal from

the piriform cortex, another large, sparsely active structure [40],

suggesting that a similar algorithm might be implemented already

in paleocortex to perform olfactory source identification in natural

scenes.

Materials and Methods

Corrected projections algorithm (CPA)
The estimation of the presence parameters in CPA was done by

finding the set of presence parameters hi, i = 1..n that will minimize

the average minimal square error between the signal~yy(t), t = 1..T,

and the estimate of that signal ŷy(t). The estimate ŷy(t) is given by

the linear combination of all the projections of the signal~yy(t) onto

each and all of the dictionary elements (~yy(t):~BBk)~BBk, k = 1,..,n,

ŷy(t)~h1(~yy(t):~BB1)~BB1zh2(~yy(t):~BB2)~BB2z:::hn(~yy(t):~BBn)~BBn

The dictionary elements ~BBk, k = 1,..,n, are unit vectors. This

problem can be solved as linear least square minimization [41]. By

arranging the observations and the projections as matrices, it is

equivalent to an inversion of n by n matrix.

The auditory scene consisted of 180 samples of a 10

dimensional mixture signal generated by the linear combination

of two vectors, given by:

~yy(t)~A5(t)~BB5zA10(t)~BB10

For visualization purposes, the elements of the two vectors ~BB5 and
~BB10 originated from a lognormal distribution of mean zero and

variance 1. Afterwards, the vectors had their mean subtracted and

were normalized to unit length. The temporal modulations A5(t)

and A10(t) were generated by independent normal variables of

zero mean and unit variance.

The dictionary consisted of additional 16 vectors, whose

elements were taken from a normal distribution of mean zero

and variance one. All the 18 dictionary elements were normalized

to have unit value and zero mean.

The dictionary of elements used was the same as Figure 3 A.

The standard deviation of the temporal modulation A10(t)
associated with element ~BB10 was reduced to 0.1, while the

standard deviation of A5(t) was kept at one.

Iterative Corrected projections algorithm (iCPA)
ICPA consists of calculating a new n-dimensional presence

parameter column vector ~HH(T), based on the previous presence
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parameters and a new observation of the auditory scene, expressed

as an f-dimensional column vector~yy(T). This observation~yy(T) is

projected onto the n dictionary elements, creating an f by n matrix

(T) with elements

i,l(T)~(~yy(t):~BBi) ~BBi

� �
l
:

Each column of (T) is hence given by the projection of the

observation onto each dictionary element. Then the estimate of

the observed signal is computed as

ŷy(T)~ (T)~HH(T{1):

The new presence parameter is determined as

~HH(T)~~HH(T{1)zK(T)(~yy(T){ŷy(T)):

Note that the update of the presence parameter depends on the n

by f matrix

K(T)~P(T) tr(T)

in which the n by n matrix P(T) is obtained from the iterative

equation

P(T)~P(T{1)

{P(T{1) tr(T)(Iz (T)P(T{1) tr(T)){1 (T)P(T{1):

The matrix transpose is indicated by the tr symbol.

As an initial value for P(T) we use a diagonal matrix, that is

most of the elements of matrix are initially zero. The matrix P(T)
acts as memory of uncertainty about sources present in a scene.

Figures 5, 6, and 7A–B–C were generated employing the above

equations.

We evaluated iCPA with T = 10 observations of the auditory

scene. There, the estimated presence parameters reached a steady

state. The components of dictionary elements were taken from a

uniform distribution between zero and one. Afterwards, each

dictionary element had its mean subtracted and were normalized

to unit length. The auditory scenes were generated by taking a few

elements from the dictionary and modulating them using a

normally distributed amplitude modulation with zero mean and

variance 1. The matrix P(T) was initialized as the identity matrix.

The sound produced by the cricket and the violin, playing a C4

were sampled at a frequency of 22050 Hz. In order to generate the

spectrograms, a window of 10 ms was used, yielding 111

frequency bands. This would correspond to f = 111 features for

the dictionary elements. The spectrograms were calculated using

the Matlab function SPECGRAM with each window smoothed

using a Hanning window.

The dictionary elements that represent the violin and the cricket

were calculated by taking the average spectrum of the presentation

of the cricket and the violin. These average spectra were

incorporated as two of the 400 dictionary elements.

In order to generate the other 398 dictionary elements, a

collection of music files were resampled to a frequency of

22050 Hz and the spectrograms were calculated using the same

parameters as the violin and the cricket sound. Spectrograms were

calculated for 30 seconds segments and the Principal Component

that captured 95% of the variance of the spectrogram was

incorporated into the dictionary, yielding a dictionary with

elements that matched the spectra of natural sounds. The matrix

P(T) was initialized to a diagonal matrix of value 5e-4.

We used a signal of f = 100 features and a dictionary of 150

elements. Each element was a 100-dimensional column vector.

The elements of dictionary elements were taken from a uniform

distribution between zero and one. Afterwards, each dictionary

element had its mean subtracted and it was normalized to unit

length. The observed signal ~yy(T) was a 100-dimensional column

vector and consisted of a train of 9 pulses. The pulses were

generated by applying one of the elements of the dictionary with

unit amplitude for one time step. The silence period between

pulses was equal to 30 time steps. Constant additive Gaussian

noise with zero mean and standard deviation of 0.002 was added

to the pulse train. The simulation initial parameters ~HH(0) were

random small values, with mean 0.012 and standard deviation

0.006. The initial value for the P (0) matrix was a diagonal matrix

with the diagonal elements equal to 0.5.

Identification of elements in the model as cortical cell
activity

We assumed the cortex to receive two types of inputs. The first

one is the error in the estimation D~yy(T)~~yy(T){ŷy(T) in which

the estimate ŷy(T) was calculated in the thalamus, by way of the

massive corticothalamic feedback connections. The second input is

the current observation ~yy(T). This current observation can be

converted through appropriate synaptic weights into the projec-

tion onto all the dictionary elements, expressed as (T).

The other elements required for the implementation of iCPA

are the matrices P(T) and K(T), and the vector

D~HH(T)~~HH(T){~HH(T{1)~K(T)(~yy(T){ŷy(T)). In response to

a single stimulus, only a few elements on the diagonal of the matrix

P(T) are active. Therefore, although P(T) has many elements, we

do not expect that its activity would be reflected in responsive

cortical cells.

Cortical cells have a preferred frequency [42]. Therefore, in

order to be able to identify the cortical activity as the elements of

K(T) and D~HH(T), we decomposed them into frequency bands. In

the case of the n by f matrix K(T), the simplest decomposition is to

consider each of its elements to represent cortical activity, with

each element having a best frequency corresponding to its column

number, that is each Kh,i(T), h = 1..n, i = 1..f is considered as the

response of one particular neuron or group of neurons.

In the case of the n dimensional parameter error signals D~HH(T),
the decomposition into elements associated with the f frequencies

is not one-to-one. However, we can naturally decompose the error

signal D~HH(T) vector into elements that have a frequency

preference by using the matrix multiplication

D~HH~K(T)D~yy(T)

where

D~yy(T)~~yy(T){ŷy(T)

This matrix multiplication represents the following equations:

DH1(T)~K1,1(T)D~yy1(T)zK1,2(T)D~yy2(T)z:::zK1,f (T)D~yyf (T)

DH2(T)~K2,1(T)D~yy1(T)zK2,2(T)D~yy2(T)z:::zK2,f D~yyf (T)

:::

DHn(T)~Kn,1(T)D~yy1(T)zKn,2(T)D~yy2(T)z:::zKn,f (T)D~yyf (T)

Corticothalamic Model for Sound Stream Separation

PLoS ONE | www.plosone.org 13 September 2011 | Volume 6 | Issue 9 | e24270



We identified the terms in the sum Dhk
i (T) = Kk,i(T)D~yyi(T) as

being represented by cortical neurons because these terms have a

preferred frequency. Although spiking activity can be only

positive, Dhk
i (T) and Kk,i(T) can have both positive and negative

values. To map these numbers to firing rates, we have taken their

absolute value, which assumes different cell populations to encode

for the positive and the negative values.

Both groups of elements, Dhh
i (T) and Kh,i(T), h = 1:150,

i = 1:100, were combined together to calculate the correlations.

The Spearman correlation between the spontaneous activity and

the normalized response of the last pulse was r = 0.51, p,1e-12,

with the 95% confidence interval between 0.50 and 0.52. The

correlation between the evoked activity and the normalized

response of the last pulse was smaller, r = 0.34, p,1e-12, with

the 95% confidence interval being between 0.33 and 0.35.

Auditory cortical recordings
We used previously published data of 32 awake rat auditory

cortex neurons in response to trains of clicks. For more details, see

[10]. We analyzed the responses to a train of 5 clicks per second,

1.8 seconds (9 clicks). Spontaneous activity was evaluated in a

20 ms window preceding the onset of the first click. Evoked

activity in response to the clicks was evaluated in a 20 ms window

between 6 and 26 ms from the onset of each click. To quantify the

accommodation, the evoked responses to the train of clicks were

normalized to the response to the first click and fitted to the

decaying exponential:

R(k)~R?z(1-R?)exp -
k-1

t

� �
, t§0

using the Matlab function LSQCURVEFIT. We used the

estimated parameters to each cell to estimate the responses after

9 pulses of the 5 clicks per second train. Out of the 32 cells, 25 cells

could be fitted with less than 10% error with the decaying

exponential function.

The correlation coefficients were calculated using the Spear-

man’s rank correlation coefficient. The correlation between the

spontaneous activity and the normalized response of the last pulse

was r = 0.74, p = 2.81e-5, with the 95% confidence interval of the

correlation coefficient between 0.48 and 0.88. There was no

significant correlation between the evoked response to the first

click of the train and the normalized response of the last pulse

(r = 0.30, p = 0.14, with the 95% confidence interval of the

correlation coefficient between 20.11 and 0.62).

Supporting Information

Figure S1 Sources that have some spectral overlap are
still separable using CPA. (A) Two elements that show some

degree of overlap are mixed. The figure has the same structure as

Fig. 3A–F.

(TIF)

Figure S2 ICPA can identify sources present with less
observations of the auditory scene than Principal
Component Analysis. We would like to compare the capability

of iCPA in identifying the sources that generated a signal with the

capability of Principal Component Analysis (PCA) as a function of

the number of observations of the auditory scene. We generated

an auditory scene by using 10 vectors of f = 500 features, selected

from a dictionary of n = 1000 possible elements, amplitude-

modulating them and combining the amplitude modulated signals.

The amplitude modulation of each source, at each time step, is

given by is a number, uncorrelated across the 10 sources and

uncorrelated in time, taken from a lognormal distribution of log

mean value of zero and log standard deviation of 2. At each time

step, the combination of the 10 signals created the auditory scene.

Besides, at each time step, a 500 dimensional uncorrelated noise,

taken from a Gaussian distribution with zero mean and 0.5

standard deviation, was added to the auditory scene. We evaluated

iCPA and the Principal Component based method by assessing its

performance in identifying the sources present for different

number of observations of the signal. The performance of iCPA

was given by how many of the 10 largest hi identified

corresponded to the actual dictionary elements involved in

generating the signal. Standard PCA, on the other hand, identifies

the elements based only on the observed auditory scene and does

not use the information that the elements that generated the signal

are taken from the dictionary of 1000 possible elements. In order

to be able to obtain a performance index for PCA similar to the

one that we calculated for iCPA, we first calculated the principal

components. We took the 10 largest principal components and for

each principal component, we identified the element from the

dictionary that was the better match to that identified principal

component. The performance of PCA was given by how many of

the 10 best matches corresponded to the actual dictionary

elements that generated the signal. We repeated the procedure

30 times for each number of observations. The shadings indicate

6 the standard deviation calculated for the 30 repetitions. The

figure shows that iCPA (in red) required 9 observations to reach a

performance of 80%. IPCA (in blue) required 66 observations to

reach similar performance.

(TIF)

Figure S3 Estimated parameters for a source that is not
part of the dictionary is distributed across multiple
dictionary elements. ICPA was presented with a source of

f = 300 features that was not part of a dictionary of n = 1000

possible sources, with an amplitude of 1. The new element appears

as low level activation on multiple presence parameters.

(TIF)

Figure S4 CPA can identify dictionary elements even in
the presence of unknown elements. (A) ICPA identifies the

two random non-orthogonal sources of f = 300 features using a

dictionary of n = 1000 possible sources. The mean amplitude of

these known dictionary elements was one. (B–D) Adding an

extra source that is not part of the dictionary with increasing

standard deviation amplitude of 0.25, 0.5 and 1 causes the

larger level of background activation in the presence parame-

ters. However, the iCPA is robust to the presence of this ‘‘non-

dictionary’’ element.

(TIF)

Figure S5 There was a correlation between spontaneous
activity and normalized response of the last click for a
20 click per second train. (A) There is a significant

correlation between the spontaneous firing rate and the

normalized response of the last click of a 20 click/sec (B)

There was no significant correlation between the normalized

response of the last pulse and the response evoked by the first

click (see Text S6: Statistics).

(TIF)

Figure S6 Correlations between normalized response of
the last click and spontaneous activity was maintained
after subtracting the spontaneous activity. There was a

significant correlation between the spontaneous activity and the

normalized response of the last click of (A) the 5 click/sec train and
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(C) the 20 clicks/sec train. The responses to the clicks were

calculated by subtracting the spontaneous activity from the evoked

response. There was no significant correlation between the

spontaneous subtracted normalized response of the last click and

the evoked activity for neither the 5 clicks/sec train (B) nor for the

20 clicks/sec train (D). (See Text S6: Statistics.)
(TIF)

Text S1 Definition of auditory scene.
(DOC)

Text S2 Corrected projections algorithm.
(DOC)

Text S3 Proof that CPA detects the elements present in
a mixture.
(DOC)

Text S4 Effects of auditory scene complexity and
dictionary size on CPA performance.
(DOC)

Text S5 Recurrent implementation of CPA.
(DOC)

Text S6 Statistics.

(DOC)

Audio S1 Cricket only.

(WAV)

Audio S2 Violin only.

(WAV)

Audio S3 Cricket+violin.

(WAV)
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