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Abstract

Background: Injury is a leading cause of the global burden of disease (GBD). Estimates of non-fatal injury burden have been
limited by a paucity of empirical outcomes data. This study aimed to (i) establish the 12-month disability associated with
each GBD 2010 injury health state, and (ii) compare approaches to modelling the impact of multiple injury health states on
disability as measured by the Glasgow Outcome Scale – Extended (GOS-E).

Methods: 12-month functional outcomes for 11,337 survivors to hospital discharge were drawn from the Victorian State
Trauma Registry and the Victorian Orthopaedic Trauma Outcomes Registry. ICD-10 diagnosis codes were mapped to the
GBD 2010 injury health states. Cases with a GOS-E score .6 were defined as ‘‘recovered.’’ A split dataset approach was used.
Cases were randomly assigned to development or test datasets. Probability of recovery for each health state was calculated
using the development dataset. Three logistic regression models were evaluated: a) additive, multivariable; b) ‘‘worst
injury;’’ and c) multiplicative. Models were adjusted for age and comorbidity and investigated for discrimination and
calibration.

Findings: A single injury health state was recorded for 46% of cases (1–16 health states per case). The additive (C-statistic
0.70, 95% CI: 0.69, 0.71) and ‘‘worst injury’’ (C-statistic 0.70; 95% CI: 0.68, 0.71) models demonstrated higher discrimination
than the multiplicative (C-statistic 0.68; 95% CI: 0.67, 0.70) model. The additive and ‘‘worst injury’’ models demonstrated
acceptable calibration.

Conclusions: The majority of patients survived with persisting disability at 12-months, highlighting the importance of
improving estimates of non-fatal injury burden. Additive and ‘‘worst’’ injury models performed similarly. GBD 2010 injury
states were moderately predictive of recovery 1-year post-injury. Further evaluation using additional measures of health
status and functioning and comparison with the GBD 2010 disability weights will be needed to optimise injury states for
future GBD studies.
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Introduction

The Global Burden of Disease (GBD) Study estimated the

burden of injury based on selected injury health states [1,2]. The

injury health state can represent a specific injury (e.g. fractured

neck of femur) or a group of injuries (e.g. fractured humerus,

scapula or clavicle). A disability weight, and an estimated duration

of disability, were assigned to each injury health state, and then

combined with incidence or prevalence data for the health state to

calculate the associated Years Lived with Disability (YLD)

component of the Disability Adjusted Life Years (DALY), the

metric commonly used to calculate burden [1,3]. Hospitalisations

data were predominantly used to establish the incidence of the

injury health states and the principal (or first listed) diagnosis was

mapped to the injury health states for application of the disability

weight and duration, and calculation of YLDs.

Limitations to the GBD Study methodology have been

identified. Firstly, the number of health states was limited to 33,

and the extent to which these combine injuries with different

disability outcomes into a single injury health state was not

evaluated. Secondly, durations of disability were derived from

expert opinion, and disability weights from panel studies, rather

than empirical data questioning the validity of these key elements

of the YLD calculations. Thirdly, the approach ignored the
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potential impact of multiple injuries on disability estimates. The global

burden of disease estimates are being updated in the GBD 2010 Study

[4] and the Injury Expert Group (GBD-IEG) was established to

address the GBD study methodology used to estimate burden

of injury (http://sites.google.com/site/gbdinjuryexpertgroup/). This

group contributed to the revision of the ‘‘sequelae’’ or injury health

states with the number of injury health states expanded from 33 to 44.

However, an approach for handling multiple injuries in burden

estimates remains unclear.

It is common for more than one injury to occur in a single injury

event and for multiple injuries to be ICD-coded for an admission.

Two country-specific burden of injury studies have considered the

presence of multiple injuries in their burden estimates [5,6].

Mathers et al, estimated disability for only the most disabling injury

under the assumption that all disability was accounted for in the

weight of the most severe injury [7]. Naghavi et al considered the

presence of up to five concurrent injuries in their approach to

measuring the burden of injury and disease in Iran, under the

assumption that the presence or more than five concurrent injuries

was extremely rare [6]. A common disability weight was calculated

using the general formula for a multiplicative model [6]. Neither

study evaluated the validity of their approach to modelling injury

disability burden through comparison with alternative methods.

In contrast to the injury literature, a number of studies have

evaluated methods for modelling the impact of co-occurring

(comorbid) health conditions on health-related quality of life

(HRQL), with varying results [8,9,10]. Three main approaches

have been evaluated; minimal, additive and multiplicative models.

The ‘‘minimal’’ approach ignores co-existing injuries or conditions

and usually the worst injury or condition ‘‘trumps’’ the others.

With an additive or ‘‘constant decrement’’ model, many health

conditions are included in a single regression equation and the

assumption is made that the impact of each injury or health

condition is the same, regardless of the presence of others [8,10]. A

multiplicative model assumes that any injury or health condition is

a constant proportion of the overall health status or disability [10].

A recent study by Willis et al compared multiplicative, worst injury

and additive approaches to modelling the impact of multiple co-

existing ICD injury diagnoses on in-hospital mortality outcomes

and found that the additive, multivariable approach performed

best [11].

The aims of this study were to: (i) establish the 12-month

disability associated with each of the GBD 2010 injury health

states; and (ii) compare approaches to modelling the impact of

multiple injury health states on disability.

Methods

Ethics statement
The Victorian State Trauma Registry and the Victorian

Orthopaedic Trauma Outcomes Registry have been approved

by the Human Research Ethics Committee at each participating

hospital and the Monash University Human Research Ethics

Committee.

Dataset
Data from two large clinical registries were extracted for this

project. The Victorian State Trauma Registry (VSTR) is a

population-based trauma registry which captures data for all

major trauma patients in the state of Victoria (population 5.4

million) [12,13]. The VSTR collects data from all trauma

receiving hospitals in the state. A case is defined as major trauma

if it meets any of the following criteria [12,13]: death following

injury; an Injury Severity Score (ISS) .15; admission to an

intensive care unit (ICU) for .24 hours; or requiring mechanical

ventilation or urgent surgery (intra-thoracic, intra-abdominal,

intra-cranial, or fixation of pelvic or spinal fractures). The

Victorian Orthopaedic Trauma Outcomes Registry (VOTOR) is

a sentinel site clinical registry which collects data about all

orthopaedic trauma admissions to four hospitals in Victoria (two

major trauma services, one regional trauma service and one

metropolitan trauma service) [14]. Patients are eligible for

inclusion if they are admitted with a new orthopaedic injury and

have a length of stay greater than 24 hours. Pathological fracture

admissions are excluded.

The registries use an opt-off consent process where all eligible

cases are included on the registry, and patients (or their next of kin)

are provided with a letter and a brochure stating the aims of the

registry, the data collected, and that patients will be followed-up.

The brochure provides the details for how to opt-off and the opt-

off rate for both registries is less than 1%. At the follow-up

interview, verbal consent to complete the interview is obtained. An

opt-off consent is used due to the impracticability of informed

consent, and the potential for selection bias, in the registry setting

[15]. The registry protocols, including the described consent

process, have been approved by the Human Research Ethics

Committee of each participating hospital and Monash University.

Both registries routinely capture data from the patient’s hospital

admission including demographic, injury event, injury diagnosis,

comorbid status, treatment and in-hospital outcomes (i.e. mortal-

ity, length of stay, discharge destination, etc.).

Inclusion criteria
All cases aged 15 years and over, and with a date of admission

from 1 October 2006 to 30 June 2009 (inclusive), were extracted

for analysis to correspond with the commencement of routine 12-

month follow-up of VSTR patients. In-hospital deaths were

excluded, as were the less than 1% of cases where the hospital did

not provide ICD-10 diagnosis codes for the admission.

Data items
For all eligible cases, demographic details, comorbid status, injury

event details, in-hospital outcomes, all International Classification of

Diseases 10th Revision Australian modification (ICD-10-AM)

diagnosis codes and the 12-month functional outcome of patients

were extracted for analysis. The Charlson Comorbidity Index

(CCI) was used as a measure of comorbid status and involves the

weighting of 19 conditions to provide a single index of comorbid

status [16,17]. The 19 conditions were mapped to the CCI from

the ICD-10-AM diagnosis codes for each admission, resulting in a

weight of 1, 2, 3 or 6 [18]. If none of the ICD-10-AM diagnosis

codes for the CCI conditions was allocated to the admission, a

score of zero was recorded representing no comorbid conditions.

The ICD-10-AM injury diagnosis codes were extracted for

mapping to the GBD 2010 injury health states (http://sites.

google.com/site/gbdinjuryexpertgroup/Home/discussion-3-sequelae-

definition). Up to 40 individual ICD-10-AM diagnosis codes were

present for each admission.

Outcome
All adult ($15 years) VSTR and VOTOR survivors to hospital

discharge are followed-up at 6 and 12-months after injury using a

standardised telephone interview to collect measures of functional

and HRQL outcomes. The methodology for follow-up is

published in detail elsewhere [19]. The disability outcome of

interest for this project was the Glasgow Outcome Scale –

Extended (GOS-E) which classifies the patient’s level of func-

tion on a scale from death (GOS-E = 1) to upper good recovery
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(GOS-E = 8) [20]. For the purposes of this study, the GOS-E was

dichotomised for analysis. The GOS-E is commonly dichotomised

into a ‘‘good recovery’’ equivalent to a GOS-E score of 7 or 8, as

this corresponds to return to work and usual social and leisure

activities with no, or minimal, sequelae. The 12-month time point

was used because studies have shown minimal improvement in

disability outcomes after 12-months [21,22].

Data management and analysis
Descriptive statistics including mean and standard deviation, or

median and interquartile range, were used to summarise

continuous variables. Categorical variables were summarised

using case counts and percentages. Multiple response tables were

generated to define the distribution of GBD 2010 injury health

states across the cases. Injury-specific probabilities of recovery

(IPR) were generated for each injury health state as the proportion

of cases with the injury health state who achieved a GOS-E score

of 7 (lower good recovery) or 8 (upper good recovery) at 12-

months following injury. For the worst injury model, the lowest

IPR for each case was used in the model while the product of all

IPRs for each case was used in the multiplicative model.

Three approaches to modelling the relationship between injury

health state/s and disability were considered: a) an ‘‘additive’’ or

multivariable model where it was assumed that the impact of each

injury health state on disability was constant irrespective of the

presence of other injury health states or other covariates; b) a

‘‘worst injury’’ or minimal approach model where only the lowest

IPR was included in the model; and c) a ‘‘multiplicative’’ model

where the product of the IPRs was included in the model,

assuming that each injury health state contributed a constant

proportional decrement to outcome.

A split dataset approach was used [23], with the full dataset

randomly split into two equal sized samples. Models were

developed on the ‘‘training’’ dataset and then fitted to the ‘‘test’’

dataset to enable internal validation of the models. The IPRs from

the training dataset were used for all models (training and test).

All models were fitted with age, and then with and without

comorbid status, as previous studies using trauma registry data have

found no significant improvement in model performance from the

inclusion of comorbid status over age alone using mortality as the

outcome [11,18], while studies using hospitalisations have suggested

that the inclusion of comorbid status does improve the predictive

performance [24]. Consistent with other trauma populations

[11,18], the prevalence of admissions with a CCI greater than

one was low. Therefore, the CCI was categorised for analysis into 0

(no CCI condition), 1 (a CCI condition with a weighting of 1), 2

(CCI weighting $2). The models with comorbid status excluded

were compared with the models with comorbid status including

using a likelihood ratio test. Age was categorised into eight groups

for analysis (15–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84 and

$85 years) as age in its continuous form was not linearly related to

the log odds of recovery.

The predictive performance of the models was assessed in terms

of discrimination and calibration [23,25]. Calibration measures

how accurately the models predict over the entire range and was

assessed through computation of the Hosmer-Lemeshow (H–L)

statistic and the construction of calibration curves. The H–L

statistic partitions the observations into 10 equal groups based on

their predicted probabilities (i.e. deciles of risk). Chi-squared values

are then calculated as the squared differences between observed

and predicted outcomes in each decile, then summed for each

decile giving a chi-square value with 8 degrees of freedom [26].

Lower H–L statistics with a non-significant p-value are indicative

of higher model calibration. Calibration curves plot the observed

against the predicted events [27]. If there is agreement between

observed and predicted values over the whole range of

probabilities, the plot should show a 45u line. If the curve sits

above the 45u line, this is suggestive of model under-estimation in

that range of probability, and where the curve falls below the

equality line suggests over-estimation of the model.

The concordance, or C-statistic, was used as a measure of model

discrimination. This statistic measures the capacity of the model to

discriminate between participants who experience the outcome of

interest and those that do not [26,27]. For binary logistic

regression, the C-statistic is equivalent to the area under the

receiver operating characteristic (ROC) curve which plots the

sensitivity against 1-specificity over the range of probabilities. The

area under the ROC curve (AUC) ranges from zero to one. An

AUC equal to 0.5 suggests no discrimination while an AUC equal

to one represents perfect discrimination. Acceptable discrimina-

tion is generally defined as an AUC $0.7 and ,0.8, excellent

discrimination as an AUC $0.8 and ,0.9 and outstanding

discrimination as an AUC $0.9 [26]. All analyses were performed

using Stata Version 11.0 (Stata Corp, College Station, Texas). A p-

value ,0.05 was considered significant for all statistical tests.

Results

Overview of the dataset
There were 13,315 VSTR and VOTOR cases during the study

period who survived to hospital discharge. Of these, 1902 (14.3%)

were lost to follow-up, leaving 11,412 cases with a valid GOS-E

score at 12-months. Thirty-seven of the 44 GBD 2010 health states

were represented, of which 12 health states were present in less

than 100 cases. For these low frequency injury health states, the

case was removed if the low frequency health state was the only

injury sustained by the patient (n = 75).

Overall, there were 11,337 cases in the dataset for analysis, with

5,650 randomised to the training dataset and 5,687 cases to the test

dataset. The characteristics of cases in the training and test datasets

were comparable (Table 1 and Table 2). A single injury health state

was recorded for 46.5% of the training dataset cases and 46.0% of

the test dataset cases (Table 1), with a maximum of 16 injury health

states present per case. There were 1407 different patterns of

injuries in the training sample and 1371 patterns in the test dataset.

Functional outcomes at 12-months
Table 3 shows the profile of GOS-E scores for the 11,337 cases

at 12-months post-injury. At 12-months, 41.9% (n = 2370) of the

training dataset cases, and 41.6% (n = 2367) of the test dataset

cases had recovered, using a GOS-E score .6 as the definition of

recovery.

Model development (training dataset)
Injury-specific probabilities of recovery (IPR). The most

common injury health states represented in the dataset were

moderate/severe traumatic brain injury (TBI), open wounds,

severe chest injuries, lower and upper limb fractures, skull

fractures and organ injuries (Table 2). Twelve injury health

states were recorded for fewer than 50 cases; an injury-specific

probability of recovery (IPR) was not calculated as there were

insufficient cases to generate a robust estimate.

Table 4 provides the IPR for each injury health state. Spinal cord

injury, hip fracture, hip dislocation, and femoral fracture not

involving the neck demonstrated the lowest probability of recovery

and therefore the lowest IPR. The mean (SD) lowest IPR was 0.34

(0.08), and 0.20 (0.17) for the product of the IPRs, across the

training dataset.

Modelling Long Term Disability following Injury
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Model performance. Each model was fitted in the training

dataset, with the results shown in Table 5. There were no missing

data, and therefore all models were fitted on the full sample. All

models including age were a better fit for the data than models

fitted without age, and all models including comorbid status were a

better for the data than models fitted with age only(Table 5). The

additive and worst injury models demonstrated ‘‘acceptable’’

discrimination but the calibration was not adequate according to

the H-L statistic (Table 5). A test of equality of the AUC was

significant (X2
2 = 46.0, p,0.0001) indicating that the AUC was

not equal for all curves. The calibration curves were similar for all

models (fitted with age and comorbid status) and largely followed

the 45u line of best fit, although all models underestimated

recovery at lower recovery (Figure 1).

Model validation (test dataset)
The models, using the IPRs calculated from the training dataset

and adjusted for age and comorbid status, were fitted in the test

dataset, with the results shown in Table 6. The calibration of the

additive and worst injury models was adequate according to the

H-L statistic (Table 6). The discrimination of each model

decreased in the test dataset, although the pattern was similar to

the results from the training dataset, the additive and worst injury

models achieving the highest discrimination as shown by the AUC.

A test of equality of the AUC was significant (X2
2 = 25.3,

p,0.001) indicating that the AUC was not equal for all models.

The calibration curves for each model fitted in the test dataset are

shown in Figure 2. The overall calibration of the curves was

relatively consistent with the training models, with all models

underestimating recovery below 20%.

Discussion

The aims of this study were to explore, for the first time, the

GBD 2010 Study injury health states, and the performance of

different approaches to modelling the relationship between these

Table 1. Characteristics of trauma registry survivors to discharge (n = 11,337).

Variable Training dataset (n = 5650) Test dataset (n = 5687)

Age Mean (SD) years 52.8 (23.1) 52.9 (23.6)

Gender n (%)

Male 3352 (59.3) 3381 (59.5)

Female 2298 (40.7) 2306 (40.5)

Cause of injurya n (%)

Low fall 2068 (36.9) 2067 (36.6)

Motor vehicle 896 (16.0) 928 (16.4)

High fall 686 (12.2) 656 (11.6)

Motorcycle 579 (10.3) 585 (10.4)

Pedal cyclist 237 (4.2) 256 (4.6)

Pedestrian 249 (4.5) 256 (4.6)

Struck by/collision with person 195 (3.5) 183 (3.2)

Struck by/collision with object 157 (2.8) 169 (3.0)

Cutting/piercing object 76 (1.4) 87 (1.5)

Other 457 (8.2) 459 (8.1)

Charlson Comorbidity Index Weight n (%)

None 3888 (68.8) 3853 (67.8)

1 1281 (22.7) 1344 (23.6)

2–6 481 (8.5) 490 (8.6)

ICUb Admission n (%)

No 4740 (83.9) 4755 (83.7)

Yes 906 (16.1) 929 (16.3)

Hospital length of stay Median (IQRc) days 5.9 (3.0–11.1) 6.0 (3.0–11.1)

Number of injury health states n (%)

1 2627 (46.5) 2617 (46.0)

2 1303 (23.1) 1367 (24.0)

3 697 (12.3) 686 (12.1)

4 385 (6.8) 407 (7.2)

5 258 (4.6) 255 (4.5)

6 149 (2.6) 145 (2.6)

.6 231 (4.1) 210 (3.6)

aData missing for 91 cases.
bICU - Intensive Care Unit, data missing for 7 cases.
cIQR - Interquartile range.
doi:10.1371/journal.pone.0025862.t001
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injury health states and disability at 12-months following injury.

The data presented are important for guiding the methods for

estimating YLD as the study provides important information

about the prevalence of disability for each injury health state and is

the first to evaluate the relationship between multiple injuries and

disability following injury.

Using the injury health states generated for the GBD 2010

study, the prevalence of disability at 12-months post-injury across

the health states was high with more than half of the cohort still

affected by injury at this time point. The ‘‘worst injury’’, additive

and multiplicative models were developed in a training dataset and

then validated using a test dataset to explore and validate different

models for combining the full spectrum of injuries sustained. The

results showed concordance lower than methodologically similar

studies based on mortality outcomes, and no clearly superior

approach to modelling these injury health states to predict

recovery at 12-months following injury, although the additive

and ‘‘worst injury’’ models showed higher concordance and

discrimination than the multiplicative approach.

Numerous studies have modelled the relationship between

multiple injury diagnoses and mortality following injury

[11,24,28,29,30]. These studies have used routine hospital

administrative data and trauma registry data, and the individual

ICD diagnosis codes to model outcome. The concordance of

administrative hospital data studies using ICD-10-AM diagnoses

was higher, ranging from 0.78 to 0.91, although these studies used

large sample sizes ranging from 186,835 admissions to more than

500,000 admissions [24,30]. A study using Australian trauma

registry data compared multiplicative, additive and ‘‘worst injury’’

models for predicting mortality developed and validated in

samples of similar size to the current study (.5000) found

concordance ranging from 0.80 to 0.90 [11].

In comparison, the concordances observed in the test dataset in

the current study did not exceed 0.70, which equates to a 70%

chance that given two patients, one who will recover and one who

will continue to have disability at 12-months, the model will assign

a higher probability of recovery to the patient who recovers. Only

the additive and ‘‘worst injury’’ models demonstrated acceptable

calibration in the test dataset, suggesting problems with goodness-

of-fit for the multiplicative approach.

The lower concordance and variation from perfect fit of the

calibration curves could suggest that recovery after injury is more

difficult to predict than mortality and/or reflect the injury health

states evaluated. Cohort studies have found additional factors not

included in the current models, such as level of education, marital

status, socioeconomic status, compensation status and injury

severity, to be important predictors of long term outcome after

injury [22,31,32,33,34,35,36]. It is likely that the inclusion of

additional factors would increase the predictive performance of

the models. However, while the VSTR and VOTOR collect

many of these factors routinely, they are not considered by the

Table 2. Distribution of GBD 2010 injury health states by
study sample.

Injury health state descriptor

Training
dataset

Test
dataset

(n = 5650) (n = 5687)

n (%)a n (%)a

Moderate/severe traumatic brain injury 1519 (27.0) 1532 (26.9)

Open wound 1345 (23.8) 1422 (25.0)

Patella/tibia/fibula fracture 1155 (20.4) 1070 (18.8)

Vertebral column fracture 1099 (19.5) 1073 (18.9)

Severe chest injury 996 (17.6) 1012 (17.8)

Radius/ulna fracture 833 (14.7) 850 (14.9)

Clavicle/scapula/humerus fracture 875 (15.5) 769 (13.5)

Neck of femur fracture 767 (13.6) 764 (13.4)

Other muscle/tendon injury 500 (8.9) 521 (9.2)

Skull fracture 466 (8.3) 487 (8.6)

Other and unspecified injuries 458 (8.1) 519 (9.1)

Facial fracture 446 (7.9) 493 (8.7)

Abdominal/pelvic organ injury 439 (7.8) 480 (8.4)

Pelvic fracture 451 (8.0) 440 (7.7)

Foot bone fracture 330 (5.8) 309 (5.4)

Femur fracture – not involving neck 294 (5.2) 299 (5.3)

Sternal/single rib fracture 281 (5.0) 280 (4.9)

Hand/wrist fracture 204 (3.6) 215 (3.8)

Knee soft tissue injury 174 (3.1) 156 (2.7)

Shoulder soft tissue injury 154 (2.7) 144 (2.5)

Eye injury 156 (2.8) 129 (2.3)

Nerve injury 124 (2.2) 110 (1.9)

Spinal cord injury – neck level 84 (1.5) 80 (1.4)

Spinal cord injury – other 47 (0.8) 71 (1.3)

Hip dislocation 58 (1.0) 59 (1.0)

Burns – minor 30 (0.5) 25 (0.4)

Poisoning 14 (0.3) 22 (0.4)

Burns $20% body surface area 12 (0.2) 12 (0.2)

Lower airway burns 11 (0.2) 14 (0.3)

Finger amputation 7 (0.1) 6 (0.1)

Other fracture 4 (0.1) 5 (0.1)

Amputation of one upper limb 4 (0.1) 3 (,0.1)

Burns – other serious 4 (0.1) 4 (0.1)

Amputation of one lower limb 4 (0.1) 5 (0.1)

Crush injury 2 (,0.1) 2 (,0.1)

Thumb amputation 2 (,0.1) 2 (,0.1)

Drowning/non-fatal submersion 1 (,0.1) 3 (,0.1)

aTotal percentage .100% as cases can have more than one injury health state.
doi:10.1371/journal.pone.0025862.t002

Table 3. Functional outcomes at 12-months.

GOS-Ea score

Training
dataset Test dataset

(n = 5650) (n = 5687)

n (%) n (%)

1 Death 377 (6.7) 420 (7.4)

2 Vegetative state 12 (0.2) 24 (0.4)

3 Lower severe disability 691 (12.2) 681 (12.0)

4 Upper severe disability 320 (5.7) 336 (5.9)

5 Lower moderate disability 786 (13.9) 710 (12.5)

6 Upper moderate disability 1094 (19.4) 1149 (20.2)

7 Lower good recovery 901 (15.9) 957 (16.8)

8 Upper good recovery 1469 (26.0) 1410 (24.8)

aGlasgow Outcome Scale – Extended.
doi:10.1371/journal.pone.0025862.t003
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GBD Study in the calculation of the YLD component of

the DALYs for injury and were therefore excluded from this

study.

Most studies of mortality following injury have used individual

ICD diagnosis codes to represent injury conditions in models. In

the current study, we modelled ICD-coded data after collapsing

Table 4. Injury-specific probability of recovery (IPR) for each injury health state calculated from the training dataset (n = 5650).

Injury health state Cases Recovered IPRa (95% CI)

(n) (n)

Spinal cord injury – neck 84 18 0.21 (0.13, 0.30)

Neck of femur fracture 767 169 0.22 (0.19, 0.25)

Hip dislocation 58 14 0.24 (0.13, 0.35)

Femur fracture – not involving neck 294 70 0.24 (0.19, 0.29)

Spinal cord injury – other 47 12 0.26 (0.13, 0.38)

Nerve injury 124 35 0.28 (0.20, 0.36)

Eye injury 156 47 0.30 (0.23, 0.37)

Pelvic fracture 451 141 0.31 (0.27, 0.36)

Other and unspecified injuries 458 153 0.33 (0.29, 0.38)

Facial fracture 446 150 0.34 (0.29, 0.38)

Open wound 1365 464 0.34 (0.32, 0.37)

Moderate/severe traumatic brain injury 1519 535 0.35 (0.33, 0.38)

Vertebral column fracture 1099 381 0.35 (0.32, 0.38)

Skull fracture 466 168 0.36 (0.32, 0.40)

Severe chest injury 996 357 0.36 (0.33, 0.39)

Knee soft tissue injury 174 62 0.36 (0.29, 0.43)

Foot bone fracture 330 118 0.36 (0.31, 0.41)

Sternal/single rib fracture 281 104 0.37 (0.31, 0.43)

Hand/wrist fracture 204 82 0.40 (0.33, 0.47)

Shoulder soft tissue injury 154 61 0.40 (0.32, 0.47)

Clavicle/scapula/humerus fracture 875 353 0.40 (0.37, 0.44)

Abdominal/pelvic organ injury 439 179 0.41 (0.36, 0.45)

Patella/tibia/fibula fracture 1155 521 0.45 (0.42, 0.48)

Other muscle/tendon injury 500 229 0.46 (0.41, 0.50)

Radius/ulna fracture 833 419 0.50 (0.47, 0.54)

aIPR; Injury probability of recovery.
doi:10.1371/journal.pone.0025862.t004

Table 5. Discrimination and calibration of models in training dataset (n = 5650).

Model Area under curve H-La statistic LRb test

(95% CI) (p-value) (p-value)

Additive Unadjustedc 0.67 (0.65, 0.68) 18.63 (0.017)

Age 0.70 (0.69, 0.72) 23.92 (0.002) 232.58 (,0.001)

Age and comorbidity 0.72 (0.70, 0.73) 16.50 (0.036) 98.81 (,0.001)

Worst injury Unadjusted 0.66 (0.64, 0.67) 6.91 (0.546)

Age 0.69 (0.67, 0.70) 20.80 (0.008) 70.00 (,0.001)

Age and comorbidity 0.70 (0.69, 0.72) 16.05 (0.042) 117.24 (,0.001)

Multiplicative Unadjusted 0.61 (0.59, 0.62) 114.94 (,0.001)

Age 0.68 (0.67, 0.69) 36.22 (,0.001) 338.94 (,0.001)

Age and comorbidity 0.69 (0.68, 0.71) 11.99 (0.152) 117.15 (,0.001)

aHosmer-Lemeshow statistic.
bLikelihood ratio test.
cModel fitted without age or comorbidity.
doi:10.1371/journal.pone.0025862.t005
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the more than 1200 ICD-10 injury diagnosis codes into 44 GBD

2010 injury health states. Many of the injury health states combine

a number of injury diagnoses, potentially combining injuries with

different probabilities of recovery and duration of disability into a

single group. Evidence of this heterogeneity can be seen in Table 4.

The most specific injury health states performed as expected. For

example, spinal cord injury at the neck level was associated with

the lowest probability of recovery, and fractures to the femur (neck

or other) also demonstrated low probabilities of recovery, which

is consistent with clinical and cohort studies. Similarly, the

probability of recovery for patients with radius and ulna (forearm)

fractures was highest, reflecting the usually low severity and short

recovery time of this injury, and the fact that cases occur most

commonly in isolation. An exception is the ‘‘moderate and severe

traumatic brain injury’’ health state, which showed a higher

probability of recovery than expected, given that severe brain

injury commonly leads to marked and permanent disability.

Where injuries with different probabilities of recovery are bundled

together into a single health state, the overall probability of

recovery will be heavily influenced by the more prevalent

condition. In this instance, moderate traumatic brain injury is

more common than severe traumatic brain injury, potentially

explaining the higher than expected IPR for this health state.

While grouping ICD codes into the GBD 2010 injury health states

certainly increases heterogeneity, it should be acknowledged that

the ICD-10-AM classification itself cannot be expected to achieve

complete homogeneity in the groups of cases that it distinguishes,

further challenging the development of optimal injury health

states.

Overall, more than half of the study sample had sustained more

than one injury health state, with 7% sustaining more than five, an

occurrence considered ‘‘extremely rare’’ by the authors of the

Iranian burden of disease and injury study[6]. The prevalence of

multiple injuries reflects the inclusion criteria of the registries,

particularly the VSTR, but highlights the need to develop an

approach for consideration of multiple injuries in burden

estimates. Previous burden of injury studies have used a

multiplicative approach [6] or a ‘‘worst injury’’ approach [5],

but previous studies have not compared different approaches. In

the current study, the additive model performed better for

modelling the presence of multiple injuries than the multiplicative

model, consistent with the mortality study of Willis et al [11], but

was similar in performance to the ‘‘worst injury’’ model. The

findings support the approach used by Mathers et al and suggest

that an additive model performs better than multiplicative

approaches when combining all injuries sustained.

This is the first study investigating modelling approaches to

disability after injury and limitations of the study require

acknowledgement. The data were drawn from trauma registries

which focus on severe and orthopaedic injury cases. Consequently,

some GBD injury health states were not represented at all in the

data or were represented by too few cases to generate a reliable

estimate of the probability of recovery. Additionally, injury health

Figure 1. Calibration curves for models including age and comorbid status fitted in the training dataset (n = 5650). The figure is a plot
the predicted versus the observed recovery in the training dataset. The 45u line represents perfect fit of the model.
doi:10.1371/journal.pone.0025862.g001

Table 6. Discrimination and calibration of models adjusted
for age and comorbid status fitted in the test dataset
(n = 5687).

Model Area under curve H-L statistica

(95% CI) (p-value)

Additive 0.70 (0.69, 0.71) 12.77 (0.120)

Worst injury 0.70 (0.68, 0.71) 12.83 (0.118)

Multiplicative 0.68 (0.67, 0.70) 25.79 (0.001)

aHosmer-Lemeshow statistic.
doi:10.1371/journal.pone.0025862.t006
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states involving combined more than one injury type were likely to

be over-represented by the more severe injury in the injury health

state. For example, moderate to severe TBI would likely include a

higher proportion of severe head injured patients than a more

general hospital discharge dataset due to the inclusion criteria for

the VSTR. The implications of the case-mix on the generalisa-

bility of the study findings are not clear as comparable disability

datasets are not available. However, given that hospital discharge

datasets would likely contain a wider distribution of injury

severities, and greater heterogeneity in disability outcomes, the

potential for reduced model fit is possible.

The follow-up rate at 12-months was 86% of all registered

patients. Whether the disability outcomes of the patients lost to

follow-up differed to the respondents is not known. It should be

noted that follow-up commenced for nearly all patients who

survived to discharge, because only about 1% of patients had

opted-out of the registers. In contrast, studies based on an opt-in

consent process typically can commence follow-up on only about

half of the discharged patients, with much greater potential for

bias [15,19]. The study involved internal model validation, with

the test dataset drawn from the same population as the training

dataset, an approach likely to give optimistic results in the test

dataset due to the similarity of the datasets [23]. External

validation is desirable.

Overall, the majority of patients survived their injuries but were

not fully recovered 12 months after onset. The evident potential

for injury patients developing persistent disability highlights the

importance of improving methods for estimating of the burden of

non-fatal injury, and for applying them. This study was a first

attempt to assess the relationship between the 2010 GBD injury

health states and long term disability, including the investigation of

modelling different methods of handling multiple injuries. The

results show that the additive and ‘‘worst injury’’ models

performed better than the multiplicative model, although

concordance did not exceed 0.70 for any model. Factors likely

to have contributed to the relatively poor fit were heterogeneity for

the study outcome in at least some of the GBD 2010 injury health

states, and use of models that did not include certain known

predictors of the outcome (in order to replicate GBD methods).

The next steps will be to investigate improved classification of

injury health states, the handling of post-discharge and longer

term mortality in burden estimates, and investigation of additional

outcomes such as health-related quality of life. The burden based

on GBD 2010 Disability Weights, which had not been released at

the time of writing, will be compared with burden based on

prospectively measured outcomes.

Acknowledgments

The investigators, project staff (Mimi Morgan, Sue McLellan, Melissa

Hart, Ann Sutherland), data collectors and participating hospitals of the

Victorian State Trauma Registry and the Victorian Orthopaedic Trauma

Outcomes Registry are thanked for their assistance in this project. Andrew

Hannaford is sincerely thanked for his assistance in extracting the data for

analysis.

Author Contributions

Conceived and designed the experiments: BJG JEH RAL DJ. Performed

the experiments: BJG DJ. Analyzed the data: BJG DJ. Wrote the paper:

BJG JEH RAL DJ.

References

1. Lopez A (2005) The evolution of the Global Burden of Disease framework for

disease, injury and risk factor quantification: developing the evidence base for

national, regional and global public health action. Global Health 1:

doi:10.1186/1744-8603-1181-1185.

Figure 2. Calibration curves for models including age and comorbid status fitted in the test dataset (n = 5687). The figure is a plot the
predicted versus the observed recovery in the test dataset. The 45u line represents perfect fit of the model.
doi:10.1371/journal.pone.0025862.g002

Modelling Long Term Disability following Injury

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e25862



2. Lopez A, Mathers C, Ezzati M, Jamison D, Murray C, eds (2006) Global burden

of disease and risk factors. New York: Oxford University Press.
3. Murray C, Lopez A, eds (1996) The Global Burden of Disease: a comprehensive

assessment of mortality and disability from diseases, injuries, and risk factors in

1990 and projected to 2020. Cambridge, MA: Harvard School of Public Health
on behalf of the World Health Organization and the World Bank.

4. Bhalla K, Harrison J, Abraham J, Borse N, Lyons R, et al. (2009) Data sources
for improving estimates of the global burden of injuries: Call for contributors.

PLOS Med 6: 22–24.

5. Mathers C, Vos E, Stevenson C, Begg S (2001) The burden of disease and injury
in Australia. Bull Wrld Health Organ 79: 1076–1084.

6. Naghavi M, Abolhassani F, Poumalek F, Moradi Lakeh M, Jafari N, et al. (2009)
The burden of disease and injury in Iran 2003. Popul Health Metr 7:

doi:10.1186/1478-7954-7-9.
7. Mathers C, Vos E, Stevenson C (1999) The burden of disease and injury in

Australia. Canberra: Australian Institute of Health and Welfare. Accessed 25

April 2011 at: http://www.aihw.gov.au/publications/phe/bdia/bdia.pdf.
8. Dale W, Basu A, Elstein A, Meltzer D (2008) Predicting utility ratings for joint

health states from single health states in prostate cander: Empirical testing of 3
alternative theories. Med Dec Making 28: 102–112.

9. Flanagan W, McIntosh C, Le Petit C, Berthelot J (2006) Deriving utility scores

for co-morbid conditions: a test of the multiplicative model for combining
individual condition scores. Popul Health Metr 4: doi: 1186/1478-7954-4-13.

10. Hanmer J, Vanness D, Gangnon R, Palta M, Fryback D (2010) Three methods
test to model SF-6D health utilities for health states involving comorbidity/co-

occurring conditions. J Clin Epidemiol 63: 331–341.
11. Willis C, Gabbe B, Jolley D, Harrison J, Cameron P (2010) Predicting trauma

patient mortality: ICD (or ICD-10-AM) versus AIS based approaches.

Aust N Z J Surg 80: 802–806.
12. Cameron P, Finch C, Gabbe B, Collins L, Smith K, et al. (2004) Developing

Australia’s first statewide trauma registry - What are the lessons? Aust N Z J Surg
74: 424–428.

13. Cameron P, Gabbe B, McNeil J, Finch C, Smith K, et al. (2005) The trauma

registry as a state-wide quality improvement tool. J Trauma 59: 1469–1476.
14. Edwards E, Graves S, McNeil J, Williamson O, Urquhart D, et al. (2006)

Orthopaedic trauma: Establishment of an outcomes registry to evaluate and
monitor treatment effectiveness. Injury 37: 95–96.

15. Tu J, Willison D, Silver F, Fang J, Richards J, et al. (2004) Impracticability of
informed consent in the registry of the Canadian Stroke Network. NEJM 350:

1414–1421.

16. Charlson M, Pompei P, Ales K, MacKenzie C (1987) A new method of
classifying prognostic comorbidity in longitudinal studies: Development and

validation. J Chronic Dis 40: 373–383.
17. Librero J, Peiro S, Ordinana R (1999) Chronic comorbidity and outcomes of

hospital care: length of stay, mortality, and readmission at 30 and 65 days. J Clin

Epidemiol 52: 171–179.
18. Gabbe B, Magtengaard K, Hannaford A, Cameron P (2005) Is the Charlson

Comorbidity Index useful for predicting trauma outcomes? Acad Emerg Med
12: 318–321.

19. Gabbe B, Sutherland A, Hart M, Cameron P (2010) Population-based capture

of long-term functional and quality of life outcomes after major trauma - the

experiences of the Victorian State Trauma Registry. J Trauma 69: 532–536.

20. Wilson J, Pettigrew L, Teasdale G (1998) Structured Interviews for the Glasgow

Outcome Scale and the Extended Glasgow Outcome Scale: Guidlines for Their

Use. J Neurotrauma 15: 573–585.

21. Baldry Currens J, Coats T (2000) The timing of disability measurements

following injury. Injury 31: 93–98.

22. Holbrook TL, Anderson JP, Sieber WJ, Browner D, Hoyt DB (1999) Outcome

after major trauma: 12-month and 18-month follow-up results from the Trauma

Recovery Project. J Trauma 46: 765-771; discussion 771-763.

23. Altman D, Vergouwe Y, Royston P, Moons K (2009) Prognosis and prognostic

research: validating a prognostic model. BMJ 338: 1432–1435.

24. Davie G, Cryer C, Langley J (2008) Improving the predictive ability of the ICD-

based Injury Severity Score. Inj Prev 14: 250–255.

25. Royston P, Moons K, Altman D, Vergouwe Y (2009) Prognosis and prognostic

research: Developing a prognostic model. BMJ 338: b604.

26. Hosmer D, Lemeshow S (2000) Applied Logistic Regression. New York: John

Wiley & Sons, Inc. pp 91–116.

27. Altman D, Royston P (2000) What do we mean by validating a prognostic

model? Stat Med 19: 453–473.

28. Kilgo P, Osler T, Meredith W (2003) The worst injury predicts mortality

outcome the best: rethinking the role of multiple injuries in trauma outcome

scoring. J Trauma 55: 599–607.

29. Osler T, Rutledge R, Deis J, Bedrick E (1996) ICISS; An International

Classification of Disease 9 Based Injury Severity Score. J Trauma 41: 380–388.

30. Stephenson S, Henley G, Harrison J, Langley J (2004) Diagnosis based injury

severity scaling: investigation of a method using Australian and New Zealand

hospitalisations. Inj Prev 10: 379–383.

31. Harris I, Young J, Rae H, Jalaludin B, Solomon M (2008) Predictors of general

health after major trauma. J Trauma 64: 969–974.

32. Holbrook T, Anderson J, Sieber W, Browner D, Hoyt D (1998) Outcome after

major trauma: discharge and 6-month follow-up results from the trauma

recovery project. J Trauma 45: 315–324.

33. MacKenzie E, Bosse M, Kellam J, Pollak A, Webb L, et al. (2006) Early

predictors of long-term work disability after major limb trauma. J Trauma 61:

688–694.

34. MacKenzie E, Morris J, Jurkovich G, Yasui Y, Cushing B, et al. (1998) Return

to work following injury: the role of economic, social and job-related factors.

Am J Pub Health 88: 1630–1637.

35. Ringburg A, Polinder S, van Ierland M, Steyerberg E, van Lieshout E, et al.

(2011) Prevalence and prognostic factors of disability after major trauma.

J Trauma 70: 916–922.

36. Vles W, Steyerberg E, Essink-Bot M, van Beeck E, Meeuwis J, et al. (2005)

Prevalence and determinants of disabilities and return to work after major

trauma. J Trauma 58: 126–135.

Modelling Long Term Disability following Injury

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e25862


