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Abstract

Genotype imputation is an important tool in human genetics studies, which uses reference sets with known genotypes and
prior knowledge on linkage disequilibrium and recombination rates to infer un-typed alleles for human genetic variations at
a low cost. The reference sets used by current imputation approaches are based on HapMap data, and/or based on recently
available next-generation sequencing (NGS) data such as data generated by the 1000 Genomes Project. However, with
different coverage and call rates for different NGS data sets, how to integrate NGS data sets of different accuracy as well as
previously available reference data as references in imputation is not an easy task and has not been systematically
investigated. In this study, we performed a comprehensive assessment of three strategies on using NGS data and previously
available reference data in genotype imputation for both simulated data and empirical data, in order to obtain guidelines
for optimal reference set construction. Briefly, we considered three strategies: strategy 1 uses one NGS data as a reference;
strategy 2 imputes samples by using multiple individual data sets of different accuracy as independent references and then
combines the imputed samples with samples based on the high accuracy reference selected when overlapping occurs; and
strategy 3 combines multiple available data sets as a single reference after imputing each other. We used three software
(MACH, IMPUTE2 and BEAGLE) for assessing the performances of these three strategies. Our results show that strategy 2 and
strategy 3 have higher imputation accuracy than strategy 1. Particularly, strategy 2 is the best strategy across all the
conditions that we have investigated, producing the best accuracy of imputation for rare variant. Our study is helpful in
guiding application of imputation methods in next generation association analyses.
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Introduction

Genotype imputation, using references with known genotypes

and prior knowledge on linkage disequilibrium and recombination

rates to infer un-typed alleles for human genetic variations at a low

cost, plays an important role in genome-wide association studies

(GWAS). Imputation helps to increase both the number of SNPs

and power of detection for GWAS. It also allows researchers to

combine experiments carried out on different platforms (e.g.

Illumina and Affymetrix arrays) for meta-analyses, replication and

comparison of finding across studies [1–5]. The reference sets used

by imputation approaches can be different types such as GWAS

data and/or next-generation sequencing (NGS) data.

HapMap as reference sets has been used for most previous

imputation studies. With the development of NGS technologies,

using NGS data as reference sets for imputation provides

comprehensive coverage for the genetic variants, as NGS

technologies have the potential to discover the entire spectrum

of sequence variations [6]: over 15 million SNPs have been

recorded by the 1000 Genomes Project [7], and the number of

datasets are increasing day by day. Various researches on

imputation and relevant usage of reference sets have been

conducted [1,8,9], showing that the imputation accuracy increased

with increasing sample sizes for the reference sets. Wang et al. [10]

created a new reference set with common and uncommon SNPs

using existing reference to improve imputation accuracy. Li et al.

[11] utilized high depth resequencing data for exons and flanking

regions to increase the performance of genotype imputation for

rare variants compared to traditional GWAS reference panel. The

Oxford-GSK study used 1000 Genomes data as reference for

imputation to refine a single genetic region and successfully

identified a SNP with a more significant P-value than that without

1000 Genomes imputation [12]. The Sardiana study utilized the

reference panels from HapMap2, HapMap3 [13], and 1000

Genomes Project [7] separately for the same set of GWAS data

[14]. Despite of these efforts, how to efficiently and effectively

integrate recently generated NGS data along with previously

available references for imputation is still a challenging task, as

different NGS data sets may have different call rates and coverage,

making it difficult to directly combine data. NGS technologies may

also have higher missing rates than the conventional sequencing

methods [15–18]. Thus, it is important to systematically investi-
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gate how to best use multiple reference data to improve genotype

imputation accuracy.

In this study, we evaluated three strategies on using NGS data

and previously available references (e.g., HapMap data) for

imputation. We focused our investigation on two types of data:

one has low genotyping accuracy with high marker density

(denoted as ‘‘R1’’), and the other high genotyping accuracy with

low marker density (‘‘R2’’). The strategies included:

Strategy 1: performing imputation using R1 as reference;

Strategy 2: performing two imputation analyses using R1 and

R2, respectively, as reference, and combining the imputed results

with results based on R2 selected when overlapping occurs;

Strategy 3: performing imputation using a combined reference

based on R1 and R2. The combined reference was obtained

through a two-step procedure: 1) imputed R2 by using R1 as

reference, and 2) combined R1 and the imputed results from R2.

For investigating the performance of these three strategies, we

used both simulated and empirical data. We evaluated three

factors affecting imputation accuracy, including LD level, MAF,

and marker density. We selected three commonly used imputation

methods: MACH [19], IMPUTE2 [20], and BEAGLE [2,21], all

of which have successfully improved power in association analyses

[5,20,22–24]. The results showed that strategy 2 has produced the

best imputation accuracy across all the conditions that we have

investigated.

Materials and Methods

Simulated data
To mimic the LD patterns of the observed human populations,

we simulated our data based on HapMap3 [13] and 1000

Genomes datasets [7]. We selected these two datasets for two

reasons. One is that they were the most popular reference sets used

for imputation, and the other is that they provide a contrast in

terms of genomic coverage and data accuracy. For example, the

HapMap data were based on direct genotyping from previously

discovered SNPs and have been scrutinized thoroughly, and were

expected to be of high accuracy. On the other hand, the currently

available 1000 Genomes datasets were based on low depth whole

genome sequencing data, and thus were regarded to be of lower

accuracy. Three segments of the chromosome 22 were selected for

subsequent analyses, ranging from 2.1 Mb to 4.2 Mb in length,

and with average recombination rates of 4.10 cM/Mb, 1.87 cM/

Mb, and 0.85 cM/Mb, corresponding to regions with low,

medium and high levels of LD. The simulations were performed

in the software package HAPGEN2 [25,26]. Ten replications were

performed for each condition. Briefly, the simulation process

included two steps:

Step 1: Sample and variant selection. We randomly selected

eighty CEU (Utah Residents with Northern and Western

European ancestry) individuals shared by HapMap3 project and

1000 Genomes project. The genetic variant data for the same

individual from different projects were combined as follows: when

genetic variants were observed in both projects, those from

HapMap3 were used; and variants observed in just one project

were kept as they were.

Step 2: Simulated sample generation, and reference and

validation sample determination. Based on the samples and

genetic variants selected in Step 1, we generated the phased

haplotype samples of 250 individuals using HAPGEN2. Among

these 250 individuals, fifty were selected as validation samples. For

these validation samples, a proportion of SNPs were randomly

selected as having known genotypes, and the remaining SNPs were

considered un-typed and their genotypes would be inferred

through imputation. The remaining 200 individuals simulated

by HAPGEN2 were randomly put into two groups, each with 100

samples, as reference populations. The first reference population

(R1) had its markers generated based on the 1000 Genomes

marker map to mimic a high marker density population. It also

had 2% randomly simulated error rate for its markers genotypes.

The second reference population (R2) had its markers generated

based on HapMap marker map, mimicking the low marker

density populations. It had a randomly simulated error rate of 1%

for its genotypes.

Empirical data
Phased haplotype data for CEU samples were downloaded from

the HapMap3 and 1000 Genomes websites. To obtain the

validation samples, we randomly chose 30 common individuals

between HapMap3 and 1000 Genomes projects. The remaining

individuals, 83 in the HapMap3 and 253 in the 1000 Genomes

were assigned into the HapMap3 reference samples and 1000

Genomes reference samples, respectively. To make the coordinate

consistency, we transferred the built 36 coordinates to build 37

coordinates through the UCSC LiftOver algorithm [27]. The

same three chromosomal regions on chromosome 22 used for the

simulated data were selected. In the validation samples, different

proportions of markers were masked, for studying imputation

accuracy. The analyses were then conducted for each of 10

replications, and imputation accuracy was reported.

Measures of imputation accuracy
Imputation accuracy was evaluated by two metrics: allele error

rate and rare variant error rate.

Allele error rate (AER). AER measures the proportion of

incorrectly imputed alleles, which was calculated as the total

number of errors divided by twice the total number of imputed loci

(the product of the number of individuals and the number of loci).

The number of errors was counted as 0 when the imputed and

observed marker genotypes were identical, 1 if the real marker

genotype was homozygous and the imputed genotype was

heterozygous (or vice versa), and 2 if real and imputed marker

genotypes were opposite homozygotes.

Rare variant error rate (RVER). RVER was calculated as

the total number of rare variant errors divided by the number of

rare variants, in consideration that most of rare variant association

analyses were based on rare variant number counts. The number

of errors was counted as 0 when the imputed rare variant and

observed variant types were identical, 1 if the real and imputed

marker type were opposite. All the homozygous sites and

heterozygous sites for rare variants were considered in the study.

Results

Analyses of simulated data
We first assessed the performance of the three strategies under

different LD levels (results shown in Figure 1A). Under every

strategy, AERs under decreased remarkably as LD became

stronger. For example, when the LD increased from low to high,

AERs for MACH decreased from 2.87% to 1.91% for strategy 1,

from 1.81% to 1.09% for strategy 2, and from 2.86% to 1.73% for

strategy 3, respectively. Similar trends were seen for the other two

imputation methods (Figure S1). Overall, strategy 2 yielded lowest

AERs among three strategies, and both strategy 2 and strategy 3

produced lower AERs than strategy 1 under all LD levels

simulated, indicating the performance advantages by strategies 2

and 3 over strategy 1.

Improve Imputation Accuracy by Combining Reference
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Figure 1. Effects of various factors on allele error rates (AERs). The results are obtained through the software MACH using simulated datasets.
(a) Effects of LD levels on AERs, under 25% marker density. (b) Effects of marker density, under medium LD level. (c) Effects of MAF bin of un-
genotyped SNPs, under 25% marker density and medium LD level.
doi:10.1371/journal.pone.0055600.g001
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The effects of marker density on AERs were shown in Figure 1B.

As expected, higher density of typed markers led to better

performances for imputation. For strategy 1, under the medium

LD level, the AER of MACH was 3.15% for 10% marker density

(one SNP per 10 SNPs). When the marker density increased to

25%, 50%, and 75%, the AERs decreased to 2.65%, 1.20%, and

0.96%, respectively. For strategy 2, the AERs decreased from

2.30% to 0.69%, and the AERs decreased from 3.09% to 0.89%

for the strategy 3, when the marker density increased from 10% to

75%. Similar trends were also observed for the other imputation

methods. Overall, AERs attained by strategy 2 and by strategy 3

were similar under higher marker density, but for low marker

density, AERs of strategy 2 was 26.91% lower under 10% marker

density and 41.34% lower under 25% marker density than those

of strategy 3. For all marker densities, strategy 2 and strategy 3

yielded lower AERs than strategy 1 did, again indicating the better

performance of strategies 2 and 3 than strategy 1.

Figure 1C showed the impacts of different MAF levels on

imputation accuracy for three strategies. In general, AERs

increased as MAFs of un-genotyped markers increased for any

combination of strategy and imputation software used. For

example, when the MAF interval increased from 0.05 to 0.45,

AERs for MACH increased from 1.65% to 4.98%, from 0.90% to

2.35%, and from 1.57% to 4.81%, under strategy 1, strategy 2,

and strategy 3 respectively. When the imputation accuracy was

compared across different strategies, superior results were usually

obtained by strategy 2, relative to those for strategy 1 and strategy

3; and similar results were obtained for strategy 3 and strategy 1.

The extent of superiority by strategy 2 varied with different MAF.

(See Table S1, S2, S3 for the detailed estimates used in Figure 1).

The imputation accuracy for rare variants, measured by rare

variant error rates (RVERs), under different situations were shown

in Figure 2. In general, RVERs decreased as MAF of un-

genotyped rare variants increased under medium LD level for all

three strategies. For example, when the MAF interval increased

from 0.5061022 to 4.5061022, RVERs for MACH decreased

from 5.28% to 2.29%, from 4.71% to 2.08%, and from 4.82% to

2.28%, for strategy 1, strategy 2, and strategy 3, respectively.

Similar trends were also observed for the other LD levels and/or

imputation methods. For between strategy comparisons, RVERs

for strategy 2 were on average 8.22% and 11.33%, respectively,

lower than those of strategy 3 and those of strategy 1 across the

MAF spectrum. Strategy 1 and strategy 3 were similar in terms of

RVERs at the higher minor allele frequency, and at 0.5061022 of

MAF, strategy 3 had 8.71% lower RVERs than those of strategy 1.

Analyses of empirical data
The observed effects of various factors, such as LD levels and

marker density, on the AERs and RVERs in the empirical data

were similar to those of the simulated data. For example, Figure 3A

displayed the falling trend of AERs with increasing LD levels. In

general, strategy 2 performed better than strategy 1 and strategy 3.

Figure 3B showed the falling trend of AERs with increasing

marker density, and Figure 3C showed the influence of MAF of

un-genotyped markers. Generally, MAF also had similar influence

on accuracy with that for the simulated datasets except for the high

minor allele frequency of 0.45 (See Table S4, S5, S6 for the

detailed estimates used in Figure 3). Similar trends were seen for

the other two imputation methods (Figure S2). Figure 4 presented

the falling trend of RVERs with increasing MAF of rare variants,

and this pattern was similar to that in simulated data sets, too.

Again, strategy 2 produced the best performance, and strategy 3

was superior to strategy 1.

Discussion

Missing genotypes can be imputed because unrelated individ-

uals usually share an expanded haplotype across regions in the

whole genome from common ancestors [1,9]. The reference

haplotype sets used for imputation methods are widely used by the

human genetics, and their quality will affect the imputation

accuracy in GWAS samples. When creating these reference

Figure 2. Influence of low frequency rare variant bin on rare variant error rates, under medium LD level and 25% marker density.
The results are obtained through the software MACH using simulated data.
doi:10.1371/journal.pone.0055600.g002
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datasets via imputation, it is clear that accuracy should be the most

important factor. Next generation sequencing technology will

allow researchers to assess many more SNPs. Specifically, 1000

Genomes panels will enable the imputation of many more rare

variants with a frequency of 1–5%. Compared to HapMap3, the

number of SNPs, haplotypes and populations in 1000 Genomes

will increase remarkably. The challenges of imputation analysis

will be in using the larger, more diverse set of references available

Figure 3. Effects of various factors on allele error rates. The results are obtained through the software MACH using empirical datasets. (a)
Effects of LD level on AERs, under 25% marker density; (b) Effects of marker density on AERs, under medium LD level. (c) Effects of MAF bin of un-
genotyped SNPs on AERs, under 25% marker density and medium LD level.
doi:10.1371/journal.pone.0055600.g003
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for imputation. In addition, as any haplotype estimates produced

from the 1000 Genomes Project data may have more instinctive

uncertainty than the HapMap3 haplotypes, owing to the low-

coverage sequencing used and the larger number of rare SNPs. As

new reference sets with ever larger numbers of variants and

haplotypes continue to be made available, GWASs will need to re-

impute their datasets from these reference sets.

In this study, we investigated and compared the performance of

three imputation strategies on the simulated and empirical data.

Using both simulated and empirical data sets, in comparing the

different strategies to one another, both strategy 2 and strategy 3

create the better results than the strategy 1, the reason is that both

strategies is combing more reference information. More references

will present supplementary information and will also create more

reliable estimates of measured parameters, resulting in generally

decreased error rate. For two combined strategies, strategy 2

produced better results than strategy 3, although most combined

method was imputing each other first, and then combined these

two references as one reference to impute the validation sample

(strategy 3). The reason was that strategy 2 avoided the noise

brought about because of repeated imputation (strategy 3), and

retained more reliable genotype information from high accuracy

reference. Another advantage of the strategy 2 was that it was

general enough to be used in order to combine the other re-

sequencing data with high coverage, due to avoid imputing

reference with each other. Because of this, it was also easy to

combine re-sequence data for special region to impute using

strategy 2, e.g. Exon, function region. In addition, for our study,

validation data and reference data were sampled from the same

population, which was the basic assumption for most of the

methods studied here. Imputation quality would be reduced with

the individuals from a less common ancestry. Importantly, several

previous studies have demonstrated the feasibility of using

homogeneous samples for reference data [20].

In our research, for rare variants, the results showed that rare

variant has higher RVER compared to the other frequency alleles.

For the common variants from our study, imputation results were

exceedingly accuracy and allow for integration of data sets in

meta-analyses. There were some reasons for that. Firstly, rare

variants were hard to impute computationally, a variant must be

detected several times within its haplotype, due to need high-

confidence haplotype information. Secondly, computational

approaches cannot impute de novo mutations in an individual,

unless mutations on the individual’s relative are available. Thirdly,

it was challenging to distinguish real rare alleles from sequencing

errors, particularly when individuals are sequenced at low depth

[28]. For solving these issues, sequencing data with high depth can

be used with the development of the next generation sequencing

technologies. In additional, based our strategies proposed, strategy

2 can increase the rare variant imputation accuracy by incorpo-

rating existing high accuracy reference or HapMap3 data into

next generation sequencing data. It is also another choice to

improve accuracy of the rare variant detection.

Our study provides a description of imputation performance for

multiple references under three strategies. Analysis of real data and

simulation study show that the strategy 2 (imputes samples by

using individual available data sets as independent references and

then combines the imputed samples) performs very well compared

to the other two strategies. Considering our results, investigators

may choose the most appropriate reference population and

imputation tool(s) to use based on their specific experimental

setting and available computational resources. Given the rapid

increase in use of next-generation sequencing technologies, our

results should be of value to both empiricists, during experimental

design, and to bioinformaticians who seek guidance for selecting

Figure 4. Influence of low frequency rare variant bin on rare variant error rates, under medium LD level and 25% marker density.
The results are obtained through the software MACH using empirical data.
doi:10.1371/journal.pone.0055600.g004
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appropriate imputation tool(s) and reference populations for data

analyses and who attempt improvement of the imputation.

The URLs for software and data presented herein are as

follows, the default parameter were used for all the three impute

software.

MACH: http://www.sph.umich.edu/csg/abecasis/MACH/

download/

IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/impute_v2.

html

BEAGLE: http://faculty.washington.edu/browning/BEAGLE/

BEAGLE.html

HAPGEN2: https://mathgen.stats.ox.ac.uk/genetics_software/

hapgen/hapgen2.html

Hapmap3: http://hapmap.ncbi.nlm.nih.gov/downloads/

phasing/2009-02_phaseIII/HapMap3 r2/

1000 Genomes: ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/release/20100804/

Supporting Information

Figure S1 Effects of LD levels on allele error rates for
three strategies with 25% marker density. (a) The results

are based on software Beagle. (b) The results are based on software

Impute2 using simulated data.

(TIF)

Figure S2 Effects of LD levels on allele error rates for
three software with 25% marker density. The results are

based on strategy 2 using empirical data.

(TIF)

Table S1 Effects of LD levels on allele error rates. The

results are based on the simulated data. The values in each cell are

mean6SD. The results are presented in Figure 1A in the main

text. The data are included here to allow distinction of lines, as

certain lines in the figure are close and may be difficult to be

distinguished.

(DOC)

Table S2 Effects of marker density on allele error rates.
The results are based on the simulated data. The values in each

cell are mean6SD. The results are presented in Figure 1B in the

main text. The data are included here to allow distinction of lines,

as certain lines in the figure are close and may be difficult to be

distinguished.

(DOC)

Table S3 Effects of MAF bin of un-genotyped SNPs on
allele error rates. The results are based on the simulated data.

The values in each cell are mean6SD. The results are presented

in Figure 1C in the main text. The data are included here to allow

distinction of lines, as certain lines in the figure are close and may

be difficult to be distinguished.

(DOC)

Table S4 Effects of LD levels on allele error rates. The

results are based on the empirical datasets. The values in each cell

are mean6SD. The results are presented in Figure 3A in the main

text. The data are included here to allow distinction of lines, as

certain lines in the figure are close and may be difficult to be

distinguished.

(DOC)

Table S5 Effects of marker density on allele error rates.
The results are based on the empirical datasets. The values in each

cell are mean6SD. The results are presented in Figure 3B in the

main text. The data are included here to allow distinction of lines,

as certain lines in the figure are close and may be difficult to be

distinguished.

(DOC)

Table S6 Effects of MAF bin of un-genotyped SNPs on
allele error rates. The results are based on the empirical

datasets. The values in each cell are mean6SD. The results are

presented in Figure 3C in the main text. The data are included

here to allow distinction of lines, as certain lines in the figure are

close and may be difficult to be distinguished.

(DOC)
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