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Abstract

Expression levels of mRNAs are among other factors regulated by microRNAs. A particular microRNA can bind specifically to
several target mRNAs and lead to their degradation. Expression levels of both, mRNAs and microRNAs, can be obtained by
microarray experiments. In order to increase the power of detecting microRNAs that are differentially expressed between
two different groups of samples, we incorporate expression levels of their related target gene sets. Group effects are
determined individually for each microRNA, and by enrichment tests and global tests for target gene sets. The resulting lists
of p-values from individual and set-wise testing are combined by means of meta analysis. We propose a new approach to
connect microRNA-wise and gene set-wise information by means of p-value combination as often used in meta-analysis. In
this context, we evaluate the usefulness of different approaches of gene set tests. In a simulation study we reveal that our
combination approach is more powerful than microRNA-wise testing alone. Furthermore, we show that combining
microRNA-wise results with ‘competitive’ gene set tests maintains a pre-specified false discovery rate. In contrast, a
combination with ‘self-contained’ gene set tests can harm the false discovery rate, particularly when gene sets are not
disjunct.
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Introduction

Biological Background and Motivation
Interest in microRNAs (miRNAs) has been continuously

growing in recent years [1]. They regulate gene expression and

play a role in a wide spectrum of biological fields, ranging from

developmental to tumour biology [2]. Their function is to regulate

gene expression by down-regulation of mRNAs. The gene

transcripts get either directly degraded or their translation is

inhibited. This gives reason to search for differentially expressed

miRNAs between two different groups of biological samples,

which was widely done for mRNAs in the past.

While the exact mode of miRNA action is still under

investigation, more and more details of the mechanism of

miRNA-mediated inhibition of gene expression are being discov-

ered. It is known, for instance, that their precursors are transcribed

in the nucleus. After several processing steps and the export into

the cytoplasm a mature miRNA is incorporated into the RNA-

induced silencing complex, referred to as ‘RISC’. This protein

complex affects the levels of gene expression, while the miRNA

itself only acts by guiding the complex to mRNAs based on

sequence homology. Consequently, each miRNA has a set of

target mRNAs defined by the sequence of both. The target set is

supposed to be more or less unique for each miRNA. However,

the target sets of two miRNAs need not necessarily be disjunct.

The sequence dependent specificity of miRNAs for their target

gene sets can be predicted. Several databases of such predicted

target sets have been established, for example ‘microCosm’ [3]

and ‘TargetScan’ [4]. Additionally, databases of experimentally

validated miRNA-targets exist [5].

Expression levels of both, mRNA-targets and miRNAs, can be

detected in a high-throughput manner. Microarrays have been

used in the last decade to measure RNA levels. They have been

adopted for miRNAs as well and are gaining popularity [6,7].

The above-mentioned sources of information, i.e. the

available links between miRNAs and their related target gene

sets through databases as well as observed expression levels

through microarray experiments, can provide a close view of a

cell’s, tissue’s or organism’s miRNA status. However, searching

for differentially expressed miRNAs, has mainly concentrated on

miRNA-wise testing so far. In the case that researchers took

miRNA target sets into account, this was primarily done

separately from miRNA analysis. Mostly, only those target sets

were studied whose miRNAs were already detected as

differentially expressed. These current approaches can, however,

lead to more false positives or negatives than necessary. Assume,

for example, a particular miRNA that is highly expressed under

a certain condition but whose target mRNAs are absent in a
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cell anyway. The effect on the cell’s phenotype of such a

miRNA can be expected to be rather small. Vice versa, due to

the enzymatic function of the RISC complex, little changes in

miRNA levels can lead to large effects in their targets’ levels.

Thus, many interesting features can be missed when informa-

tion about target gene sets are omitted.

In order to increase the power of detecting differentially

expressed miRNAs in the two-group design, the aim of this work

is to combine miRNA- and mRNA-expression data. More

precisely, we present and evaluate an approach to detect pairs of

miRNAs and related target sets of mRNAs that simultaneously

exhibit a group effect. Our approach is to first analyse miRNA and

mRNA expression data separately, and then to combine the

resulting information. All software used and implemented is

written in the R statistical programming language [8].

Gene-wise and Gene Set Testing
One approach to detect group effects in miRNA expression

data is to perform component-wise statistical tests. Each test

analyses whether a particular miRNA is differentially expressed

between the two groups. A large number of methods exists, for

example mixture models [9], permutation tests [10], empirical

Bayes approaches [11] and analysis of variance models [12].

Here, we employ a widely used linear model implemented in

the R-package ‘limma’ which makes use of empirical Bayes

methods [13].

Group effects in the related target gene sets are not studied by

individually testing each component of a set. Instead, the group

effect is assessed globally for a whole set. Different statistical

approaches of gene set tests have been proposed which can be

divided into ‘self-contained’ and ‘competitive’ tests [14]. The self-

contained approaches incorporate only expression levels of the

genes of a particular set. As self-contained methods we will employ

and compare so called global tests as well as a rotation-based

procedure. Competitive approaches, on the other hand, incorpo-

rate the expression levels of all genes within a microarray

experiment. ‘Gene Set Enrichment Analysis’ (GSEA) [15], for

example, studies the distribution of ranks of differentially expressed

genes from the target gene set using a weighted form of the

Kolmogorov-Smirnov test.

Component-wise testing of miRNAs and simultaneous testing of

related target gene sets yields two lists of p-values. In order to

detect which (miRNA, gene set)-pairs possess a simultaneous

group effect we propose a new approach. In particular, we employ

methodology frequently used in the field of meta analysis to

combine p-values from different experiments. Such methods were

already used for gene expression data, however, in a different

context than ours, for example to combine microarray results from

different experimental stages [16]. A flow chart of our approach is

depicted in Figure 1. The combined p-values are finally translated

into a score.

In the following paragraph we detail the methods for

component-wise testing, gene set testing and p-value combination.

Subsequently we show the results of a simulation study. In this

simulation study we determined the false-discovery rate (FDR), i.e. the

portion of false positive detections among all positive test results,

with regard to simultaneous group effect of miRNAs and related

target gene sets. Additionally, we determined the average power rate

(APR), i.e. the portion of all true positive detections. Besides, we

evaluate the performance of our combination approach on one

example of mouse expression data and one of expression in HIV

samples. Finally, the results are discussed.

Methods

MicroRNA-wise Testing
For miRNA-wise testing we apply the linear models proposed

by [13]. They can generally be used for analysing gene expression

data in dependence from several experimental factors. In the

particular design we are studying here, i.e. one group factor with

two levels, the group effect of gene i (i~1,:::,dmicro) can be denoted

by bi in these models. Consequently, the related model tests

separately for each gene the null hypothesis of no group effect, i.e.

H0i : bi~0.

According to [13], because of the large number of hypotheses,

these are tested by moderated t-type statistics. These test statistics

are based on the fact that for some features a very small variance is

expected although the related difference of group means is rather

small. Thus, the ordinary t-statistic would become unreasonable

large for these features. The moderated t-statistic is calculated by

incorporating a prior distribution for the standard deviations of the

components and shrinking the observed standard deviation to

these prior values. In our simulations and data analyses, we use the

R-package ‘limma’ to test each individual hypothesis by the

moderated t-statistic, obtaining one p-value per miRNA.

Gene Set Testing
Self-contained methods. In order to test the group effects

within the target mRNA sets, we use different so called global tests.

Each of them forms a self-contained method, since only the

Figure 1. Flow chart of combining expression levels of miRNAs
and their related target mRNAs. The links between microRNAs and
their target mRNAs are taken from public databases. MicroRNAs and
target sets are first analysed separately and obtained p-values are
combined as final result.
doi:10.1371/journal.pone.0038365.g001
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expression levels of the target set but no other genes of the

microarray experiment are used. The first one is the ‘globaltest’

procedure proposed by [17]. This procedure is based on a logistic

regression model. Thus, the group factor exhibits a dichotomous

response parameter G[f1,2g and one tests the null hypothesis that

the group membership is independent from the gene expression,

i.e. H0i : P½GDYi� = P½G�. Here, Yi denotes the matrix of

expression levels for the ith target gene set. The test statistic for this

model is asymptotically normally distributed. For large sample

sizes a sample permutation approach is offered as well. Another

approach (‘GlobalAncova’) was proposed by [18] and improved by

[19]. This approach uses an ANCOVA-model testing the reverse

null hypothesis, i.e. that the gene expression is independent from

the group membership. This hypothesis can be formulated by

H0i : P½Yi DG~1� = P½Yi DG~2�. This approach also offers an

asymptotic result and a permutation algorithm as well. The third

approach of global testing is a general model for high-dimensional

repeated measures data [20,21], in the following referred to as

‘RepeatedHighDim’. This approach tests the same hypothesis as

‘GlobalAncova’. All three approaches, ‘globaltest’, ‘GlobalAncova’

and ‘RepeatedHighDim’ are implemented in R-packages of the

same names.

As another self-contained method, we regard the ‘ROAST’ test

proposed by [22] also implemented in the R-package ‘limma’. In

this approach, the data is modelled similarly to the above-detailed

models of [13]. The moderated t-statistics are calculated mRNA-

wise and transformed to standard normal variables. A gene set

statistic is then calculated by summarizing the mRNA-wise

statistics. Here we use the unweighted mean of the t-statistics.

To account for inter-gene correlations, random rotations [23] are

applied and an exact p-value is calculated.

Competitive methods. The competitive gene set methods

we investigate are similar to GSEA proposed by [15]. Using data

from a whole microarray experiment we employ again the models

of [13] ‘limma’-package to produce mRNA-wise p-values with

regard to differential expression. A rank is assigned to each mRNA

according to the position of its p-value. Three different enrichment

tests are applied to analyse the distribution of ranks belonging to a

particular gene set. The first one is the one-sided Kolmogorov-

Smirnov test. It is used to test the null hypothesis that the ranks of

the genes inside the gene set come from a uniform distribution.

The alternative is that the distribution of the genes in the gene set

is skewed towards lower ranks. As second approach, the two-

sample Wilcoxon test is applied on gene ranks. It compares the

distribution of ranks inside and outside the gene set. Finally, a

method using a 262-contingency table is employed. In particular,

Fisher’s exact test is employed to compare the proportion of

differentially expressed genes among the gene set with the

proportion of differentially expressed genes outside the gene set.

In addition, we employ a rotation test, that is the competitive

‘Romer’ test [24]. It is similar to the above-mentioned ‘ROAST’

test, but it is competitive in that it compares gene sets. For both

tests we set the number of rotations to 1000 to be able to produce

p-values as low as 10{3.

Combination of p-values
While component-wise testing yields one p-value per miRNA,

gene set testing yields one p-value for each of the related gene sets.

We use methodology often used in meta analysis to bring this

information together. The behaviour of a miRNA and its related

gene set is usually supposed to be inverse, i.e. up-regulation of a

particular miRNA is supposed to cause a down-regulation of the

related gene set. Accordingly, we are particularly interested in

detecting these cases in our data analyses. Therefore, we perform

gene set testing in a one-sided way, one time in each direction. We

denote the p-values for the alternative hypotheses of up- and

down-regulation of an miRNA by pmicro: and pmicro;, respectively.

The related p-values for up- and down-regulation of a target gene

set are denoted by ptarget: and ptarget;, respectively.

One-sided hypotheses can be tested for the competitive

enrichment tests, i.e. for the Kolmogorov-Smirnov, the Wilcoxon

and Fisher’s exact test. One-sided testing is also possible for the

two rotation test, i.e. for the competitive Romer and the self-

contained ROAST test. The hypotheses for the three self-

contained global tests, i.e. globaltest, GlobalAncova and Repea-

tedHighDim, however, can not be reasonably stated in a one-sided

way. Therefore, we split the target gene sets when using these

global procedures and test the two sets of up- and down-regulated

genes separately. The direction of regulation is determined for

each gene by comparison of group means. It should be mentioned

that this approach for the self-contained tests may introduce some

bias as the observed data itself is used for the prior partitioning.

However, the results of our simulations below show that our

methods yet maintain a prespecified FDR in most situations.

For the combination of p-values we distinguish two cases. For

the two rotation tests as well as for the Wilcoxon test the target p-

values for up- and down-regulation (approximately for the rotation

tests) sum up to one, i.e. ptarget:zptarget;~1. In this case we use

Stouffer’s inverse normal method [16,25] to combine p-values. For

all other gene set tests in most cases we obtain ptarget:zptarget;
=1,

and we will use Fisher’s combination method then [26]. In both

cases, we first combine pmicro and ptarget, separately for up- and

down-regulation, and derive then a final score based on the two

combined p-values. The final results should rather be regarded as

scores than as a p-values, although these scores range from zero to

one. The calculation of the scores is described in the following.

Fisher’s combination method. Because our primary goal is

to detect differentially expressed miRNAs using the additional

information about their target’s regulation, and because we

assume miRNA and target regulation to be inverse, we combine

the miRNA’s p-value of up-regulation with the target’s p-value for

down-regulation and vice versa. According to Fisher’s method, the

combined p-values for the ith miRNA are given by

p
combined:
i ~1{Fx2 {2: ln (p

micro:
i )z ln (p

target;
i )

� �� �
and

p
combined;
i ~1{Fx2 {2: ln (p

micro;
i )z ln (p

target:
i )

� �� �
,

where F
x2 (q) is the q%-quantile of the x2-distribution with four

degrees of freedom.

In order to obtain a decision value between zreo and one, we

build as final score

Si~ min 2:min (p
combined:
i , p

combined;
i ),1

� �
:

Stouffer’s inverse normal method. According to Stouffer’s

inverse normal method the combination is performed as follows:

Group Effects in MicroRNAs and Target Gene Sets
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p
combined:
i ~2: 1{DW W{1(p

micro:
i )zW{1(p

target;
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2
p
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 !
,

and

p
combined;
i ~2: 1{DW W{1(p

micro;
i )zW{1(p

target:
i )ffiffiffi

2
p

 !
D

 !
,

where W is the cumulative distribution function of the standard

normal distribution. Here, we derive the final score by

Si~ max p
combined:
i , p

combined;
i

� �
:

Note that when Stouffer’s method is applied for the Wiloxon-

test as the gene set testing procedure, the scores

Si~p
combined:
i ~p

combined;
i can be regarded as p-values [16]. For

the rotation tests, we obtain ptarget:zptarget;~1 only approxi-

mately for large numbers of rotations. As a consequence, [16] Si

for rotation tests is always more conservative than a p-value would

be.

Simulation Study
In order to evaluate whether the above-detailed methods are

applicable to detect simultaneous group effects in miRNA and

target mRNA expression data, simulation studies that picture the

two group design were performed. The numbers of biological

replicates per group were set to be n1~n2~4. Thus, a total

number of N~8 samples was produced per simulation run. The

numbers of simulated miRNAs and mRNAs was dmicro~100 and

dmess~1000, respectively. Expression data were stored in matrices

with columns representing samples and rows representing either

miRNAs or mRNAs. Data generation was performed as follows.

Expression levels were drawn from multivariate normal

distributions N dmicro and N dmess , respectively. Mean vectors were

drawn from a log-normal distribution and covariance matrices

were chosen to have either a block structure, an autoregressive

structure or to be of an unstructured type. To generate

differentially expressed features 10% of miRNAs and 5% of

mRNAs were randomly selected. Half of these features was up-

regulated by adding a log fold change of d to the corresponding

mean vector while the other half was down-regulated by

subtracting d.

In order to model the effect of miRNAs on mRNA degradation

a (dmicro|dmess) allocation matrix A was constructed that defined

the targets of each miRNA. Each entry aji of A took on the value 1

if miRNA i was designated to attack mRNA j (j~1,:::,dmess), and

the value 0 otherwise. Different structures of A were compared in

order to simulate non-overlapping and non-oberlapping gene sets,

respectively.

The miRNA effect on mRNA expression levels was constructed

by a simple linear model. Denote nraw
kj to be the jth entry of the

mean vector for the mRNAs in group k (k~1,2), as constructed

above. Furthermore, denote mki to be the ith entry of the mean

vector for the miRNAs of the same group. The modifications of

the mean vectors n of the mRNA were then modelled in

dependence of the mean vectors m of the miRNAs using the

following equation:

nmodified
kj ~nraw

kj z
Xdmicro

i~1

aji
:bji
:mki,

where bji reflects the strength of the modification. The indicator

variables aji are taken from the allocation matrix A. The

modification factors bji were drawn from univariate normal

distributions. The modified expectation vectors nmodified were next

used to draw the expression levels of the mRNAs.

In each of 1000 simulation runs expression data were drawn as

described above, and the different methods for miRNA-wise

testing and gene set testing were carried out. Scores were

constructed from the resulting combined p-values. After adjusting

the scores for multiple hypothesis testing according to [27] the

FDR and the APR were determined in each simulation run. For

all simulated FDRs we evaluated whether they maintain a

predefined level of 5%.

Pathway Analysis of Data Examples
In the analysis of the data examles below, we searched for

enriched gene ontology-terms (GO-terms) in order to evaluate

which functional role the newly predicted miRNAs play in studied

biological context. GO-terms were aquired via the R-packages

‘biomaRt’. For the miRNAs of interest, GO-analysis counts the

occurence of terms among the related target genes and compares

this to the count in the genes of the not in the target set. The

counts are compared between target genes and non-target genes

by means of Fisher’s exact test.

Results

Simulated False-discovery Rates
In each simulation setting, the FDR was separately determined

1) for using only the miRNA-wise testing procedure, 2) for using

only the testing procedures of the related target gene sets and 3) for

using the approach of combined p-values. In each of the three

variants, the FDR was regarded as the portion of false positively

detected miRNAs among all positively detected miRNAs. An

overview of the obtained FDR under all simulation conditions for

the two latter approaches is given in Tables 1 and 2. No systematic

effect could be observed with regard to the different covariance

matrices. While the miRNA-wise testing maintained the pre-

specified FDR-level of 5% within an acceptable range, target set

testing and combined testing sometimes exceeded this level. This

happened only sometimes for competitive tests, but quite often

when self-contained ones were applied.

Non-overlapping gene sets. In the case of non-overlapping

target gene sets, the approach of miRNA-selection based on target

set testing became too liberal in many cases when the self-

contained tests were applied. In comparison the FDR was rather

conservative when competitive tests were employed.

A similar result can be observed when selecting miRNAs by

combined testing. With this approach the ‘ROAST’ and ‘Romer’

method behave very well, yielding simulated FDRs of 0.032–0.053

and 0.031–0.047, respectively.

Overlapping gene sets. Allowing target gene sets to be

overlapped increased the simulated FDR in most of the

simulations. Exemplarily, this effect is illustrated in Figure 2 for

the Wilcoxon based target set testing (top) and the ‘globaltest’

approach (bottom), where the obtained FDR is plotted versus an

increasing log fold change. Particularly ‘globaltest’ was very strong

affected by letting target sets being overlapped. The FDR

Group Effects in MicroRNAs and Target Gene Sets
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increased very fast with increasing fold changes, up to levels of

about 90 %, then.

This strong effect could also be observed for the other self-

contained tests except for ‘ROAST’. In comparison, the compet-

itive tests still maintained the pre-specified 5%-level in most cases

of overlapping target sets. Here, the largest FDR observed was

0.08 (combined testing with the Wilcocon approach).

Simulated Average Power Rates
In our simulation study the average power rate of each

approach was the portion of true positive detected miRNAs

among all positives detected miRNAs. Table 3 compares the

power rate curves of 1) component-wise miRNA testing, 2) target

gene set testing and the 3) combination approach in the different

simulation settings. Although, the power curves sometimes

intersected, this table gives the general tendency of the relations

between the three approaches.

Non-overlapping gene sets. In most cases of non-overlap-

ping gene sets, component-wise testing of miRNAs resulted in the

lowest APR, compared to simultaneous testing of the related

target gene sets or to the combination approach. Among the latter

two approaches, the combination approach mostly yielded the

largest power. In some cases, however, pure gene set testing

yielded the largest power: as a typical example, the left-hand side

of Figure 3 compares the APR for component-wise miRNA

testing, for gene set testing using the ‘ROAST’ method and for the

p-value combination method.

Overlapping gene sets. In the case of overlapping target

gene sets the performance of competitive combined testing was not

seriously affected. For some self-contained tests, however, the

combination-approach became worse than testing target sets

alone. MiRNA-wise testing, however, was outperformed by the

two other approaches in each case.

General comparison of APR. Most often the algorithms

based on competitive gene set tests had a higher APR than those

based on self-contained tests. The same is true when the

performance of the gene set tests on their own is compared.

Comparing directly the gene set tests among each other, they

sometimes varied greatly (see Table 4). In general, combined

testing based on Wilcoxon and Kolmogorow-Smirnov tests had a

better performance than the rest. Take Figure 3 on the right for

example. There, the APR of combined miRNA-wise testing and

the Wilcoxon test is clearly higher than for the Romer- and the

ROAST-tests.

Analysis of Neurogenesis Data Example
In a data example of miRNA and mRNA expression in rat

brains [28] we want to illustrate the gain of using the above

detailed combination methods. These example data were obtained

from MIAME compliant databases. In particular, miRNA-data

Table 1. Simulated FDR for microRNA-selection based on target set testing.

Gene set test Covariance matrix Non-overlap. target sets Overlap. target sets

GlobalTest Autoregressive 0.102–0.105–0.139 0.305–0.900–0.900

Block 0.052–0.107–0.124 0.035–0.900–0.900

Unstructured 0.212–0.215–0.617 0.750–0.900–0.900

GlobalAncova Autoregressive 0.000–0.000–0.051 0.04–0.046–0.058

Block 0.002–0.005–0.053 0.028–0.031–0.032

Unstructured 0.000–0.000–0.003 0.000–0.036–0.039

RepeatedHighDim Autoregressive 0.019–0.081–0.083 0.103–0.900–0.900

Block 0.000–0.002–0.011 0.008–0.040–0.049

Unstructured 0.030–0.034–0.037 0.031–0.878–0.900

ROAST Autoregressive 0.068–0.074–0.077 0.091–0.892–0.900

Block 0.082–0.088–0.100 0.065–0.846–0.900

Unstructured 0.000–0.002–0.041 0.043–0.046–0.049

KS Autoregressive 0.002–0.005–0.036 0.029–0.031–0.036

Block 0.000–0.000–0.003 0.003–0.036–0.040

Unstructured 0.029–0.031–0.033 0.030–0.730–0.900

Wilcoxon Autoregressive 0.001–0.002–0.009 0.010–0.030–0.039

Block 0.026–0.029–0.035 0.038–0.882–0.900

Unstructured 0.074–0.079–0.111 0.114–0.893–0.900

Fisher Autoregressive 0.105–0.110–0.178 0.102–0.862–0.900

Block 0.000–0.001–0.056 0.042–0.047–0.050

Unstructured 0.002–0.004–0.049 0.029–0.030–0.033

Romer Autoregressive 0.000–0.000–0.003 0.003–0.038–0.040

Block 0.023–0.025–0.031 0.033–0.741–0.900

Unstructured 0.000–0.002–0.007 0.005–0.027–0.033

Simulated FDR with respect to the type of gene set test and covariance matrix using the approach of selecting microRNAs by testing their target gene sets. Results are
presented for the simulation setting of overlapping and disjunct target sets. Presented numbers are the minimum, median and maximum simulated FDR across the
range of the log fold change d (between 0 and 6). Rates larger than the pre-specified level of 0.05 are printed in bold.
doi:10.1371/journal.pone.0038365.t001
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were retrieved from ‘ArrayExpress’ [29] (accession number: E-

MEXP-1596), the corresponding preprocessed mRNA-data were

downloaded from ‘Gene Expression Omnibus’ [30] (GEO

accession number: GSE11334). Expression data was subsequently

log-transformed and normalised using the quantile method [31].

Data from ‘TargetScan 4.19 [4] was used to create the allocation

matrix A.

The example data contains miRNA and mRNA expression

profiles from neuronal progenitors isolated from rat brains at

embryonic day 11 (E11) and embryonic day 13 (E13). Three

animals per group were sacrificed for miRNA arrays while 4

biological replicates were taken for mRNA profiling. Here we will

compare expression profiles of early neuronal progenitors (ENPs)

in E11 and E13 samples.

Table 5 lists the miRNAs originally detected by Nielsen et al.

[28] and the results of our reanalysis. The listed miRNAs were

reported to be either significantly up- or down-regulated (column

1) with a log fold change larger than 2. For the differential

miRNAs, the authors also determined target gene sets with more

genes differentially expressed than expected by chance using

Fisher’s exact test. This was separately done for up- and down-

regulated subsets of each target set (columns 3 and 4). For 20 of

the listed miRNAs Nielsen et al. find lower p-values for the subset

of inversely regulated target genes than for those regulated in the

same direction as the miRNA, just as one would expect for gene

sets attacked by a miRNA. Twelve of the listed miRNAs have a

significantly inversely regulated target set according to Nielsen et

al.

For our re-analysis data of 223 miRNAs were available, where

202 of them were associated with a target gene set of at least two

mRNAs (according to the ‘TargetScan’ 4.1 database). We applied

our different approaches to the expression levels of these 202

(miRNA, target set)-pairs.

Results of our re-analysis are also included in Table 5. The

uppermost listed 18 miRNAs were determined significant by our

combination approach based on either the global tests, the

enrichment tests or the rotation tests (columns 5 to 7).

The following listed five miRNAs were not detected by our

rotation test-based combination approach, but by the approaches

based on global tests and enrichment tests. One of these five, miR-

218, even had a gene set differential in the same direction as the

miRNA in the original publication.

Among the four bottom-listed features, miR-19a, miR-210 and

miR-126 were significant by our global test- and enrichment test-

based approach but only by one of the two rotation-based methods

(either ‘Romer’ or ‘ROAST’). We add, that these miRNA also had

only a weak fold change.

Out of the miRNAs originally detected by Nielsen et al., miR-

290 got the lowest number of procedures to declare it significant in

our re-analysis. Indeed, in their original analysis the authors point

out that its target gene set tended to be regulated in the same

direction as the miRNA itself.

Table 2. Simulated FDR for microRNA-selection based on combined target set and microRNA-wise testing.

Gene set test Covariance matrix Non-overlap. target sets Overlap. target sets

GlobalTest Autoregressive 0.069–0.074–0.095 0.149–0.900–0.900

Block 0.064–0.069–0.071 0.120–0.900–0.900

Unstructured 0.178–0.183–0.524 0.693–0.900–0.900

GlobalAncova Autoregressive 0.029–0.033–0.062 0.044–0.046–0.062

Block 0.043–0.045–0.063 0.034–0.036–0.045

Unstructured 0.005–0.006–0.006 0.007–0.037–0.042

RepeatedHighDim Autoregressive 0.044–0.047–0.053 0.058–0.318–0.576

Block 0.031–0.034–0.047 0.029–0.037–0.044

Unstructured 0.033–0.038–0.044 0.027–0.680–0.900

ROAST Autoregressive 0.045–0.048–0.057 0.035–0.754–0.900

Block 0.095–0.105–0.127 0.075–0.814–0.900

Unstructured 0.033–0.036–0.057 0.049–0.051–0.055

KS Autoregressive 0.052–0.054–0.061 0.036–0.044–0.045

Block 0.010–0.012–0.013 0.013–0.047–0.049

Unstructured 0.037–0.040–0.044 0.025–0.036–0.046

Wilcoxon Autoregressive 0.039–0.044–0.058 0.037–0.039–0.046

Block 0.026–0.029–0.036 0.030–0.704–0.900

Unstructured 0.042–0.050–0.060 0.054–0.791–0.900

Fisher Autoregressive 0.111–0.119–0.211 0.120–0.838–0.900

Block 0.031–0.034–0.052 0.044–0.049–0.080

Unstructured 0.045–0.050–0.059 0.039–0.043–0.054

Romer Autoregressive 0.007–0.008–0.012 0.012–0.044–0.047

Block 0.032–0.034–0.043 0.028–0.039–0.052

Unstructured 0.038–0.041–0.046 0.033–0.036–0.063

Simulated FDR with respect to the type of gene set test and covariance matrix using the approach of combined target set and microRNA-wise testing. Results are
presented for the simulation setting of overlapping and disjunct target sets. Presented numbers are the minimum, median and maximum simulated FDR across the
range of the log fold change d (between 0 and 6). Rates larger than the pre-specified level of 0.05 are printed in bold.
doi:10.1371/journal.pone.0038365.t002
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As far as the remaining miRNAs are concerned, eighteen were

significant in all tests applied. All of these were also differentially

expressed according to miRNA-wise testing. ‘Romer’, as a rather

conservative test, detected just three more miRNAs, ‘ROAST’

already 25, the ‘KS’, W’- and ‘Fisher’-based Tests 36, 45 and 76,

respectively, and the Global Test-based procedures showed a

rather liberal behaviour. The ‘globaltest’, ‘GlobalAncova’ and

‘RepeatedHighDim’-based methods detected all but 31, 34 and 35

miRNAs, respectively.

Our GO-analysis (see Table 6) for the eighteen additional

miRNAs detected by all approaches returned 285 (out of 12225)

GO-terms that were significantly correlated with the related

target sets. Among the top scoring GO-categories mainly terms

regarding transcription were detected, however other terms

concerning the topic under investigation appear as well.

Especially, we find terms related to transcription factor activity

(e.g. ‘sequence-specific DNA binding transcription factor activ-

ity’, ‘regulation of transcription, DNA-dependent’, ‘positive

regulation of transcription from RNA polymerase II promoter’

among the top three terms), related to development (e.g. ‘growth

factor binding’, ‘anterior/posterior pattern specification’ or ‘in

utero embryonic development’ on positions 11, 15, 16), and

related to neurogenesis (e.g. ‘axon guidance’ and ‘axonogenesis’

Figure 2. Effect of overlapping target gene sets on the simulated FDR. Effects are presented for component-wise testing (dotted line),
target set-wise testing (dashed line) and the combination approach (solid line). While the competitive approaches such as the ‘Wilcoxon’-based gene
set test (top) still maintained the pre-specified FDR-level of 5% when target gene sets overlapped, the FDR increased dramatically when employing
the self-contained approaches such as the ‘globaltest’ procedure (bottom).
doi:10.1371/journal.pone.0038365.g002
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on positions 8 and 24.) All of these pathways play a role in the

development of neurons.

Analysis of HIV Data Example
For further evaluation of our proposed methods we apply them

on another example of parallel mRNA and miRNA data. In

particular, we analyse data published by Gupta et al. [32] who

compared normal primary peripheral blood mononuclear cells to

such infected with HIV. Their miRNA and mRNA are available

from GEO (accession numbers: GSE33877 and GSE33837).

In this dataset, the rather conservative yet reliable rotation-test-

based approach fails to find any miRNAs, i.e. there were no FDR-

adjusted scores ƒ0:05, while self-contained tests returned large

numbers of significant miRNAs. Therefore, we rely in the

Table 3. Relation between simulated power rate curves.

Gene set test Covariance matrix Non-overlap. target sets Overlap. target sets

Globaltest Autoregr. miRNA , set < combined miRNA , set < combined

Block & unstr. miRNA , set , combined miRNA , combined , set

GlobalAncova Autoregr. miRNA , set , combined miRNA , set < combined

Block & unstr. miRNA , set , combined miRNA , combined , set

Rep’HighDim Autoregr. miRNA , set < combined miRNA , set < combined

Block & unstr. miRNA , set < combined miRNA , set , combined

ROAST Autoregr. *miRNA , combined , set miRNA , combined , set

Block miRNA < set , combined miRNA , combined , set

Unstr. miRNA < set , combined miRNA , set < combined

KS Autoregr. miRNA , set , combined miRNA , set , combined

Block & unstr. miRNA , set # combined miRNA , set , combined

Wilcoxon Autoregr. miRNA , set , combined miRNA , set , combined

Block & unstr. miRNA , set # combined miRNA , set , combined

Fisher Autoregr. miRNA , set , combined miRNA , set , combined

Block & unstr. miRNA , set # combined miRNA , set , combined

Romer Autoregr. miRNA , combined , set miRNA , combined , set

Block & unstr. set , miRNA , combined set , miRNA , combined

Relation between simulated power rate curves of microRNA-wise, target set-wise and combined testing. Although, power curves sometimes intersected, this table gives
the general tendency of the relations between the three approaches. *Compare Figure 3 left.
doi:10.1371/journal.pone.0038365.t003

Figure 3. Simulated average power rates with respect to the log fold change d. Left: component-wise testing (dotted line), target testing
with ‘ROAST’ (dashed line) and the combination approach (solid line), each in the case of an autoregressive covariance structure and non-overlapping
target sets. Right: combination approach based on ‘globaltest’ (dotted line), ‘Wilcoxon’ (dashed line) and ‘Romer’ (solid line), each in the case of an
unstructured covariance matrix and overlapping target sets.
doi:10.1371/journal.pone.0038365.g003
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following on the Wilcoxon test-based approach, which has

presented itself to be less conservative than Romer yet still reliable

in our simulation.

Doing so, we found 9 significant miRNAs (hsa-miR-516b, hsa-

miR-639, hsa-miR-503, hsa-miR-191*, hsa-miR-548a-5p, hsa-

miR-300, hsa-miR-369-5p, hsa-miR-431*, and hsa-miR-200a*).

Interestingly, these do not overlap with the miRNAs that were

reported to be differential by Gupta et al. However, looking at the

GO-terms (Table 6) associated with the target genes of these 9

miRNAs similar categories as originally reported appear. These

are mainly cell cycle and transcription activity, such as ‘S Phase’,

‘nucleosome’, ‘nucleoplasm’ or ‘nucleosome assembly’ in the top

ranks, but also ‘telomere maintenance’ which is rather apoptosis-

related. Besides, terms related to blood cell functions (‘negative

regulation of megakaryocyte differentiation’ and ‘blood coagula-

tion’) appear.

Discussion

Studies on the molecular aspects of a wide range of diseases now

focus on relations between mRNA and miRNA expression.

Besides the two above-analysed examples, parallel expression

levels of both types of molecular features were also studied in

studies on colorectal cancer [33], medulloblastoma [34] or colon

polyps [35]. In a large simulation study we show that combining

high-throughput miRNA and mRNA expression data improves

the power of testing either data type individually. In most

simulation settings, combined testing yielded higher power rates

than classical miRNA-wise testing or target set testing alone.

Apart from that, the threat of false positives in gene set testing is

lowered by our approach. In particular, the liberal behavior of the

global tests is somewhat diminished by the combination approach.

However, their self-contained character leads still to many false

positives, especially in the case of overlapping gene sets. In this

context, it should be remarked that our scores proposed in the

methods section do not allways behave completely like p-values. In

our simulation studies the score based on Stouffer’s method was

approximately uniformely distributed in the interval [0, 1] under

the complete null hypothesis, i.e. when no group effects were

introduced. However, the score was scewed to the left when being

based on Fisher’s method. That means, regarding the score as a p-

value is almost appropriate with Stouffer’s method but leads to

somewhat too concervative results with Fisher’s method. Never-

theless, the proposed scores are a useful tool to rank the studied

miRNAs according to their relation to the experimental grouping

factor. Of course, the application of those procedures that did not

maintain the pre-specified FDR-levels (as shown in Tables 1 and

2) is not recommendable for feature selection. Based on these

findings, our future plans involve the development of some

transformation rules for the scores, so that FDR-procedures also

work for those procedures for which the pre-specified FDR level

was not yet maintained.

In most cases, the competitive approaches deal better with the

problem of overlapping gene sets. The enrichment approaches

remained close to the FDR-level desired to be controlled in our

analyses. Naturally, they are more robust to gene set overlaps. In

our simulations the enrichment-based approaches were also robust

to the inter-gene correlations, i.e. they behaved similar under the

different correlation structures we simulated. Nevertheless, one

should keep in mind that under certain correlation structures their

p-values may become skewed even under the null hypothesis. A

simple solution would be to apply a sample permutation

procedure, given that, unlike in our simulations and data example,

there are enough replicates to show low p-values.

The rotation-tests control the FDR in a non-overlapping gene

set context. Otherwise, they profit from the combination in that

they control the FDR better than the respective gene set tests –

‘Romer’-based combined testing even controlled the FDR in all

our simulations. To achieve this they lose power, however.

By applying our procedure on real microarray data we show its

usability in everyday research. Especially the rotation test-based

procedures are able to differentiate between miRNAs which were

differentially expressed with little result in their gene set and others

that lead to differentially expressed targets. For miR-290, for

example, they successfully included the information from the

miRNA’s gene set. There, they were able not to detect a miRNA

which has little effect on its target gene set.

Furthermore, many new miRNAs were detected. Even for the

most conservative procedure 21 further miRNAs were found to

show an effect between E11 and E13. Since we have shown in our

simulations that our combination approach maintains a pre-

specified FDR in most cases, we belief that most of our positive

findings in the data example are true positives. Therefore, we

regard it as an improvement that we find more significant

miRNAs by our combination approaches than were found in the

original analysis by miRNA-wise testing alone.

We outlined information combination in two-group testing. To

generalise our approach to three or more groups is not a hard

thing to do. Both ‘limma’ for miRNA-wise testing, as well as the

gene set tests presented can be used for any number of groups or

continuous response variables. Indeed, arbitrary design matrices

have already been implemented in the ‘miRtest’ package.

So far the procedure suggested needs, strictly speaking

independent p-values from miRNA- and mRNA-data. The Fisher-

Table 4. Rating orders of the APR in simulations of combined testing.

Gene sets Covariance matrix GT GA RHD KS W F Ro R

Non-Overlap. Autoregressive 4 5 3 1 1 8 6 7

Block 7 8 4 1 1 5 6 3

Unstructured 7 8 4 1 1 5 6 3

Overlapping Autoregressive 1 1 1 1 1 6 7 8

Block 6 6 4 1 1 3 8 5

Unstructured 7 6 4 1 1 3 8 4

Rating orders are based on the following gene set tests: GlobalTest (GT), GlobalAncova (GA), RepeatedHighDim (RHD), Kolm. Smirnov (KS), Wilcoxon (W), Fisher (F),
ROAST (Ro) and Romer (R). The rank 1 denotes the largest power rate while the rank 8 denotes the worst power rate (comparable APR-curves were given the same
position in the ranking). Note that W and KS always have the largest power rates.
doi:10.1371/journal.pone.0038365.t004
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and inverse normal method have originally been designed for

independent repetitions of experiments. An example for matched

data would be that the same individuals were taken for miRNA

and mRNA microarray analysis. Such designs are not too

infrequent. An idea to cope with that would be to jointly permute

or rotate the expression matrices of miRNAs and mRNAs.

Another point is to include strategies to overcome gene set

overlaps, i. e. the strong positive correlation between the miRNA-

test statistics (to correct for multiple testing according to [36]

appears to be too rigorous and ignores the information one has on

overlaps). Ideas on how to control the FDR with this problem exist

for gene set testing. See for example approaches for the GO graph

in [37] or [38]. It appears worthwile to include such ideas for

miRNA-testing in future work. Finally, apart from p-value

Table 5. Original results and re-analysis of microRNAs in rat
brains.

Original analysis Re-analysis

miRNA miRNA
Targ.
up

Targ.
down

Glob.
tests

Enrich.
tests

Rot.
tests

miR-99a/b up n.s. sig. sig. sig. sig.

miR-9 up n.s. sig. sig. sig. sig.

miR-100 up n.s. sig. sig. sig. sig.

miR-181b/c up n.s. sig. sig. sig. sig.

miR-125a/b up n.s n.s sig. sig. sig.

miR-222 down sig. n.s. sig. sig. sig.

miR-291-3p down sig. n.s. sig. sig. sig.

miR-92 down sig. n.s. sig. sig. sig.

miR-145 down sig. n.s. sig. sig. sig.

miR-183 down sig. n.s. sig. sig. sig.

miR-363-3p down sig. sig. sig. sig. sig.

miR-143 down n.s. n.s. sig. sig. sig.

miR-200b/c down n.s. n.s. sig. sig. sig.

miR-20b down n.s. n.s. sig. sig. sig.

miR-219 down n.s. n.s. sig. sig. sig.

miR-18 down n.s. n.s. sig. sig. sig.

miR-205 down n.s. n.s. sig. sig. sig.

miR-292-3p down n.s. n.s. sig. sig. sig.

miR-218 up sig. n.s. sig. sig. n.s.

miR-7 up n.s. n.s. sig. sig. n.s.

miR-124a up n.s. sig. sig. sig. n.s.

miR-214 down n.s. n.s. sig. sig. n.s.

miR-199a down sig. sig. n.s.

miR-19a down sig. n.s. sig. sig. sig. (R)

miR-210 down n.s. n.s. sig. sig. sig. (R)

miR-126 down n.s. n.s. sig. sig. sig. (r)

miR-290 down n.s. sig. sig. sig. n.s.

MicroRNAs originally detected in expression data from rat brains by Nielsen
et al. [28]. Columns from left to right are the name of the microRNAs, the
originally reported results (columns 2-4) and the results of our re-analysis
(columns 5-7). Nielsen et al. performed their gene set tests separately for
subsets of up- and down-regulated mRNAs yielding two results per gene set.
Our re-analysis was performed by use of the combination approach based on
either global tests, enrichment tests or rotation tests (‘ROAST’ (R), ‘Romer’ (r)).
Significance (sig.) was declared when the FDR-adjusted p-value was v5% and
not significant (n. s.) otherwise.
doi:10.1371/journal.pone.0038365.t005

Table 6. GO-Terms for Data Examples.

q-value GO-Term

Rat Neurogenesis

7.42e-20 sequence-specific DNA binding transcription factor activity

1.71e-17 regulation of transcription, DNA-dependent

6.90e-17 positive regulation of transcription from RNA polymerase II
promoter

8.57e-13 sequence-specific DNA binding

2.92e-12 transcription, DNA-dependent

2.32e-10 negative regulation of transcription from RNA polymerase II
promoter

3.00e-10 zinc ion binding

1.64e-09 axon guidance

1.64e-09 DNA binding

6.79e-09 SMAD binding

1.02e-08 growth factor binding

7.56e-08 negative regulation of transcription, DNA-dependent

2.92e-07 RNA polymerase II core promoter proximal

region sequence-specific DNA binding transcription factor

activity involved in positive regulation of transcription

2.63e-06 positive regulation of transcription, DNA-dependent

4.72e-06 anterior/posterior pattern specification

5.36e-06 in utero embryonic development

7.85e-06 regulation of actin cytoskeleton organization

1.05e-05 ephrin receptor binding

1.37e-05 gastrulation with mouth forming second

1.42e-05 regulation of translation

1.43e-05 regulation of cell-matrix adhesion

1.85e-05 palate development

2.51e-05 transmembrane receptor protein serine/threonine kinase activity

2.99e-05 axonogenesis

HIV-dataset

3.23e-15 S phase

4.21e-14 regulation of gene silencing

1.36e-13 nucleosome

8.53e-12 nucleoplasm

5.86e-11 nucleosome assembly

4.70e-10 negative regulation of megakaryocyte differentiation

3.24e-09 chromosome

1.53e-05 transcription initiation, DNA-dependent

0.0002 telomere maintenance

0.0002 chromatin organization

0.0009 phosphatidylinositol-mediated signaling

0.0025 CenH3-containing nucleosome assembly at centromere

0.0119 gene expression

0.0279 ribonucleoprotein complex

0.0296 blood coagulation

0.0420 protein refolding

0.0487 signalosome

The top-scoring Gene Ontology (GO) terms with lowest p-values (according to
one-sided Fisher’s exact test) of miRNAs’ target sets from Neurogenesis (above)
and HIV (below) data example.
doi:10.1371/journal.pone.0038365.t006
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combinations, one can also consider other ideas from meta

analysis in the context of combining results from different

microarray experiments. One could for example combine effect

measures like the fold change by means of the inverse normal

method. However, it seems to be not reasonable to employ meta-

analytic methods for combining effect measures, in the context of

our approach, since there is up to now no established measure

describing the up- or down-regulation in the global test setting.

In summary, we developed a method to seek out miRNAs that

show an effect either in their own expression, or in their respective

gene set between two groups. Our method enables researchers to

analyse miRNA data in a more statistical reliable manner than to

test miRNA-expression and mRNA-expression separately. As

miRNAs directly act on their mRNA targets miRNA-mRNA

interactions compose a quite simple bipartite network. Its

incorporation into testing for differential expression via gene set

tests helps to gain power. On the other hand, miRNA expression

data leads to less type I errors.

The algorithm was implemented in the ‘miRtest’ R package

available via CRAN (http://cran.r-project.org). As competitive

approaches performed better in our analyses, we chose the

‘Romer’ gene set test as a default and recommend the Wilcoxon

test for those who want to apply a less time-consuming algorithm.
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