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Abstract

We show that occupancy models are more difficult to fit than is generally appreciated because the estimating equations
often have multiple solutions, including boundary estimates which produce fitted probabilities of zero or one. The estimates
are unstable when the data are sparse, making them difficult to interpret, and, even in ideal situations, highly variable. As a
consequence, making accurate inference is difficult. When abundance varies over sites (which is the general rule in ecology
because we expect spatial variance in abundance) and detection depends on abundance, the standard analysis suffers bias
(attenuation in detection, biased estimates of occupancy and potentially finding misleading relationships between
occupancy and other covariates), asymmetric sampling distributions, and slow convergence of the sampling distributions to
normality. The key result of this paper is that the biases are of similar magnitude to those obtained when we ignore non-
detection entirely. The fact that abundance is subject to detection error and hence is not directly observable, means that we
cannot tell when bias is present (or, equivalently, how large it is) and we cannot adjust for it. This implies that we cannot tell
which fit is better: the fit from the occupancy model or the fit ignoring the possibility of detection error. Therefore trying to
adjust occupancy models for non-detection can be as misleading as ignoring non-detection completely. Ignoring non-
detection can actually be better than trying to adjust for it.
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Introduction

Detection error is a widely acknowledged problem in the

collection of ecological data. Detection error complicates estima-

tion and modelling because it is difficult to separate the ecological

and the detection processes in the analysis. Intuitively, it should be

easier to detect and adjust for whole species (occupancy) than for

all the individuals of a species (abundance). For this reason,

occupancy, which is a quantity of ecological interest in its own

right, is sometimes studied as a surrogate for abundance [1].

Occupancy modelling (described in [1]) is based on making

multiple visits to some or all of the sample sites in a study to collect

species detection data which are used to model, and then adjust

for, the detection process. There is a growing literature on

occupancy modelling and many apparently successful applications.

The methodology seems to be widely viewed as having achieved

the status of a ‘‘gold standard’’ for analysing ecological data which

are subject to detection error.

This paper is motivated by our fitting the occupancy models of

[1] to some data from a major study in South-eastern Australia

[2], [3] which is described in the Analysis and results section

below. The original purpose of the study was to investigate

changing patterns in the abundance of different species in remnant

mature woodland patches surrounded by maturing Radiata pine

(Pinus radiata). However, reviewers of that work directed us to fit

occupancy models to our data to model detection and occupancy

instead. This advice is consistent with the general recommendation

of [1] that we should study changes in occupancy instead of

abundance. For the purposes of this paper, we take the view that

occupancy models are defined by [1]. Although we have data for

several species over several seasons, we started to explore the use of

occupancy models in the simplest case by considering single-

species, single-season models in detail. We fully recognise that

some more complicated models are included in [1] and others

have appeared in the literature since then. We feel strongly that it

is important to study the simplest cases first so that we can build up

experience and develop our intuition. This means that this paper is

not intended to be the final word on using occupancy models to

analyse our full set of data. It is rather a methodological

investigation of the properties of the single-species, single-season

occupancy model in simple situations.

The results of fitting occupancy models to our data (reported in

the Analysis and results section) raise interesting questions about

the use and interpretation of the methodology. These include:

How often do we obtain multiple solutions and boundary estimates

(probabilities of zero or one) from the estimating equations? Can

we interpret both the relatively consistent pattern we find in one

species and the lack of pattern in the other? What can we say

about the uncertainty (sampling variability) in the estimates and

how does this affect our interpretation of them? Does the modelled

pattern of changes in detection within patches with the growth of

the surrounding forest make sense? Does this change in detection

have any effect on the relationship between occupancy and other

covariates? A second, slightly more abstract motivation for our

study is to address the question: Is adjustment for non-detection

always worthwhile? The second panel of Figure 1 below is a

version of the conceptual Figure 2.3 from [1] for a particular

situation we consider. It will be discussed in more detail later but

for now note that the solid black line shows a true (constant)
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relationship between occupancy and years since planting and the

dashed orange and pink curves show apparent relationships when

we ignore detection. The main reason for fitting occupancy models

is to try to get much closer to the true relationship than the dashed

orange and pink curves. Under ideal conditions, occupancy

models do make a good adjustment, but is this always the case?

These questions are important to ecology because answering them

gets to the question of the value of occupancy modelling itself.

In this paper, we investigate the above questions, and illustrate

and explain them using both simulation, and theoretical calcula-

tion. We place occupancy modelling in the wider context of

nonlinear measurement error models to enhance our understand-

ing of our results and to enable us to anticipate what may happen

with other approaches to the same problem. We show that 1) the

maximum likelihood estimating equations have multiple solutions,

including some which produce fitted probabilities of zero or one;

2) that fitting the model to sparse data produces unstable fitted

probabilities, including probabilities equal to one; 3) that for

realistic survey effort, the fitted probabilities are highly variable,

making inference and interpretation difficult; and, 4) when the

detection process depends on abundance, the bias in the fitted

probabilities can be of similar magnitude to the bias when the

detection process is ignored, and this is very difficult to overcome.

Point 4) is shown by the blue and green curves in the second panel

in Figure 1 which are not very different from the unadjusted pink

and orange curves. This is the key result of this paper as it

Figure 1. Attenuation in detection and its consequences for occupancy when detection depends on abundance. The first panel shows
the distributions of the detection probabilities (with means represented by a circle) for each value of years since planting. The solid blue curve is the
fitted logistic detection component when K~2 and the dashed blue curve is the fitted constant detection probability when K~2. The solid green
curve is the fitted logistic detection component when K~5 and the dashed green curve is the fitted constant detection probability when K~5. The
solid brown curve is the fitted logistic detection component and the dashed brown curve is the fitted constant detection probability when yi~1
(and K~either 2 or 5). The pink and orange dashed line represents pi~1 (i.e. ignoring non-detection). The second panel shows the corresponding
fitted logistic occupancy probabilities in the same pattern and colour combinations. Note that orange dashed curve (slightly below the dashed blue
curve) is the fitted logistic detection component when K~2 and the pink dashed curve (which coincides with the dashed green curve) is the fitted
logistic detection component when K~5.
doi:10.1371/journal.pone.0052015.g001
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undermines the rationale for occupancy modelling. It shows that

when detection depends on abundance, ignoring non-detection

can actually be better than trying to adjust for it, so the extra data

collection and modelling effort to try to adjust for non-detection is

simply not worthwhile. A reviewer of the original version of this

paper expressed the opinion that 1)–3) are well-known to

practitioners. We find this difficult to evaluate; they are not

mentioned in [1] or, as far as we know, in the methodological

literature where we would expect at least 1) and 3) to be discussed.

We find 2) quite surprising as sparse data should lead only to zero

or small fitted probabilities, whereas in fact it can lead to fitted

values of both zero and one.

In practical terms, when investigating relationships between

occupancy and other variables measured in a study, we can find

spurious relationships, make these relationships seem stronger or

weaker than they are, or fail to find real relationships. In addition,

for any given set of data, because we cannot observe abundance

and the distribution of abundance is not identifiable, we have no

way of knowing whether anything we find out about relationships

is correct or not. In this situation, the occupancy model and the

much criticised strategy of ignoring the detection process both give

answers which can be misleading to a similar, unknown extent.

Generally, statistical methods apply in quite specific situations,

under quite specific conditions. If the conditions are either not

made explicit or are made explicit but then largely ignored, the

methods start to be treated as being much more widely applicable

than they are. It is important to be honest about the limitations of

procedures. Modelling and adjusting for non-detection is very

difficult, and simple solutions are mostly applicable only in limited

circumstances. In particular, occupancy modelling is not always

Figure 2. Fitted single-species, single-season detection and occupancy probabilities for the Brown Thornbill for 8 separate surveys
in the Nanangroe Study. The first and second rows show the fitted detection and occupancy probabilities for the first four surveys (1998–2001)
and the third and fourth rows show the fitted detection and occupancy probabilities for the last four surveys (2003–2009). In each panel, the fitted
probabilities with the highest log-likelihood are shown as a solid curve and the fitted probabilities corresponding to other solutions of the log-
likelihood estimating equations are shown as dashed curves. Fitted models with increasing occupancy are shown in blue and those with decreasing
occupancy in green. The fitted detection probabilities when yi~1 are shown in brown.
doi:10.1371/journal.pone.0052015.g002
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applicable; it should not be used indiscriminately or recommended

as a ‘‘gold standard’’ for adjusting models for site occupancy for

the effect of non-detection.

Analysis and Results

The overall purpose of this study is to describe the performance

of occupancy models in some realistic situations. Occupancy

models are usually fitted to data (i.e. the unknown parameters are

estimated) by maximising the likelihood, so we investigate the

existence of multiple solutions to the maximum likelihood

estimating equations, the occurrence of fitted boundary probabil-

ities (i.e. estimated probabilities of zero or one), the effect of sparse

data, and the effect of abundance. Our analysis includes the

empirical analysis of a real data set, numerical simulations under

particular settings and theoretical calculations. We also compare

the theoretical calculations and simulation results for occupancy

models with those obtained when we ignore the possibility of non-

detection.

Ethics statement
The research was carried out in accordance with the

requirements of permit F.ES.04.10 issued by the Animal

Experimentation Ethics Committee of The Australian National

University. We also obtained a scientific research license issued by

the New South Wales Parks and Wildlife Service (no. 13174). The

relevant permissions for State Forests were given by staff from the

Tumut Office of State Forests of New South Wales. All native

animal species and native woodland vegetation, including

endangered birds and plants, are protected in Australia. Our

studies were observational investigations and no plants or animals

were harmed in any way.

Empirical analysis
We fitted occupancy models to data on the Brown Thornbill

(Acanthiza pusilla) and the Yellow-rumped Thornbill (Acanthiza

chrysorrhoa) collected from n~55 sites as part of the Nanangroe

Study in South-eastern Australia [2], [3]. The sites are remnant

mature woodland patches surrounded by a maturing Radiata pine

plantation; they can be grouped into 5 cohorts corresponding to

the different years in which the surrounding Radiata pine trees

were planted. Since the start of the study, surveys have been

conducted to determine how biota in the woodland patches

changes as the plantation matures. In this paper, we consider data

gathered in 8 surveys conducted between 1998 and 2009. In each

of the 8 surveys, each of the n~55 patches was visited on K~2
different days by different observers who recorded whether they

detected the species or not. Each observer made their observation

in a patch from 3 points 100 m apart on a transect in the patch

and the species is detected if it is heard from at least one of the

3 points during a visit. Making only K~2 visits to each patch in

each survey is considered a low number of repeat visits and K~5
or more visits is often recommended [4]. However, these are

historical data (from a study which was not designed specifically to

collect occupancy data) and we cannot change what was done

previously. Moreover, even if the study was redesigned, it is

beyond our capacity to increase the number of visits. As we will

see, the points we are making are not all resolved simply by

increasing the number of visits to each patch.

To model the data for one species in a single survey, let Oi~1 if

patch i is occupied by the species and 0 otherwise, and let

di~(Di1, . . . ,DiK ) denote the ‘‘detection history’’ at site i, where

Dij~1 if the species is detected at patch i in visit j and 0 otherwise.

Then we assume the occupancy model

Oi*independent Bernoulli (yi), i~1, . . . ,n, ð1Þ

Dij DOi~1*independent Bernoulli (pi), j~1, . . . ,K , i~1, . . . ,n:
ð2Þ

We can obtain a slightly more general version of the occupancy

model by replacing pi by pij , and we can let Ki vary with patch,

but the present, simpler version is adequate for our data. Following

[1], we assume that for a given survey (i) occupancy does not

change over the visits and (ii) there are no false detections, so there

is no measurement error when the patch is unoccupied (i.e.

Dij DOi~0 equals zero with probability one).

Since we are interested in describing changes in occupancy as

the Radiata pine stands surrounding the woodland patches

mature, we let both the occupancy and detection probabilities

be a function of xi, the years since planting of the Radiata pine

stands. We adopt the usual logistic regression formulation [1]

logit(yi)~b0zxib1 and logit (pi)~c0zxic1, ð3Þ

where logit(u)~logfu=(1{u)g and b0, b1, c0, c1 are unknown

parameters. Let b~(b0,b1)T , ª~(c0,c1)T and h~(b0,b1,c0,c1)T .

We will take it as understood that the occupancy model (1)–(2)

includes (3), unless otherwise stated. When b1~0, the model has

constant occupancy and, when c1~0, constant detection. We will

at times fit the occupancy model with constant occupancy and/or

constant detection as particular cases of the occupancy model.

To fit the occupancy model (1)–(3), we used the function vglm
from the VGAM package [5] in R. VGAM is a very high quality,

flexible, general package which fits a wide variety of models. It is

not our purpose to critique different software so we simply chose a

very reliable implementation.

We first fitted the occupancy model separately to the data for

the two species from the first survey. These results encouraged us

to fit the model to more data so, to take advantage of the data we

have, we then fitted the logistic occupancy model separately to

each species and each survey. As we explained in the Introduction,

this is not intended to be a definitive analysis of our data, but

rather a preliminary exploration of how the single-species, single-

season occupancy model performs over several data sets. The fact

that our data sets are closely related should make it easier to

identify unusual or inconsistent results. Indeed, our analysis

highlights a number of interesting points and motivates the further

investigations reported in this paper.

Figure 3. Fitted single-species, single-season detection and occupancy probabilities for the Yellow-rumped Thornbill for 8 separate
surveys in the Nanangroe Study. The first and second rows show the fitted detection and occupancy probabilities for the first four surveys
(1998–2001) and the third and fourth rows show the fitted detection and occupancy probabilities for the last four surveys (2003–2009). In each panel,
the fitted probabilities with the highest log-likelihood are shown as a solid curve and the fitted probabilities corresponding to other solutions of the
log-likelihood estimating equations are shown as dashed curves. Fitted models with increasing occupancy are shown in blue and those with
decreasing occupancy in green. The fitted detection probabilities when yi~1 are shown in brown.
doi:10.1371/journal.pone.0052015.g003
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Empirical results
The fitted single-species, single-season occupancy models for the

Brown Thornbill and the Yellow-rumped Thornbill in the 8
surveys from the Nanangroe Study are shown as solid curves in

Figures 2–3. For both the Brown Thornbill and the Yellow-

rumped Thornbill, there are extreme fitted probabilities of zero

and one, sometimes in the same survey. For the Brown Thornbill,

except in 2003, occupancy tends to increase with years since

planting, but for the Yellow-rumped Thornbill there is no

consistent pattern with increases in some surveys and decreases

in others. Moreover, the fitted occupancy probabilities oscillate

wildly, showing occupancies of both zero and one. In the 4 surveys

from 2003–2009, there are only 2 sites in which the Yellow-

rumped Thornbill is detected on both visits, and in 2005 and 2007

there are two cohorts (corresponding to different years since

planting) with no detections at all, so the Yellow-rumped Thornbill

data are sparse.

We searched for other solutions to the maximum likelihood

estimating equations by varying the starting values used in the

numerical algorithm. We show the fitted probabilities of

occupancy and detection corresponding to the other solutions

we have been able to find for the surveys in the Nanangroe Study

as dashed curves in Figures 2–3. The figures show that there are

usually multiple different solutions to the maximum likelihood

estimating equations so finding the maximum likelihood estimates

is not as straightforward as simply solving the estimating equations.

It is interesting that the multiple solutions are often quite similar,

but this is not always the case (e.g. in the 2003 Brown Thornbill

and the 1999 and 2009 Yellow-rumped Thornbill surveys). The

function vglm with its default settings usually finds the maximum

likelihood estimate; the exception is the 2001 Brown Thornbill

survey where it finds the second solution and it is difficult to find

the first solution without an extensive search using multiple

starting values.

We could have pooled the data from the different surveys and

fitted a single model to all 8 surveys. This would correspond to an

8-fold increase in the number of sites (ignoring any possible

dependence) without resolving the issues. (We do consider the

effect of increasing the sample size in a simulation below.)

Actually, a more useful change would be to increase the number of

parameters by making years since planting a factor so that we do

not impose the linear logistic constraints as we have done. In this

case, within each survey the effect of years since planting would be

estimated from 11 sites which is rather low.

Multiple solutions and boundary estimates: Theoretical
calculations

We investigate the properties of fitted occupancy models

through the log-likelihood for the unknown parameters h and

the corresponding maximum likelihood estimating equations

0~sc(h), where the score function sc(h)~(scb(h)T ,scª(h)T )T is

obtained by differentiating the log-likelihood with respect to the

unknown parameters h.

The estimating equations are nonlinear in h so explicit solutions

are not available and we need to use numerical methods to obtain

their solutions. We again chose to use the function vglm from the

VGAM package [5] in R. We also used the function nleqslv from

the nleqslv package [6] in R to search for multiple solutions to the

estimating equations and to solve the expected estimating

equations (see below).

Multiple solutions and boundary estimates: Theoretical
results

In general, suppose that we observe vectors of covariates ri and

si which we want to relate to the occupancy and the detection

probability, respectively, using the logistic models

logit(yi)~rT
i b and logit(pi)~sT

i ª,

where b and ª are unknown vector parameters of the same

dimension as ri and si, respectively. For the models fitted to the

Nanangroe Study data, we had ri~si~(1,xi)
T , b~(b0,b1)T and

ª~(c0,c1)T . Let gi~yif1{(1{pi)
Kg~Pr(di=0), where

fdi=0g is the event that at least one component of

di~(Di1, . . . ,DiK ) is nonzero. Then the log-likelihood is

logfL(h)g~
Xn

i~1

½I(di=0)logyiz
XK

j~1

Dij log piz
XK

j~1

(1{Dij)

log(1{pi)zI(di~0)flog(1{gi){K log(1{pi)g�,

where I(:) is the indicator function. The maximum likelihood

estimate bhh~(bbbT ,bªªT )T of h satisfies the estimating equations

0~sc(h)~(scb(h)T ,scª(h)T )T , where the score functions (obtained

by differentiating the log-likelihood with respect to the unknown

parameters) are

scb(h)~
Xn

i~1

ri(
1{yi

1{gi

)fI(di=0){gig, ð4Þ

scª(h)~
Xn

i~1

si½
XK

j~1

DijzKpi(1{yi)f
1{I(di=0)

1{gi

g{Kpi�: ð5Þ

Approximate standard errors can be obtained as usual (see for

example [6]) by taking the square root of the diagonal elements of

the inverse Fisher information matrix (see Information S1)

evaluated at bhh.

Regardless of the data or the underlying data generating

process, the estimating equation based on (4) always has a solution

at ŷyi~1. This solution corresponds to treating all sites as occupied

and modelling any variability in the data as being due to the

detection process. There will usually also be other solutions with

some or all ŷyiv1. When this occurs, we need to compute the

likelihood of each solution and check which maximises the

likelihood to find the maximum likelihood estimate. It is also

possible to have p̂pi~1 as a solution to the estimating equation

based on (5) although, unlike ŷyi~1, it is not always a solution. The

solution p̂pi~1 corresponds to treating detection as perfect and

modelling any variability as due to the occupancy process. Simply

imposing pi~1 and solving the estimating equation based on (4)

corresponds to ignoring the possibility of non-detection.

Boundary solutions such as ŷyi~1 are a problem for logistic

occupancy models because it means that at least one of the

components of b̂b is set to infinity. The other components of b̂b can

take any value so there are uncountably many solutions to the

estimating equations. In practice, the estimate does not achieve

infinity but becomes large and, once it becomes large, the Hessian

matrix, and hence the Fisher information matrix, becomes

singular with zero blocks (see Information S1) so the algorithm

stops. This happens for a wide range of large parameter values
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with a corresponding wide range of large standard errors, so the

values of b̂b are ambiguous even though the fitted probabilities ŷyi

are well defined. A similar result applies for zero probabilities,

where one of the components of b̂b is set to negative infinity, and to

cases where some of the fitted probabilities equal one or zero. We

can illustrate this using a simplified example based on one of the

simulated data sets we generated. (Details of the simulation are

given in the next subsection.) For occupancy, we obtained

estimates (on the logistic scale) of roughly {80z40xi, giving

{40, 0, 40, 80, 120 across the range of xi~1,2, . . . ,5 values.

These values transform back to the probability scale (inverse

logistic transformation) as 0, 0:5, 1, 1, 1. The standard errors for

the intercept and slope are huge (they can be of the order of 103 or

greater) and so give a huge value for the standard error of the fitted

value 0:5. We get essentially the same fitted values on the

probability scale if we multiply the intercept and slope estimates by

the same multiple greater than one. i.e. we get essentially the same

fitted values on the probability scale from {80kz40kxi for any

value of 1ƒkv?. However, the standard errors also change with

k and translate to different standard errors for the fitted values.

The intercept and slope parameter estimates (equivalently, the

choice of k) are determined by the software we use so are therefore

quite arbitrary. These kinds of results, called abnormal conver-

gence by [7], also occur in fitting ordinary binary regression

models (including logistic models) if the data are sparse and some

of the counts are all presences or all absences. We prefer the more

descriptive terms boundary and interior to describe abnormal and

normal convergence, estimates or fits, respectively. The main

practical consequence is that with boundary estimates it is sensible

to report and discuss fitted probabilities and log-likelihoods rather

than parameter estimates and standard errors.

Multiple solutions and boundary estimates: Simulation
In all our simulation studies, we used a setting based on an

idealised single survey for a single species in the Nanangroe Study.

We used n~55 sites, K~2 visits and set the years since planting

the surrounding Radiata pine xi equal to 1 for 11 sites, 2 for 11
sites, and so on, up to 5 for 11 sites. Later, when we need to

explore the effects of increasing survey effort, we also considered

K~5 visits and n~165 sites (scaling up by a factor of 3). The total

number of visits in a survey is nK , which for these four cases is 110,

275, 330 and 825, so all except the first case are well beyond what

can realistically be implemented.

To simulate an ideal situation (under which everything should

work very well and hence provide a baseline for later comparison),

we set the occupancy probability yi~0:4 and detection probabil-

ity logit(pi)~{0:533z0:22xi (so pi is approximately 0:422,

0:477, 0:532, 0:586 and 0:638). The results of [8] and [9] on how

detection probability varies with foliage density imply that we

should expect detection probability to decrease with years since

planting (see the Discussion of the Nanangroe Study below). Our

choice to allow the opposite was based on 1) the empirical results

obtained by fitting the occupancy model to the Brown Thornbill

data which show that the fitted detection probability can increase

or decrease but overall tends to increase with years since planting

and 2) our desire to make it easier to compare the results we obtain

here with those from later simulation results in which it is natural

to allow detection to increase with abundance. For each sample,

we generated single species detection data from this occupancy

model with constant occupancy and a logistic detection compo-

nent and fitted the occupancy model (1)–(3) with xi as the

covariate. Since the model we are fitting contains the data

generating model, we are fitting a correct model. In simulations

with binary data, it is common to find that the estimation method

does not converge in a small number of samples. This occurs more

frequently in small samples than large samples and with

misspecified models than correct models, but it does occur even

in ideal cases. When the estimates did not converge in 100
iterations, as happened in 3 samples, we generated and used a

replacement sample, so that our results are based on 5000 samples

for which the estimates converged.

Multiple solutions and boundary estimates: Simulation
results

The frequency of samples with interior and different kinds of

boundary estimates obtained in our first simulation study (under

an ideal setting) is shown in Table 1. Here we have treated fitted

values greater than 0:9999 as one, and less than 0:0001 as zero.

We have the following results:

(i) vglm produces interior estimates for both yi and pi in

95:4% of samples and boundary estimates of various kinds in

the remaining 4:6% of samples. This shows that, even in the

present ideal setting, the sampling variability of the estimates

is very large.

(ii) There are 120 (2:4%) samples with all ŷyi~0 and nonzero

p̂pi. This seems strange because, if there is nothing to detect,

the detection probability is zero. In fact, these samples do

Table 1. Counts of different kinds of fits for detection and occupancy from the simulation fitting occupancy and detection models
in an ideal situation.

yi

All 0 Some 0 Some 0 and 1 Some 1 All 1 Interior Total

pi All 0 0 0 0 0 0 0 0

Some 0 0 0 0 0 0 0 0

Some 0 and 1 0 0 9 0 0 0 9

Some 1 48 1 11 0 0 0 60

All 1 62 0 0 0 0 0 62

Interior 10 0 21 57 12 4769 4869

Total 120 1 41 57 12 4769 5000

The true values are yi~0:4 (or logit(yi)~{0:405) and logit(pi)~{0:533z0:22xi .
doi:10.1371/journal.pone.0052015.t001
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have a few detections (so there are definitely occupied sites)

but tend to have a non-monotonic pattern in the number of

detections as the covariate increases. This implies that we

should interpret ŷyi~0 as meaning the occupancy probabil-

ity is small rather than literally zero.

(iii) The samples with ŷyi~1 also tend to be sparse and/or to

have a non-monotonic pattern in the number of detections

as the covariate increases. Even though the data patterns are

similar, the estimates are on the opposite boundary because

small changes in sparse data have large effects on the

estimates (see below).

N For samples with ŷyi~1, even after detailed and careful

searching, it is not easy to tell whether there are other solutions

with ŷyiv1. We refitted the model to these samples with

different starting values but each time found only the boundary

solution with all ŷyi~1. In this situation, it makes sense to study

the estimates returned by vglm under its default settings.

Having said this, vglm is good at finding estimates with ŷyiv1
when these exist, and it usually returns the maximum

likelihood estimates.

Table 1 shows that when we present and study simulation

results, we have to take into account that they typically include

some boundary estimates whose fitted values are meaningful but

whose parameter estimates and standard errors are meaningless,

as some of them should actually equal infinity or negative infinity.

These estimates and standard errors swamp plots such as

histograms so we cannot see any detail and make computing the

means and standard deviations of the estimates and standard

errors meaningless. We therefore have to exclude these extreme

values from plots such as histograms to show detail and use robust

trimmed estimates rather than means and standard deviations. We

will point out whenever we have had to do this.

Figure 4 shows several graphical presentations of the simulation

results from vglm. The first row shows the fitted logistic curves for

occupancy ŷyi and detection p̂pi as functions of the years since

planting xi for the first 100 simulated samples. In both panels, the

samples which produce a positive/negative estimated relationship

between occupancy and years since planting are shown in blue/

green while the true relationship is shown in black. (In the

simulations, the true occupancy probability is always constant,

equal to 0:4 or 0:1, and the true detection probability depends on

the simulation.) There are approximately equal numbers of

increasing and decreasing occupancy curves; out of 5000 samples,

2635 (52:7%) have negative occupancy slope estimates. The

figures are too dense to see anything if we plot all 5000 curves, so

instead, in the middle row of Figure 4, we use boxplots to present

the distributions of the fitted values ŷyi and p̂pi for each xi from all

5000 simulations. These tell the same story as the first 100 curves;

the fitted values are symmetrically distributed around the true

values. The variability in these plots is very large, with the

distributions covering most of the possible range. The variability

can be made smaller by increasing the sample size; the point here

is that for our real data from the Nanangroe Study, we do not

obtain very precise estimates. The final row in Figure 4 presents

histograms (after trimming 215 (4:3%) values with standard error

greater than 6) of the sampling distributions of the estimates of the

slope parameter in the logistic model for occupancy and the

standard errors of these slope estimates. The sampling distribution

of the slope estimates is symmetric about zero. The sampling

distribution of the standard errors is asymmetric with a long right

tail so the standard errors are often slightly smaller than the value

they should be, namely the standard deviation of the estimates

across simulations. Figure 4 shows that in ideal situations vglm

works well.

We also compared the distribution of the estimates ª̂ª when the

occupancies yi are unconstrained and when they are set to one

(yi~1) by plotting scatterplots of these estimates under the two

cases. These scatterplots are not included here, but letting yi~1
makes the estimates of ª̂ª negatively biased (as we are doing a

simulation, we know the true values) and much less variable than

when y is estimated. We will see this combination of increased yi

and decreased p̂pi in other situations.

Sparse data: Simulation
To simulate sparse data and investigate its effect on occupancy

models, we carried out a second simulation using the setting

described above but with the occupancy probability reduced to

yi~0:1. This value of the occupancy probability produces very

sparse data in which we expect only 5–6 sites to be occupied. We

actually observe cases like this in our Yellow-rumped Thornbill

data so it is a realistic case. We can also obtain sparse data by

reducing the detection probabilities; the effect is similar to

reducing occupancy so we only report the results for reduced

occupancy probability.

Sparse data: Simulation results
The frequency of samples with normal and different kinds of

abnormal convergence obtained in our second simulation study (of

sparse data) is shown in Table 2. In contrast to the ideal case

shown in Table 1, vglm produces interior estimates for both yi

and pi in only 52:0% of samples and boundary estimates of various

kinds in the remaining 48:0% of samples. This increased tendency

to estimate extreme values for both yi and pi is shown graphically

in Figure 5. There is both an increase in the variability in the fitted

detection probabilities, as well as a positive bias for each cohort

(i.e., each value of years since planting). The fitted occupancy

probabilities are unbiased for each cohort but are much more

variable than before. The greater variability in the estimates is

reflected in the fact that 1766 (35:3%) occupancy slope estimates

have an estimated standard deviation greater than 6 compared

with 215 (4:3%) when yi~0:4. The key point is that we obtain

many more extreme fits for both detection and occupancy.

Intuitively, with sparse data, small changes have large effects,

resulting in more extreme fits. Thus, data sparsity may be an

explanation for the Yellow-rumped Thornbill results after 2001

(Figure 3), where it is plausible that occupancy is low and detection

should be decreasing.

Detection a function of abundance: Simulation
To explore the effect of underlying abundance, we suppose that

Oi follows the model (1) and we then separately model the

abundance (or, more precisely, the site-specific conditional

abundance) Ai for each occupied site. We set pi~0 if Oi~0
and pi~p(Ai) otherwise to generate the data, and then treat the

observed detection data Dij as being generated by the model (2).

We cannot observe the abundance Ai so our modelling is still to fit

the occupancy model (1)–(3) to these data. The model we fit to the

data is not the same as the model we used to generate the data so

the question we want to address is what is the impact of fitting the

occupancy model (1)–(3) when detection is actually a function of

abundance?

We carried out a simulation using the setting based on the

Nanangroe Study described above. We set yi~0:4 so yi is

constant and does not depend on abundance Ai or years since

planting xi. We generated the nonzero detection probabilities for
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x1~1 and x1~2 from the beta(0.5,1) distribution, for x1~3 from

the beta(1,1) distribution and for x1~4 and x1~5 from the

beta(10,2) distribution. (This makes Ai continuous but this

approximation is widely used in logistic-normal models, can be

avoided with slightly greater complexity by using discrete versions

of the continuous distributions, and does not really affect the

conclusions.) We then generated detection data from K~2 visits

and fitted the occupancy model using xi as the covariate. Our

results were again based on 5000 samples for which the estimates

converged.

We generated the data to allow the abundance Ai to depend on

xi. This follows because pi depends on xi and we can derive the

implied value of Ai from pi; for the logistic model,

pi~exp(a0za1Ai)=f1zexp(a0za1Ai)g, so Ai~½logfpi=(1{

pi)g{a0�=a1, for the model used by [10], pi~1{(1{a)Ai , so

Ai~log(1{pi)=log(1{a), and similarly for other models. It is

more convenient to generate the random pi (as a function of xi)

directly than to equivalently generate the Ai and then compute

pi~p(Ai).

Detection a function of abundance: Simulation results
The frequency of samples with normal and different kinds of

abnormal convergence obtained in our third simulation study (in

which detection is a function of abundance) is shown in Table 3.

We find that 97:7% of the samples produce interior convergence

estimates for both yi and pi.

The first row of Figure 6 shows the fitted logistic curves for

detection p̂pi and occupancy ŷyi as functions of the years since

planting xi for the first 100 simulated samples. As in Figure 4, the

samples which produce a positive/negative estimated relationship

between occupancy and years since planting shown in blue/green.

We find that 76 out of 100 simulations show a positive estimated

relationship between occupancy and years since planting, even

though the true occupancy (in black) is actually constant. The plot

of detection against years since planting (the first panel) shows that

the simulations which produced a positive estimated relationship

between occupancy and years since planting (blue) tend to have

higher detection probability for low values of years since planting

and lower detection probability for high values of years since

planting than the simulations which produced a negative estimated

relationship between occupancy and years since planting (green).

We use boxplots to present the distributions of the fitted values of

ŷyi and p̂pi for each xi from all 5000 simulations in the second row

of Figure 6. Again, for few years since planting, occupancy tends to

be underestimated and detection overestimated and, for many

years since planting, the median values of occupancy and

detection are closer to the true values. The distributions cover

the whole or nearly the whole range of possible values for each

value of years since planting. This shows that we do not estimate

occupancy and detection particularly well in this situation.

The third row in Figure 6 presents histograms of the sampling

distributions of the 5000 estimates of the slope parameter in the

logistic occupancy component and the estimated standard errors

of these slope estimates. Both histograms exclude some extreme

estimates so that we can see the detail in the centre of the

distributions and so we can use the same axes for later

comparisons. The first histogram excludes 40 (0:8%) estimates

with standard errors greater than 6; the second excludes 180
(3:6%) of the standard errors in the upper tail which are greater

than 0:6. The dashed vertical line in the histogram for the slope

estimates is at the true value of the slope parameter (i.e., zero); the

dashed vertical line in the histogram for their standard errors is at

the standard deviation of the slope estimates over the 4960
simulation estimates. The histogram for the slope estimates shows

that most of the estimates are positive (with 1231 negative

estimates, zero is at the 0:25 quantile of the distribution). In

addition, the distribution is left skewed with a long lower tail.

Although the mean of the distribution is roughly in the right

location (i.e., near zero), the modal estimate is positive and we

have a high probability of obtaining a positive slope estimate. The

histogram for the standard errors shows a right skewed distribution

with large variability. A high proportion of the standard errors are

smaller than the true value.

Figure 4. Simulation results for fitting occupancy models in an ideal situation. The first row shows fitted logistic curves for detection and
occupancy for the first 100 samples. The samples with positive/negative fitted relationships between occupancy and years since planting the
surrounding Radiata pine are shown in blue/green; the true relationship is shown in black. The middle row shows boxplots of the fitted values for
detection and occupancy for each year since planting; the true relationship is again shown as a black curve. The final row shows histograms (after
trimming 215 values with standard error greater than 6) of the estimates of the slope in the occupancy component of the model and the standard
errors of these slopes; the vertical dashed lines are the true value of the slope parameter and the standard deviation of the slope estimates.
doi:10.1371/journal.pone.0052015.g004

Table 2. Counts of different kinds of fits for detection and occupancy from the simulation fitting occupancy and detection models
when the data are sparse.

yi

All 0 Some 0 Some 0 and 1 Some 1 All 1 Interior Total

pi All 0 0 0 0 0 0 0 0

Some 0 0 0 58 77 24 5 164

Some 0 and 1 0 40 282 0 0 420 742

Some 1 36 4 75 0 0 147 262

All 1 242 0 0 0 0 58 300

Interior 70 42 523 98 202 2597 3532

Total 348 86 938 175 226 3227 5000

The true values are yi~0:1 (or logit(yi)~{2:197) and logit(pi)~{0:533z0:22xi .
doi:10.1371/journal.pone.0052015.t002
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Figure 7 presents the same histograms as the third row of

Figure 6 but with the number of visits increased from K~2 to

K~5 and for surveys of 165 sites with K~2 and K~5 visits,

respectively. No estimates have been omitted from the histograms.

To facilitate comparison, the histograms for the slope estimates are

all drawn on the same axes and the histograms for the standard

errors are all drawn on the same axes. In the three situations

considered, the number of negative slope estimates is 1066 (so zero

is at the 0:21 quantile), 335 (zero is at the 0:067 quantile) and 327
(zero is at the 0:065 quantile). Thus, the results for the slope

estimates get slightly worse as the number of visits K increases and

much worse as the number of sites n increases. For the standard

errors, as we would expect, increasing K and/or n decreases the

true value of the standard deviation of the slope estimates.

However, the sampling distribution of the standard errors shifts

location from being mostly too small, through being about right to

being too large or mostly too large, showing that making inference

about the occupancy slope parameter is difficult.

When we fit the occupancy model with a logistic occupancy

component and constant detection instead of the occupancy model

(1)–(3) to the simulation samples, we tend to get even stronger

positive relationships between occupancy and years since planting.

Also, there is an even greater tendency to overestimate detection

for few years since planting and to underestimate detection for

many years since planting with constant detection than with

logistic detection.

Detection a function of abundance: Theoretical
calculations

The parameter h� that is actually being estimated by bhh satisfies

the expected estimating equations 0~EdDxfsc(h)g~
(EdDxfscb(h)Tg,EdDxfscª(h)Tg)T , where EdDx denotes the condi-

tional expectation over d~(d1, . . . ,dn)T given x~(x1, . . . ,xn)T ;

see for example [11]. We evaluate the expected estimating

equations and then solve them numerically for h�. The bias in

the estimates when detection is a function of abundance is given by

the difference between h� and the parameters used in the model to

generate the data. In particular, for the coefficient b1 of the years

since planting in the model (1)–(3), in the simulation setting the

value used in the model to generate the data is zero so the bias is

just b�1, the corresponding component in h�. We computed h� for

different fitted models and different values of the number of visits

K to investigate the effect of these choices on bias.

In addition to the bias in the maximum likelihood estimates ĥh,

we also investigated the effect of detection being a function of

abundance on the standard errors of the estimates. When

detection is a function of abundance, in large samples, the

standard errors should be estimating the true standard deviation

obtained by taking the square root of the diagonal terms in the

matrix Bn(h�)
{1An(h�)Bn(h�)

{1, where the negative expected

Hessian or Fisher information matrix Bn(h) and the conditional

variance of the score function An(h)~VardDxfsc(h)g are given in

the Information S1; see for example [11]. When we ignore the fact

that detection is a function of abundance, the standard errors are

estimating the square root of the diagonal terms of Bn(h�)
{1. We

computed both of these quantities for different fitted models and

different values of the number of visits K to investigate the effect of

these choices on the standard errors.

In both sets of calculations, we also included cases with pi~1 to

show what happens when we ignore the possibility of non-

detection and simply model occupancy directly.

Detection a function of abundance: Theoretical results
Let the true occupancy probability given xi be y�i and define

qk(xi)~Efp(Ai)
kjOi~1,xig~

X?
a~1

p(a)k Pr(Ai~ajAi§0,xi),

k~1,2, . . . :

Then we can write

E(Dij Dxi)~EfE(Dij DAi,xi)Dxig~Efy�ip(Ai)Dxig~y�iq1(xi)

Figure 5. Simulation results for fitting occupancy models to sparse data. The first row shows fitted logistic curves for detection and
occupancy for the first 100 samples. The samples with positive/negative fitted relationships between occupancy and years since planting the
surrounding Radiata pine are shown in blue/green; the true relationship is shown in black. The middle row shows boxplots of the fitted values for
detection and occupancy for each year since planting; the true relationship is again shown as a black curve. The final row shows histograms (after
trimming 1414 values) of the estimates of the slope in the occupancy component of the model and the standard errors of these slopes; the vertical
dashed lines are the true value of the slope parameter and the standard deviation of the slope estimates.
doi:10.1371/journal.pone.0052015.g005

Table 3. Counts of different kinds of fits for detection and occupancy from the simulation fitting occupancy and detection models
when detection depends on abundance.

yi

All 0 Some 0 Some 0 and 1 Some 1 All 1 Interior Total

pi All 0 0 0 0 0 0 0 0

Some 0 0 0 0 0 0 1 1

Some 0 and 1 0 0 1 0 0 11 12

Some 1 15 0 1 0 0 50 56

All 1 20 0 0 0 0 3 23

Interior 0 0 2 9 0 4887 4898

Total 35 0 4 9 0 4952 5000

The true values are yi~0:4 (or logit(yi)~{0:405) and pi follows various beta distributions.
doi:10.1371/journal.pone.0052015.t003
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and, for K~2,

EfI(di=0)Dxig~E½EfI(di=0)DAi,xigDxi�

~y�iE½1{f1{2p(Ai)zp(Ai)
2gDxi�

~y�i½2 Efp(Ai)Dxig{Efp(Ai)
2Dxig�

~y�if2q1(xi){q2(xi)g,

while, for K~5,

EfI(di=0)Dxig~y�if5q1(xi){10q2(xi)z10q3(xi){5q4(xi)zq5(xi)g:

We can calculate the probabilities y�i and qk(xi) for the process

actually generating the data and then solve the expected estimating

equations with these values substituted into the expected score

functions. These equations also have multiple solutions; the solution

being estimated by the maximum likelihood estimates is the one that

maximizes the the expected log-likelihood E½logfL(h)gDx�.
In the setting for the third simulation, we generated the data

with y�i~0:4 so this is already known. When we generate the

p(Ai) from a continuous beta(c,d) distribution with density gc,d (:),
Ai has density fc,d (a)~p’(a)gc,dfp(a)g, so

q1(xi)&
ð

p(a)fc,d (aDOi~1,xi)da~

ð1

0

ugc,d (uDOi~1,xi)du~
c

czd

and, similarly,

qk(xi)&
ð

p(a)kfc,d (ajOi~1,xi)da~

ð1

0

ukgc,d (ujOi~1,xi)du~

czk{1

czdzk{1
qk{1(xi):

Substituting these values into the expected estimating equations

and solving, we obtain the results shown in Table 4. The

occupancy parameter estimates are biased and this bias does not

vanish in large samples. Under the logistic occupancy model, the

occupancy slope parameter is positively biased so we estimate

positive relationships between occupancy and xi even though

there is no relationship between occupancy and xi. Under the

constant occupancy model, we underestimate occupancy. The

four rows with pi~1 are particularly important because these

show the biases we obtain when we ignore the possibility of non-

detection and simply model occupancy directly. These biases are

very similar to the others in the table, showing that there is no gain

in fitting the occupancy model over ignoring the detection process

entirely.

The first six of the models in Table 4 (all with logistic occupancy

components) are illustrated in Figure 1. (We cannot show all the

models because the fitted lines are physically on top of each other.)

The constant detection lines show greater attenuation (i.e., they

are too high for small xi and too low for large xi) but there is

considerable attenuation in the logistic detection curves too. For

the yi~1 solution, the detection curves are much lower than they

should be. The detection curves at pi~1 (i.e. ignoring non-

detection) are too high. The corresponding occupancy curves are

plotted in the second panel with the same pattern and colour

combinations. The logistic occupancy curves all show an

increasing relationship between occupancy and years since

planting. The occupancy curves obtained when we ignore the

possibility of non-detection are very similar to the curves obtained

when we fit occupancy models. Table 4 also shows that if we fit the

simpler constant occupancy probability, the bias changes, but does

not go away.

The standard deviations of the occupancy and detection slope

estimates in the simulation settings are presented in Table 5 for

n~55; the values for n~165 are obtained by multiplying those in

the table by (55=165)1=2~1=31=2&0:5774. The standard devia-

tions for b̂b are not much affected by the fact that detection is a

function of abundance in the settings we consider. (They may be in

other settings but that is beyond the scope of this paper.) On the

other hand, some of the standard deviations for ª̂ª which ignore the

fact that detection is a function of abundance are smaller than they

should be, making these inferences about ª̂ª over optimistic.

Ignoring possible non-detection: Simulation
To further explore the effect of ignoring the possibility of non-

detection when we model occupancy, we fitted ordinary logistic

regression models relating occupancy (defined to equal one if the

species was detected in either of the K~2 visits to a site and zero

otherwise) and years since planting the surrounding Radiata pine

plantation to the simulated data sets we generated above. We used

the identical data we simulated to represent an ideal situation, a

situation with sparse data and a situation with detection a function

of abundance, so the results are directly comparable to those

obtained by fitting occupancy models to these datasets.

Ignoring possible non-detection: Simulation results
We find that in the ideal case and when detection is a function

of abundance, 100% of samples produced interior convergence

estimates; in the sparse data case, 95:9% of samples produced

interior convergence estimates. The boundary estimates in the

sparse data simulation comprised 62 fits with all estimated

occupancy probabilities equal to zero and 142 fits with some

(but not all) estimated occupancy probabilities equal to zero.

Comparing these values with those reported in Tables 1, 2, 3

shows that we obtain fewer boundary estimates when we ignore

the possibility of non-detection.

The simulation results are illustrated in Figure 8. The rows

correspond to the three simulation settings represented by

Figures 4, 5 and 6 respectively. The first column shows fitted

logistic curves for occupancy for the first 100 samples with

positive/negative fitted relationships between occupancy and years

since planting the surrounding Radiata pine plantation shown in

blue/green; the true relationship is shown in black. The second

column shows boxplots of the fitted values for occupancy for each

year since planting the surrounding Radiata pine plantation; the

true relationship is again shown in black. The distributions of fitted

occupancy probabilities when we ignore the possibility of non-

detection are comparable to those obtained when we fit occupancy

models. The mean squared error of the estimated occupancy

probability over the whole simulation (obtained by computing the

mean squared error for each value of the years since planting the

surrounding Radiata pine plantation and then averaging over

these values) for the estimates obtained from occupancy models

and for those obtained by ignoring the possibility of non-detection

are 0:046=0:017~2:71 for ideal data, 0:162=0:003~54 for sparse

data and 0:026=0:028~0:93 when detection is a function of

abundance. Occupancy modelling is better than ignoring the

possibility of non-detection in only one of the three cases and then

only by a very small amount. Over the whole simulation, when we

ignore the possibility of non-detection, the number of negative

slope estimates is 1602 (zero is at the 0:32 quantile) for ideal data,

2100 (zero is at the 0:42 quantile) for sparse data, and 439 (zero is
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at the 0:088 quantile) when detection depends on abundance.

Thus, in the simulated data, ignoring possible non-detection lead

to slightly more biased estimates of occupancy probability than

occupancy modelling. However, the fitted probabilities are often

less variable than those obtained by fitting occupancy models,

making the mean squared errors smaller and, at least by this

criterion, the estimates better.

Discussion

Our results showing multiple and boundary solutions to the

maximum likelihood estimating equations, large variability in the

estimates, and the effect of sparse data mean that it is difficult to fit

and interpret occupancy models. Our results on the impact of

ignoring the dependence of detection on abundance have even

more serious implications. Specifically, if we ignore the possibility

of non-detection, the bias can be very similar and the variance

smaller than if we try to adjust for non-detection. This means that

ignoring non-detection can actually be better than trying to adjust

for it and the extra effort of trying to adjust for non-detection is not

worthwhile. Our results lead directly to the question, is it worth

using occupancy models (the purported ‘‘gold standard’’) at all? In

this Section, we frame the problem of detection depending on

abundance in the broader context of measurement error and

discuss possible approaches to dealing with it.

Measurement error
We can gain insight into the problem of detection depending on

abundance, its possible consequences and the limitations of what

we can try to do to deal with it by treating it as a nonlinear

measurement error problem [11]. In interpreting the Nanangroe

Figure 6. Simulation results for fitting occupancy models when detection depends on abundance. The first row shows fitted logistic
curves for detection and occupancy for the first 100 samples. The samples with positive/negative fitted relationships between occupancy and years
since planting the surrounding Radiata pine are shown in blue/green; the true relationship is shown in black. The middle row shows boxplots of the
fitted values for detection and occupancy for each year since planting; the true relationship is again shown as a black curve. The final row shows
histograms (after trimming 40 values with standard deviation great than 6) of the estimates of the slope in the occupancy component of the model
and the standard errors of these slopes; the vertical dashed lines are the true value of the slope parameter and the standard deviation of the slope
estimates.
doi:10.1371/journal.pone.0052015.g006

Figure 7. Simulated sampling distributions of the slope
estimates and their standard errors when fitting occupancy
models when detection depends on abundance. Histograms of
the estimates of the slope in the occupancy component of the model
and the standard errors of these slopes for 55 sites with K~5 visits, 165
sites with K~2 visits and 165 sites with K~5 visits. The vertical dashed
lines are the true value of the slope parameter and the standard
deviation of the slope estimates.
doi:10.1371/journal.pone.0052015.g007

Table 4. Solutions of the expected estimating equations that
maximize the expected log-likelihood under the settings used
in the simulations.

Occupancy Detection Visits bT
� cT

�

logistic logistic K~2 ({1:576,0:244) ({0:198,0:397)

logistic logistic K~5 ({1:278,0:188) ({0:693,0:475)

logistic constant K~2 ({1:817,0:310) 1:134

logistic constant K~5 ({1:340,0:203) 0:802

logistic pi~1 K~2 ({1:880,0:302)

logistic pi~1 K~5 ({1:344,0:203)

constant logistic K~2 {0:711 ({0:903,0:567)

constant logistic K~5 {0:695 ({0:742,0:487)

constant constant K~2 {0:849 1:134

constant constant K~5 {0:716 0:802

constant pi~1 K~2 {0:935

constant pi~1 K~5 {0:720

The true value for b in all cases is (log(0:4=0:6)~{0:405,0).
doi:10.1371/journal.pone.0052015.t004
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Study, a natural specification is to let the distribution of the

unobserved abundance Ai be a function of the years since planting

xi, the covariate we observe and use in the model. This situation is

called a Berkson model [11]. The choice we made in our

simulations to have detection given Ai not depend on xi, produces

nondifferential error, so xi is a surrogate covariate for Ai [11]. In

linear models, measurement errors described by a nondifferential

error Berkson model may not have much effect on the analysis, but

here we have a nonlinear model so, as we have shown, more

interesting effects can occur [11].

The estimating equation for b based on the score function (4) is

a function of I(di=0){gi, where gi~yif1{(1{pi)
Kg. The

effect of fitting an incorrect detection component in an occupancy

model on the occupancy probability yi is, at least intuitively,

largely captured by the ratio EfI(di=0)Dxig=f1{(1{pi)
Kg. The

ratio equals one and we estimate yi if the detection component of

the model is correct and detection does not depend on abundance.

The ratio is less than one so we underadjust the estimate of yi if pi

is too large, and the ratio is greater than one so we overadjust the

estimate of yi if pi is too small. The third simulation was set up so

that occupancy is underadjusted for low xi and overadjusted for

large xi. This induces the positive bias in the slope of the logistic

occupancy component and the negative bias in the intercept in the

constant occupancy component. We can also produce a decreasing

relationship between occupancy and years since planting by letting

abundance decrease with years since planting. (For example, we

can switch x1 and x5, x2 and x4.) If occupancy is also changing

with years since planting, then changes in abundance can make

the relationship seem stronger or weaker than it really is.

Modelling abundance
We introduced abundance into the data generating model

through a conditional, hurdle or two-part model [12] which allows

the relationship between occupancy and abundance to be specified

separately from the model for abundance, see [13]. A different

approach is to regard abundance Ai as the primary quantity and

occupancy Oi~I(Ai§1) as derived from abundance. For

example, if Ai*Poisson(li), then Oi*Bernoullif1{exp({li)g,
so yi~1{exp({li). In this model, increasing the mean

abundance li increases the occupancy probability yi and vice

versa, so abundance and occupancy are tied together. However,

abundance and occupancy are actually quite different concepts.

Intuitively, abundance is the number of individuals of a species in

a patch while occupancy is the number of patches which contain at

least one individual of the species. Thus, we can have changes in

abundance while occupancy stays constant (the number of

individuals in patches which already contain individuals changes

while the number of patches containing individuals does not) or

changes in occupancy while abundance stays constant (the number

of patches containing individuals changes but the number of

individuals in patches does not). The approach we used allows us

greater flexibility in varying abundance while holding occupancy

constant.

The two possible approaches to modelling abundance and

occupancy shed light on the idea of [1] that we can and should

replace abundance by occupancy. When we regard abundance as

the primary quantity, replacing abundance by occupancy repre-

sents a sacrifice of information (simply because binary data contain

less information than count data), supposedly in order to make it

easier to handle detection error. Since we have shown that it is not

easier to handle detection error when detection depends on

abundance, this argument is not convincing. When we separate

abundance from occupancy by modelling occupancy and then

abundance conditional on occupancy as we have done, we see that

occupancy is a different concept from abundance. A key part of

ecology is the examination of both distribution and abundance [?]

(see also [?]). However, occupancy is really a version of

distribution rather than abundance. Therefore, we suggest that a

focus on detection/occupancy modelling has the potential to

detract from rather than add to the discipline of ecology.

The Nanangroe Study
We started the present study by fitting occupancy models to

data from the Nanangroe Study to relate occupancy to years since

planting the Radiata pine stands surrounding the woodland

patches. We found it difficult to interpret the results (reported

above) at face-value. As years since planting increases, the Radiata

pine plantation surrounding the patches matures and there are

Table 5. The standard deviations of the parameter estimates under the settings used in the simulations.

Occupancy Detection Visits (sd (b̂b0), sd (b̂b1)) (sd (ĉc0), sd (ĉc1))

ignore true ignore true

logistic logistic K = 2 (0.903,0.246) (0.901,0.245) (1.395,0.390) (1.419,0.394)

logistic logistic K = 5 (0.724,0.210) (0.723,0.209) (0.609,0.183) (0.838,0.236)

logistic constant K = 2 (0.800,0.227) (0.814,0.227) 0.520 0.520

logistic constant K = 5 (0.712,0.207) (0.713,0.207) 0.231 0.317

logistic Pi = 1 K = 2 (0.820,0.233) (0.845,0.239)

logistic Pi = 1 K = 5 (0.712,0.207) (0.712,0.207)

constant logistic K = 2 0.366 0.391 (1.332,0.369) (1.700,0.440)

constant logistic K = 5 0.291 0.292 (0.628,0.187) (0.900,0.250)

constant constant K = 2 0.315 0.315 0.520 0.520

constant constant K = 5 0.288 0.288 0.231 0.317

constant Pi = 1 K = 2 0.315 0.322

constant Pi = 1 K = 5 0.288 0.288

The label ‘ignore’ denotes the square root of the diagonal elements of Bn(h�)
{1 which is what we estimate when we ignore the measurement error, and ‘true’ denotes

the square root of the diagonal elements of Bn(h�)
{1An(h�)Bn(h�)

{1 which is what we estimate when we take the measurement error into account.
doi:10.1371/journal.pone.0052015.t005
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Figure 8. Simulation results for fitting logistic occupancy models that ignore the possibility of non-detection. The first row shows
results for an ideal situation, the second for sparse data and the third for when detection depends on abundance so the rows should be compared
with Figures 4, 5 and 6 respectively. The first column shows fitted logistic curves for occupancy for the first 100 samples. The samples with positive/
negative fitted relationships between occupancy and years since planting the surrounding Radiata pine are shown in blue/green; the true
relationship is shown in black. The second column shows boxplots of the fitted values for occupancy for each year since planting; the true
relationship is again shown as a black curve.
doi:10.1371/journal.pone.0052015.g008
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changes in the vegetation structure in the patches - the understorey

layer becomes more dense. This kind of change may effect

occupancy but it is unlikely to affect calling behaviour directly.

However, according to [8] and [9], detection is expected to

decrease with increasing foliage density and hence should decrease

with years since planting. The Brown Thornbill and the Yellow-

rumped Thornbill are members of the same guild that are detected

in the same way so, if changes in the understorey layer did affect

detection directly, it is unclear why they would have an general

positive effect on the detection of the Brown Thornbill, in some

surveys a positive effect on the detection of the Brown Thornbill

and a negative effect on the detection of the Yellow-rumped

Thornbill, or why detection should oscillate so wildly from survey

to survey for the Yellow-rumped Thornbill. It seems more likely

that the effect of changes in vegetation on detection is mediated by

concurrent changes in other variables. In particular, changes in

the vegetation with increasing years since planting do seem to

affect the abundance of the species, causing the Brown Thornbill

to increase in abundance and the Yellow-rumped Thornbill to

decrease in abundance, and the abundance of the species does

affect detection because it affects the probability of birds calling.

Specifically, the calling behaviour of the species depends on its

abundance (as well as the abundance of other species) in a patch.

Our results show that changes in abundance may be inducing

changes in detection and once the abundance and occupancy

become low, so the data are sparse and produce wild oscillations in

the fitted models.

Survey protocol
In most studies, we expect abundance to vary across sites and

for detection to depend on abundance [1]. The extent to which

this is a problem depends on the method of detection, the size of

the sites and the variation in abundance. The first two of these can

be changed to some extent by an ecologist and it makes sense

when possible to choose them to reduce abundance related

problems.

It is generally good practice in a survey to try to make detection

as good as possible. However, the starting point for occupancy

modelling is that there are limits to how good we can make

detection, so making detection perfect is not generally achievable.

We are left with either choosing a detection protocol so that

detection does not depend on abundance, or following the

recommendation of [1] that studies should be designed so that

abundance is constant over sites. Both are good solutions, when

they are possible, but unfortunately, they are usually not

achievable. For example, it is not possible to adjust sites when

they are naturally defined islands, forest patches etc. and it is very

difficult to adjust sites to achieve constant abundance of social

species which form groups of different sizes, such as mixed feeding

flocks which both the Brown Thornbill and the Yellow-rumped

Thornbill are known to join [14]. Even if it is theoretically possible

to adjust sites to achieve constant abundance for a single species, it

may not be possible for multiple species simultaneously, and may

require us to know more about abundance and occupancy

patterns than we do. For example, we may need to know the

locations and extents of home ranges or territories in different

parts of a study area; having this knowledge would make it

unnecessary to carry out the occupancy survey. Making abun-

dance constant over sites is not generally possible. In any case, it is

not applicable to investigations like the Nanangroe Study because

the patches are the natural sampling units to which the questions

of interest apply (so we cannot adjust their size) and the study is

simultaneously collecting data on a large number of bird, small

mammal, reptile and other species.

We cannot observe abundance
If detection is perfect (pi~1), we can observe the actual

occupancy Oi of a site by a species and it is straightforward to

model the occupancy probability yi (using logistic regression

rather than occupancy models). In such cases, it is more difficult

but it may also (at least theoretically) be possible to observe all the

individuals of a species on a site, and hence calculate the

abundance Ai. However, in occupancy modelling we allow the

possibility of not detecting a species at a site and this implies that

even if we detect the species, we may not detect all the individuals

of that species on a site. That is, we cannot observe the abundance

Ai. Thus, we have a circular situation; we cannot obtain the data

we need to adjust correctly for non-detection but, if we could, we

would have perfect detection and hence would have no need to

adjust for non-detection.

Other surrogates for abundance
The most attractive approaches for adjusting for measurement

error involve trying to collect more data so that we can treat the

problem empirically [11]. In our context, the measurement error is

due to the unobserved abundance Ai so it is natural to try to

obtain some information on Ai from all or some of the patches.

Although, as we have noted, we cannot observe abundance Ai,

it is realistic to think about observing a version Bi of Ai which is

affected by measurement error rather than Ai itself. In such cases,

we can explore the effect of including Bi in our models. For the

data collected in the Nanangroe Study, the logic behind

occupancy models dictates that we must have BiƒAi, and under

the assumption of no false detections, for patches with no

detections we must have Bi~0. Just as observing Ai would

provide us with the exact occupancy status of the patches,

observing Bi provides us with the observed occupancy of the

patches. Critically, for all the patches where the species is not

detected Bi~0, so we have a complete separation between

detection and non-detection in the data with Bi and trying to

model detection as a function of Bi produces meaningless

parameter estimates. Intuitively, observing Bi does not help with

the basic issue in adjusting for non-detection, namely distinguish-

ing between patches which are unoccupied and patches which are

occupied but on which we do not detect the species, because Bi~0
on all these patches.

The comments above apply to any attenuated version Bi of Ai

satisfying BiƒAi. This means that in this case there is no Bi which

will enable us to adjust for the measurement error which occurs

when detection depends on abundance. They also apply to two-

stage validation and replication studies [11], in which we observe

xi for all sites and observe Bi for some sites. We are left with the

non-empirical solution of making assumptions about either

detection or abundance. Since one objective of occupancy

modelling is to estimate detection, we impose the assumptions

on abundance.

In other studies of different species with different methods of

detection such as methods based on counts of animal sign (so we

can potentially count each animal multiple times), Bi can be larger

than Ai. In principle, this should be helpful as it may make it

plausible to assume that Bi is unbiased for Ai on sites for which

Biw0. However, we still face a nonlinear measurement error

problem in which the unbiasedness may not help us on the

transformed scale of the response, we still have no precise

measurements against which to calibrate Bi, and we still have the

complete separation between detection and non-detection in the

data because Bi~0 on patches with no detections.
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Latent variable approach
As we cannot observe abundance, we can include it in the

detection component of the model (e.g. the logistic detection

component (3)) as an unobserved missing or latent variable and

then carry out a full likelihood analysis. Let R~(R1, . . . ,Rn)T be a

vector of independent latent random effects whose distribution has

density function g(:Dxi; d), where d is a vector of additional

unknown parameters. We use the notation Ri instead of Ai to

make it easier to distinguish between the random effects we

include in the model and the actual abundance which they are

intended to equal, but may not. Then we include the random

effects Ri in the detection model so that the assumed detection

probability becomes pi~p(Ri,xi). Note that this is a differential

measurement error Berkson model. Replacing pi in the likelihood

L(h) by p(Ri,xi) gives the conditional likelihood. Integrating the

conditional likelihood over this distribution gives the likelihood for

h and d based on the observed data. The score function is

(scs(h,d)T ,scs d(h,d)T )T , where scs(h,d) and scsd(h,d) are the

derivatives of the log-likelihood with respect to h and d
respectively. From [15], we can write scs(h,d)~ERDd,xfsc(h)g
and scsd(h,d)~

Pn
i~1 ERDd,x½L logfg(Ri,xi; d)g=L d�, where sc(h)

uses the assumed form for p(Ri,xi) and ERDd,x, the working

conditional expectation over R given the observed data, uses both

the assumed form for p(Ri,xi) and the density function g(:Dxi; d).
The maximum likelihood estimates are solutions of 0~scs(h,d)
and 0~scs(h,d). They are estimating solutions of the expected

estimating equations 0~EdDxfscs(h,d)g~EADx EdDA,xfscs(h,d)g
and 0~EdDxfscsd(h,d)g~EADx EdDA,xfscsd(h,d)g. As in any model,

the form we have assumed for p(Ri,xi) may not be correct and, in

addition, the density function g(:Dxi; d) may not be the same as the

density function for Ai. i.e. the distribution for Ri may not be the

same as the distribution for Ai. When this happens, just as we

showed happens when we ignore the dependence of the detection

probability on abundance, we obtain biased estimates. We can also

proceed to explore the effect of misspecification on the standard

errors.

The latent variable analysis is very similar to that described in

chapter 5 of [1]. The main difference is that they assume that Ri

does not depend on xi [1]. This simplification removes the

problem from the measurement error framework and places it in

the nonlinear mixed model framework. With nonlinear mixed

models, we usually have several observations (representing a

cluster of observations) with the same random effect but here we

only have one observation per random effect. This raises questions

about the identifiability of the model. The discussion in [1] based

on [16] shows that this is a problem. They note that different

models for the distribution of R give very similar fits to the data,

but different estimates of the occupancy probability. That is, the

model is not identifiable but different choices give different results

and hence the occupancy probability is not identifiable. Beyond

acknowledging that this is a problem, advising that it should be

considered and describing it as a biological sampling issue rather

than a statistical issue [1], suggest applying their occupancy models

anyway.

Our viewpoint differs from that of [1]. The fact that we cannot

observe abundance and know little or nothing about the

distribution of abundance is a fundamental problem. We are

often modelling occupancy to try to avoid even greater difficulties

with abundance, but whether we ignore abundance or try to

include it in our analysis, abundance has not gone away and we

cannot easily avoid its effects. We cannot tell empirically whether

abundance is affecting our analysis or not and we cannot work out

the magnitude of the effect. We cannot choose empirically

between making one adjustment for non-detection and making

no adjustment at all, and both can be wrong by unknown

amounts. This means that, as shown in Table 4 and Figure 8,

occupancy modelling with its attempt to adjust for non-detection is

objectively no better than the simple analysis ignoring non-

detection.

Multistate models
Occupancy modelling is based on the idea that all sites are

either occupied or not, so there is a single occupancy state. The

approach can be extended to allow multiple underlying occupancy

states which distinguish between occupancy by different kinds of

animals (e.g. breeding or non-breeding animals) as in [1] or

between occupancy at different levels of abundance as in [17],

[18], [19]. The difference between the two cases is that, in the

former, the response is a nominal categorical variable (i.e.

represents unordered categories), while in the latter, it is an

ordinal categorical variable (i.e. represents ordered categories). Just

as occupancy models allow and adjust for detection error in

occupancy, multistate models allow and adjust for detection and

classification error in the response categories, although the number

of parameters in a multistate model can increase quite rapidly with

the number of states. If the categories simply represent single

integers, then the multistate model is modelling abundance

(although in its natural multinomial mixture form it will be highly

over-parameterised); if there is only a single abundance category

representing at least one detection, then the multistate model is an

occupancy model. Thus multistate models lie between abundance

and occupancy models but, as they typically have a small number

of categories, are closer to occupancy models. If we approach

multistate models as simplifying abundance models, then our

motivation may be that it should be easier and hence there should

be less error in trying to observe categories of abundance than in

trying to observe abundance itself. However, if we approach

multistate models as adding more structure to occupancy models,

then it may be more difficult to observe categories of abundance

than simply trying to observe occupancy.

We have not simulated data from multistate models in this

paper but we can still make some comments based on our

experience with the simpler occupancy models we have studied.

Like occupancy models, multistate models allow and adjust for

detection and classification error in the response categories and,

again like occupancy models, they do not adjust for measurement

error in the covariates. In particular, when detection is a function

of abundance, multistate models face the same difficulties as

occupancy models in adjusting for measurement error and

heterogeneity. Just as with the simpler models we have explored

in detail, we can envisage situations in which multistate models

work well and also situations where they do not, and the practical

problem is that it is so difficult to work out which kind of situation

we are in.

Where are we now?
Suppose that we are planning to collect occupancy data with a

view to fitting an occupancy model and we suspect that detection is

a function of abundance. We have explored in detail the approach

of using a surrogate for abundance in our model and shown that

this creates a nonlinear measurement error problem in which

occupancy models can perform poorly. We have also discussed the

approaches of including a latent abundance variable in the model

and of ignoring the possibility of non-detection. All three of these

approaches have unsatisfactory aspects.

The difficulties we have found and discussed are very

challenging to resolve, particularly when we think detection

depends on abundance. In general, the solution is not simply to
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construct increasingly complicated models but to try to better

understand the detection process so, as we noted in our discussion

of survey protocol above, we can try to improve our detection

methods, find creative new detection methods, or try to find new

and innovative ways of calibrating detection. New and developing

technology is likely to play a key role. Improved calibration may

have to rely on separate calibration studies, an admittedly

daunting prospect in multi-species, multi-environment, multi-

season studies requiring multiple calibration studies, although a

deeper understanding of detection may reduce the burden. Even

in simple situations, the main difficulty is to obtain the highly

accurate measurements of true abundance required for calibra-

tion. A creative approach used by [20] and [9] involves setting up

field simulations (as opposed to computer simulations) in which

speakers are set up to play bird calls so that truth is known and

detection probabilities can really be estimated and their relation-

ship with call abundance explored. Of course, there are real issues

with translating the artificial situation with speakers to a real

situation with birds (as call abundance is not the same as bird

abundance) but we may be able to minimise these as we

understand the detection process better. There are no easy

solutions, but solutions better than those presently available may

be achievable.

In the meantime, we are not arguing that ecologists should stop

using their favourite methods, but we are arguing that they should

recognise the limitations of their methods, avoid imposing them on

everyone else, and certainly stop pretending that they are better

than they are.

Conclusions

Non-detection is a form of informative measurement error in

the response which leads to biased estimates of occupancy and

potentially finding misleading relationships between occupancy

and other covariates. Intuitively, ignoring non-detection in

occupancy data means treating non-detection of the species at

the ith site (di~0) as equivalent to the site being unoccupied. The

probability being modelled in this case is the raw occupancy

probability gi. We have givyi unless detection is in fact perfect

(pi~1). The fact that gi is a function of both yi and pi means that

ignoring non-detection can induce relationships between raw

occupancy and covariates that do not hold between occupancy

and the covariates. This is confirmed by the pi~1 entries in

Table 4 and by Figure 8. The purpose of occupancy modelling as

described in [1] is to adjust the raw occupancy probability by

taking into account that some of the sites at which the species is not

detected are in fact occupied. This is approached by the sound

empirical approach of collecting additional data (through multiple

visits) rather than by simply making unverifiable assumptions

about the detection process to make the problem go away.

Our analyses show that occupancy models are far more difficult

to fit than is generally acknowledged. In particular, the estimating

equations often have multiple solutions, making it difficult to find

the maximum likelihood estimate, and there are often boundary

estimates which need to be treated with more care. It would be

very helpful if the models worked well when the data are sparse

but the estimates are unstable in this case, making them difficult to

interpret. Finally, the estimates are highly variable, making

accurate inference difficult.

There is an additional source of measurement error in the data

when abundance varies over sites and detection depends on

abundance. Depending on how we model detection, a key

covariate is either observed with unknown error, represented by

another covariate (which may be a surrogate covariate following a

Berkson model) or completely unobserved. When detection

depends on abundance, the standard analysis suggested by [1]

suffers bias (attenuation in detection, biased estimates of occupan-

cy and potentially finding misleading relationships between

occupancy and other covariates), asymmetric sampling distribu-

tions, and slow convergence of the sampling distributions to

normality. Even more complicated effects are possible when there

are differential errors and/or other covariates which may

themselves be subject to additional measurement error. This kind

of measurement error is also informative and leads to biases of

similar magnitude to those we obtain when we ignore non-

detection entirely.

Unless detection is perfect (i.e. we can detect every individual of

a species on a site), we cannot observe abundance. If we treat

abundance as a missing variable and include a latent random

effect for abundance in the model, the appropriate distribution for

the latent random effect is not identifiable and different

distributions lead to different conclusions about occupancy [16],

[1]. We can observe a version of abundance with unknown

measurement error, but it is not useful to include this kind of

variable in the occupancy models of [1]. This means that we have

no idea of the real effect of ignoring the dependence of detection

on abundance and no possibility of adjusting for this effect. We can

only make assumptions which cannot be checked, and this is

unsatisfactory.

Our conclusion is that occupancy modelling is more difficult

than it first seems and that there is currently little we can do to

obtain a meaningful analysis when detection depends on

abundance. We need to better understand detection and develop

new, creative ways to calibrate detection. In the meantime, it is

important to be honest and realistic about what can be achieved.

The problem of non-detection is a very difficult problem and

difficult problems are unfortunately difficult or even impossible to

solve in simple, general ways. We need to be more sanguine about

claiming that a method is the ‘‘gold standard’’ for solving these

kinds of problems.
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