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Abstract

Improved understanding of how the human brain is ‘‘wired’’ on a macroscale may now be possible due to the emerging
field of MRI connectomics. However, mapping the rapidly developing infant brain networks poses challenges. In this study,
we applied an automated template-free ‘‘baby connectome’’ framework using diffusion MRI to non-invasively map the
structural brain networks in subjects of different ages, including premature neonates, term-born neonates, six-month-old
infants, and adults. We observed increasing brain network integration and decreasing segregation with age in term-born
subjects. We also explored how the equal area nodes can be grouped into modules without any prior anatomical
information – an important step toward a fully network-driven registration and analysis of brain connectivity.
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Introduction

Characterizing the structure, performance, and plasticity of the

human brain network and its trajectory across the lifespan is a

fundamental goal of neuroscience. The field of connectomics uses

non-invasive technologies, including resting-state and task-based

fMRI, MEG, and EEG (function), as well as diffusion tractography

and morphometric imaging (structure) to map brain networks at

the macroscopic scale and thereby allow their analysis using graph

theory [1], [2].

While the ultimate goal of connectivity studies is improved

understanding of brain function, a strategic way to approach this

goal is to characterize the physical connections that mediate

information transfer between cortical regions [3]. Refinement of

structural brain networks during the course of human develop-

ment has recently been explored by several groups [4–7]. The

main observations are summarized in Table 1. Increasing global

efficiency and decreasing clustering coefficients (and, hence, local

efficiency) were observed in the late developing brain (2–18 years)

[4]. Constant global efficiency and increased local efficiency were

measured in a longitudinal DTI-based study of subjects at the ages

of 2 weeks, 1 year, and 2 years [5]. Another longitudinal study of

subjects at 1 month, 1 year, and 2 years, where the brain networks

were derived from morphological correlations of brain region

volumes, reported increasing global efficiency, and, from 1 to 2

years, increasing local efficiency [6]. Finally, Khundrakpam et al.

[7] reported the presence of a critical time window in late

childhood (8.5–11.3 years) with increased global efficiency and

decreased local efficiency, indicating that structural brain networks

may take on a more random configuration during this develop-

mental period, associated with greater plasticity.

The youngest subjects studied were two-week-old term-born

neonates [5] (Table 1). Studying brain networks in neonates and

infants is a challenging task, as the brain at this time is small, with

rapidly changing size, regional topology and myelination. These

dynamic features of the developing brain raise the question of how

to define the nodes of the brain network or, equivalently, define

the cortical parcellation. Khundrakpam et al. [7] considered the

template-based brain parcellation used in their study to be a

methodological limitation, stating that ‘‘the use of an alternative

with higher resolution which is not constrained by anatomical

landmarks is needed in the future.’’ Fan et al. also noted that

anatomical brain regions defined in the atlas used in their study

might not match with function and anatomy very well during early

brain development [6]. In contradistinction, the recently devel-

oped ‘‘baby connectome’’ framework for studying structural

connectivity in infants is based on an automated template-free

parcellation scheme and can facilitate the mapping of brain

networks in the rapidly developing brain [8]. The suggested

method utilizes equal area sphere partitioning, a generalized

approach that avoids anatomic constraints and is therefore less

intrinsically biased than atlas-based approaches. It has been

applied in a hypoxic ischemic encephalopathy (HIE) cohort at the

age of six months at the University of California San Francisco, in

which a correlation between global network properties and

neurological outcome was observed [8].

The purpose of the present study was to examine the

maturational changes of the cortical connectome in subjects
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across the age spectrum, from premature neonates to term-born

neonates, six-month-old infants, and adults using a template-free

analysis of white matter connectivity. We hypothesized that the

template-free cortical connectome integration and segregation

metrics (or global and local efficiency respectively) are different in

maturation. Given the partially contradictory results reported by

previous studies (Table 1), our hypothesis did not specify whether

an increase or decrease in those metrics would be observed with

age.

Results

Figure 1 qualitatively illustrates the developmental trajectory of

the structural brain network for a representative subject from each

group. The following is shown for each subject: an anatomic T2-

weighted image, a tractogram, a weighted graph, and a reordered

connectivity matrix. Differences in the physical size of the brains

can be appreciated. The histograms of the connection lengths in

cortical networks averaged across subjects within each group

(Fig. 2) showed a typical reduction of the frequency over distance

[9].

Changes in Global Topological Properties with Age
The results of group analysis are shown in Figure 3. The

absolute values for the clustering coefficients and characteristic

path lengths in the adult group (Fig. 4) were similar to the

previously reported values in the adult population based on

diffusion tensor imaging (DTI) and atlas-based networks [10].

Since the clustering coefficient and characteristic path length are

correlated with edge density, it is crucial that differences between

networks’ segregation and integration measures are not just caused

by differences in the edge density measure [9]. The edge density,

which is the proportion of connections that exists relative to the

number of potential connections of a network, varied across

groups, ranged from 5.6% to 10.3%, and was higher in the

preterm group and adults (Fig. 4). Previously reported values for

the cortico-cortical fiber tract connectivity of the mammalian

brain ranged from 10% to 30% [9].

We established the integration and segregation metrics by

comparing them with null-hypothesis networks that have a

random topology but share the size and edge density [11]. The

group comparison of the scaled characteristic path length showed

a negative trend with increasing age, reflecting increasing

integration (Fig. 3). Also, an age-dependent decrease of the scaled

clustering coefficient was observed, meaning a decrease in the

presence of strongly connected communities, i.e. segregation.

Since the decrease in the scaled clustering coefficient was stronger

than that of the scaled path length, the small-world index

decreased with age (Fig. 3). Our results showed that the clustering

coefficients of the structural brain networks were about five times

larger than those of random networks, whereas the ratio L/Lrand

was close to one, leading to a conclusion that networks at all ages

displayed small-world properties. Maximized modularity, which

similarly to the clustering coefficient reflects the natural segrega-

tion within a network, also decreased with age (Fig. 3). Only some

of the group differences were statistically significant (Fig. 3).

Changes in Local Topological Properties with Age
The spatial distribution of node degree in representative

subjects from the four different groups is shown in Figure 1C.

The size of the nodes is proportional to the node degree. The

intersubject variability of the graphs within the adult age group is

shown in Figure 5. Nodes with a large node degree, referred to as

network hubs, were located in the posterior cortex in the adults.

The node degree distribution in different age groups is shown in

Figure 6. Due to the relatively low number of nodes, it was not

possible to directly test whether the networks were scale-free [9].

The degree distribution of scale-free networks follows a power law,

which indicates a network’s resilience [11]. Nevertheless, we

observed highly connected nodes that are unlikely to occur in

random networks, this trend being most prominent in the adult

group.

Modules
Using the maximized modularity, we determined the optimal

number of modules that was relatively consistent in all groups: 5–6

modules (average 5.38) in the preterm group, 5–7 modules

(average 5.75) in the term-born neonates, 5–8 modules (average

6.6) in the six-month-old infants, and 5–7 modules (average 5.71)

in the adults. Under the assumption that the main structural

modules are stable across development, we fixed the number of

modules to the lower limit of five modules and analyzed the

resulting modular structure in all subjects. In Figure 7, we

selectively show the obtained network-driven segmentation of the

cortex into five modules for subjects from all age groups that

showed a similar pattern. It should be emphasized that no prior

anatomical information was used to find the modules. The

network nodes belonging to the same module were assigned one

color and mapped back to the cortex. We observed that spatially

adjacent regions tend to belong to the same module [4].

Moreover, correspondence to known anatomy was observed.

Discussion

In the present study, diffusion tensor MRI was applied to study

maturational changes in structural brain connectivity from the first

Table 1. MRI studies of structural brain networks in development.

References Subjects Method Parcellation Network changes with age

Hagmann et al., 2010 [4] 30 subjects: 2 y–18 y DTI 66 or 241 nodes,
landmark-based

global efficiency q, clustering Q

Yap et al., 2011 [5] 39 subjects: 2 w, 1 y,
2 y longit.

DTI 78 nodes, AAL global efficiency constant, local efficiency q

Fan et al., 2011 [6] 28 subjects: 1 mo, 1 y,
2 y longit. +27 adults

GM volume
correlation

90 nodes, AAL global efficiency q, modularity q from 1 y
to 2 y

Khundrakpam et al., 2012 [7] 203 subjects: 5–8 y,
8–11 y, 11–15 y, 15–18 y

cortical thickness
covariance

78 nodes, AAL local efficiency Q, modularity Q, global
efficiency q in late childhood

AAL – Anatomical Automatic Labeling atlas.
doi:10.1371/journal.pone.0063310.t001

Diffusion MRI Brain Networks
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Figure 1. Maturation of the ‘‘baby connectome’’: examples of brain networks at four different ages. (A) Anatomic MRI images (3T, T2-
weighted fast spin-echo pulse sequence, echo train length 16, TR/TE = 5000/120 ms, 5126512 matrix, in-plane resolution 0.460.4 mm2, slice
thickness 3 mm, 2 averages). (B) Tractograms reconstructed based on DTI data. Visualization: minimum length 15 mm, skip 90%. (C) Brain networks
represented as weighted graphs. The size of the nodes is proportional to the node degree. The edge weights are proportional to the streamline
count. (D) Binary connectivity matrices, reordered in a way that maximizes the number of connections close to the main diagonal (1,000,000
reordering attempts). Note: the 6 days and 6 months networks were mapped in the same infant longitudinally.
doi:10.1371/journal.pone.0063310.g001

Diffusion MRI Brain Networks
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days of life without any assumptions with respect to gyral or sulcal

anatomic landmarks. Our main finding is that a basic modular

network topology is present in the brain from the first days of life,

long before myelination is complete. We also observed increasing

brain network integration and decreasing segregation with age in

term-born subjects.

One of the principal benefits of using network analysis in

neuroimaging research is the provided abstraction that can reduce

the complexity and hide features of high variability such as brain

size and surface shape to help identify similarities and differences

in the organization of neural networks [9]. However, for network

representations to be a truly abstract way of looking at neural

systems, the following factors have to be eliminated from network

models of nodes: the location, size, and functional properties of the

nodes. Naturally, anatomical or spatial information can be used in

the subsequent analysis, where it can no longer introduce biases.

We find this to be especially crucial in studying the developing

brain, which motivated our template-free approach. Apart from

allowing for abstraction, this approach can lead to finding a

network-driven common space for the brain. Finding meaningful

anatomical and functional subdivisions of the human brain has

been an area of interest since the times of phrenology. The

established anatomical parcellations are based on anatomical

landmarks or on cytoarchitectonic differences between regions,

known as Brodmann’s areas [12]. Interestingly, Brodmann himself

noted that the borders of the areas do not match, with a few

exceptions, sulci and gyri of the cortical surface or any other

external morphological features [13], [14]. By finding brain

modules without any prior information and creating an atlas

tailored to the individual subject one can account for inter-subject

variability within age groups and, importantly for our purpose,

study the developing brain. We performed connectivity-based

cortical segmentation into modules using a spectral community

detection algorithm. Determining the optimal number of clusters is

a much-debated problem in the field of community detection. In

this study, we used maximized modularity to determine the

optimal number of modules that was relatively consistent across

groups. Assuming the stability of the main structural modules

across development, we used the lower limit of five modules.

There was a large degree of variability between subjects, but the

resulting parcellations match anatomy reasonably well and can be

used as the first iteration in the co-registration of networks (Fig. 7).

The essence of neural function is communication, which is

organized around two complementary principles: functional

specialization/segregation and functional integration. Network

segregation is usually characterized by the average clustering

coefficient, whereas network integration is characterized by the

characteristic path length. The clustering coefficient reflects the

local efficiency of the network (how well neighbors of a node are

connected), whereas the characteristic path length reflects global

efficiency (how well any two nodes of a network are connected) [9].

Shorter characteristic path length and higher global efficiency

have been previously demonstrated to be associated with

intelligence [10]. In the present study, the scaled characteristic

path length and clustering coefficient decreased with increasing

age in term-born subjects (Fig. 3). These results are consistent with

a previous study of white matter maturation in subjects between

ages two and 18 [4], as well as the most recent study in 439

adolescents and adults [15] and reflect the increasing global brain

network efficiency and decreasing local connectivity with age. Also

in line with previous observations [4], [15], the small-world index

and modularity decreased with age. Prematurely born neonates,

however, constituted an exception to these trends. Although the

gestational age at scan was below 40 weeks in all cases, many

Figure 2. Distribution of physical connection lengths in cortical networks averaged across subjects within each group.
doi:10.1371/journal.pone.0063310.g002

Diffusion MRI Brain Networks
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network metrics had characteristics more similar to more

‘‘developed’’ brains than to those of the term neonates imaged

in the first days of life. These results can be explained by a non-

linear perinatal developmental curve, a different developmental

curve in case of prematurely born subjects, or by technical factors

associated with imaging this especially challenging group. Com-

paring network metrics in premature babies with those in term-

born babies at the same time point after birth should be

investigated in future studies.

By studying the histograms of node degree distribution in

different age groups, we observed highly connected nodes that are

unlikely to occur in random networks (Fig. 6). This trend was most

Figure 3. Group analysis of scaled network metrics (scaled clustering coefficient and scaled characteristic path length), modularity,
and small-world index. *p,0.05.
doi:10.1371/journal.pone.0063310.g003

Figure 4. Group analysis of absolute network metrics: clustering coefficient C, characteristic path length L, and edge density. The
dependence of C and L on the edge density can be appreciated.
doi:10.1371/journal.pone.0063310.g004

Diffusion MRI Brain Networks
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prominent in the adult group. The spatial distribution of nodes

with a high degree (hubs) in adults gravitated toward posterior

cortical regions, which is in line with the study of the structural

core of the human cortex by Hagmann et al. [16]. More specific

localization of the hubs and naming specific anatomic brain

regions was not possible due to the nature of the template-free

approach. Qualitatively, an asymmetry in hub distribution was

observed, with more high-degree nodes being located in the left

hemisphere. This tendency has been described previously [16],

where, as in our study, all of the adult subjects were right-handed.

Clinical Applications
Perinatal disease and premature birth affect more than one in

10 of all babies born around the world and put infants at risk of

adverse neurodevelopmental outcome [17]. Application of effec-

tive therapies in a timely and targeted manner depends on our

ability to detect and monitor individual deviations from anticipat-

ed normal developmental trajectories. Understanding of the

structure, performance, and plasticity of the human brain network

and its evolution across the lifespan is a necessary prerequisite to

the identification of patients at risk of developmental abnormal-

ities. Some recent studies have utilized whole-brain connectivity

analysis in different clinical pediatric populations, correlating

global network properties with the outcome [8], [18]. It was shown

that intrauterine growth restriction (IUGR) [18] and hypoxic

ischemic encephalopathy (HIE) [8] alter brain network topology at

one year and six months, respectively, and are associated with the

neurodevelopmental outcome. In the long term, our goal is to

predict which children are at higher risk of later developmental

abnormalities by examining their brain networks shortly after

birth, in order to apply appropriate therapies in a timely and

targeted manner. In other words, MRI connectomics may become

an imaging biomarker of poor neurodevelopmental outcome in

infants with prenatal or perinatal diseases. Additionally, monitor-

ing the brain plasticity changes would provide a basis for

developing and optimizing therapies to improve outcomes after

Figure 5. Intersubject variability of graphs within the adult age group. The size of the nodes is proportional to the node degree. The edge
weights are proportional to the streamline count.
doi:10.1371/journal.pone.0063310.g005

Figure 6. Node degree distribution averaged across subjects within each group.
doi:10.1371/journal.pone.0063310.g006

Diffusion MRI Brain Networks
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acquired brain injuries. The present study is crucial in achieving

this goal, as it sheds light on the developmental trajectory.

Methodological Considerations
There are several limitations of the present study that should be

pointed out, the first one being the relatively small sample size

accompanied by possible differences in etiology within the

pediatric groups, all of which were enrolled in the study based

on specific clinical conditions (Table 2). In addition, the cross-

sectional study design is inferior to a longitudinal observation of

brain networks. However, given the rare access to subjects of these

ages, we believe that, by characterizing the maturation of

template-free brain networks in these subjects, our study provided

valuable information contributing to our understanding of how

brain structure and function develop.

Presence of covariables may affect the resulting group analyses.

While we used the same diffusion MRI sequence, the b-value

varied across the age groups. Typical values of b used in clinical

applications range from 600 to 1500 seconds per square millimeter

[19]. The lowest values of b are used for imaging of fetuses in utero

or premature neonates, due to the very high apparent diffusion

coefficient (ADC) values of these structurally immature brains.

The traditional adult b-value is 1000 s/mm2. In spite of these

differences, we expect minimum impact on the resulting scaled

network metrics. Another covariable was the brain size. A study by

Yan et al. [20] reported that brain size is significantly and

negatively correlated with local clustering, suggesting that smaller

human brains are more efficient in local information transfer.

While their study investigated young healthy adults from a quite

narrow age group, our study spans across four very different age

groups, whereas the brain size increases across the age spectrum,

from premature neonates to term-born neonates, six-month-old

infants, and adults (Fig. 1). One may argue that the ‘‘develop-

ment’’ differences we are describing are just a manifestation of

different brain sizes (and, consequently, node sizes) resulting in

different network properties. However, our results in premature vs.

term-born neonates demonstrate that other effects (presumably,

developmental effects) dominate compared to the brain-size

related effects.

Another challenging aspect is determining connection strength

in weighted networks or setting the threshold in binary networks.

In our study, we initially constructed weighted networks with

streamline counts used as weights, which for the purpose of

network analysis were binarized using a threshold of one

streamline. Using binarized networks simplifies the calculation

and interpretation of many network measures, but also implies a

loss of information of the connectivity pattern. In order to analyze

weighted networks, the question of connection weights has to be

resolved. Although streamline count is often used as a measure of

connection [18], introduction of biases becomes possible since a

white matter bundle with higher anisotropy will naturally exhibit a

higher count than a bundle with lower anisotropy (FA) [3]. FA

itself is another common choice for quantifying the connection

strength [10]. Hagmann et al. used the inverse of the average

apparent diffusion coefficient (1/ADC) as a multiplicative factor in

determining the strengths of interregional pathways [4]. Yet

another study by Lo et al. used the product of the streamline count

by the mean FA [21]. In the case of probabilistic tractography, the

regional connectivity probability can be used as the distance/

weight between cortical regions [22]. A recently suggested

weighting scheme [23], which scales the number of streamlines

by their physical lengths, demonstrated stable intra-class correla-

tion coefficients against thresholding for global efficiency, cluster-

ing coefficient and diversity. It can still be argued whether such

Figure 7. Network-driven segmentation of the cortex into five modules for subjects from all age groups that showed a similar
pattern. Top row: dorsal view, bottom row: ventral view. No prior anatomical information was used to find the modules.
doi:10.1371/journal.pone.0063310.g007
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corrections are sufficient in order to use tractography to provide a

quantitative estimate of ‘connection strength’. More comprehen-

sive analysis methods such as tractometry, which combines different

metrics of white matter microstructure (myelination, axon density,

axon diameter) might provide a biologically more meaningful

quantification [24].

Thus far, we could directly compare only global network

properties, such as the network integration or segregation. The

template-free parcellation scheme does not allow for a direct

comparison of local properties of single nodes since it does not

allow for a straightforward anatomical co-registration of brain

networks. However, we are working toward an ambitious goal of

finding a network-driven common space for the brain that would

allow for fully network-driven inter-subject registration and

analysis of brain connectivity. The first step toward achieving this

goal was made in this study, in which we explored how the equal

area sphere partitioning nodes can be grouped into modules

without any prior anatomical information.

Subcortical gray matter structures, such as the thalamus, were

not included in the analyzed brain networks, as this would require

a precise definition of these structures manually or using templates

and, thus, hinder the automated template-free approach to

studying the developing brain. Although the influence of these

structures on overall connectivity is difficult to define, they might

provide valuable information about the course of development. A

recent DTI-based thalamocortical connectivity study showed that

connections between the thalamus and the frontal cortices,

supplementary motor areas, occipital lobe, and temporal gyri are

significantly diminished in preterm infants [25]. Therefore, future

models should be constructed to include the deep cerebral nuclei.

Finally, since our connectome results rely on the anatomical

accuracy of the used tractography methods and their ability to

describe white matter trajectories, this sets a fundamental limit on

the accuracy of the results. DTI-based connectivity inevitably

misrepresents anatomical connectivity to some extent, as it is

unable to encode multi-directional diffusion information, resulting

in errors in regions where fibers have complex configurations.

High angular resolution diffusion models may provide a more

accurate white matter tractography result than the simple tensor

model by resolving crossing fibers.

Materials and Methods

Subjects
All of the MRI scans were compliant with the Health Insurance

Portability and Accountability Act (HIPAA) and the study was

approved by the Committee on Human Research (CHR) of the

University of California, San Francisco. Written informed consent

was obtained from all adult participants. In the case of neonates

and infants, written informed parental consent was obtained.

The study included three pediatric groups: 8 prematurely born

neonates, 8 term-born neonates, and 10 six-month-old infants; the

two latter groups included infants with transient encephalopathy at

birth, but these had no clinical or imaging evidence of brain injury.

The six-month-old infants had a normal neurological outcome

assessed at the day of the scan by pediatric neurologists blinded to

neonatal course and MR imaging findings. Infants with seizures

were excluded from the study. A detailed subject and group

description are given in Table 2. Seven healthy adults (age 24–31

years) were included to represent the mature brain.

MRI Data Acquisition
The subjects were scanned on a 3T GE EXCITE MR scanner

using SE EPI with a FOV=24–25.6 cm, a 1286128 matrix, slice

thickness of 1.8–2 mm, 30 directions, and b= 600 s/mm2 for

preterm babies, b = 700 s/mm2 for term and 6-month olds, and

b= 1000 s/mm2 for adults. Forty-five to 66 contiguous slices were

acquired through the entire brain. The scan time for the DTI

sequence was approximately four minutes for the babies and nine

minutes for the adults. The total time for each examination, which

also included T1-weighted, T2-weighted, and spectroscopic

imaging sequences, was approximately one hour. All subjects

Table 2. Subject and group description.

Group Subject Gender GA at birth Age at scan

1 P1 F 27 weeks 31.14 weeks PMA

1 P2 M 29.56 weeks 35.14 weeks PMA

1 P3 M 30.28 weeks 33.57 weeks PMA

1 P4 M 30.28 weeks 35.57 weeks PMA

1 P5 F 27.57 weeks 39.71 weeks PMA

1 P6 F 27.14 weeks 31.14 weeks PMA

1 P7 F 29.43 weeks 36.14 weeks PMA

1 P8 F 27 weeks 33.29 weeks PMA

2 BA1 M 6 days

2 BA2 F 4 days

2 BA3 F 4 days

2 BA4 M 5 days

2 BA5 F 4 days

2 BA6 M 14 days

2 BA7 F 5 days

2 BA8 M 1 day

3 BA-6mo1 M 198 days

3 BA-6mo2 M 193 days

3 BA-6mo3 F 211 days

3 BA-6mo4 M 191 days

3 BA-6mo5 F 181 days

3 BA-6mo6 M 202 days

3 BA-6mo7 F 181 days

3 BA-6mo8 F 182 days

3 BA-6mo9 F 185 days

3 BA-6mo10 M 182 days

4 A1 M 30 years

4 A2 F 31 years

4 A3 F 24 years

4 A4 F 24 years

4 A5 F 30 years

4 A6 F 26 years

4 A7 F 30 years

GA – gestational age, PMA – postmenstrual age.
Group 1. Premature neonates (,34 weeks gestational age) excluding: (i) clinical
evidence of a congenital malformation or syndrome, (ii) congenital TORCH
infection, (iii) newborns too clinically unstable for transport to the MRI scanner.
Groups 2 and 3. Term-born neonates with GA.36 weeks, who had any one of
the following: (i) umbilical cord arterial blood pH,7.1, (ii) umbilical cord arterial
blood base excess.210, (iii) Apgar score ,5 at 5 minutes of age, (iv) post-
asphyxia neonatal encephalopathy syndrome that includes stupor, diminished
spontaneous movement, and hypotonia.
Group 4. Healthy adults.
The third group – six-month-old infants – were under anesthesia during the MRI
scan. Some neonates were sedated.
doi:10.1371/journal.pone.0063310.t002

Diffusion MRI Brain Networks
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were scanned in an eight-channel adult head coil. Scan quality

with respect to motion and artifacts was visually assessed and

subjects excluded accordingly.

Network Construction
Any network can be represented as a connectivity (or adjacency)

matrix, which consists of nodes and edges. The ‘‘baby con-

nectome’’ framework was employed to build connectivity matrices

and to assess structural networks [8]. The path from diffusion-

weighted images to a connectivity matrix included the following

steps.

(i) A quality assurance step was performed, in which diffusion

volumes affected by motion are rejected [8] and remaining

images are corrected for eddy current distortions and affine

head motion.

(ii) Diffusion tensor reconstruction and deterministic whole-

brain streamline fiber tractography was performed using

the Diffusion Toolkit software package and Fiber Assign-

ment by Continuous Tracking (FACT) algorithm (thresh-

old angle = 35u).
(iii) Whereas the standard workflow for yielding human

connectivity data starts with high-resolution anatomical

MRI [9], we based the network construction on extracting

the subcortical surface from the non-zero fractional

anisotropy (FA) maps. To ensure that tracks would

intersect the nodes, the surface 4–6 mm below the cortex

was extracted by means of morphological operations

(erosion and dilation). It should be noted that the extracted

surface included the cerebellum.

(iv) Automated, template-free parcellation of the cortical

surface was based on equal area sphere partitioning [26].

The number of equal area nodes was chosen to be 100

based on the network-driven method for determining the

optimal number of nodes in six-month-old infants [27].

This method finds the optimum by increasing the number

of equal area nodes and for each of the obtained

parcellations finding the network’s giant component – the

largest connected component [28]. Assuming that all

cortical areas of the brain are connected and no part of

the brain is structurally isolated, the optimal parcellation –

for given population, acquisition, and tractography pa-

rameters – is defined as the finest parcellation that still

represents the whole brain.

(v) The output of steps 2 and 4 were combined by computing

track-node connections (i.e. when a track touched or

intersected the portion of the subcortical surface labeled as

a node) and node-node connections and thereby con-

structing a 1006100 connectivity matrix. Streamline

counts were used as edge weights only for visualization

purposes. Network visualization was performed using

Gephi, an open-source network visualization software

package.

Because of noise in the DTI data and oversimplification of the

tensor modeling, the fiber tracking may generate many spurious

connections that result in false edges in the network [23]. We

performed streamline length thresholding on the tractography

result prior to constructing the networks. The minimum length of

the streamline necessary to be included in the network construc-

tion was set to 5 mm for preterm and term-born neonates, as

shorter streamlines are likely to be the result of noise. To account

for the difference in brain size, this threshold was increased to

10 mm and 15 mm in the 6-month-old infants and adults,

respectively [29], [30]. Although 10–15 mm may appear to be a

significant length, the following analysis of the physical connection

lengths in the obtained networks showed that the effect of this step

is negligible (Fig. 2).

Network Analysis
The resulting weighted networks were binarized (two nodes

were considered connected if at least one connecting streamline

was present), and network metrics were assessed using the Brain

Connectivity Toolbox [11]. Various network metrics were

calculated for each network, including edge density, node degree

and node degree distribution, maximized modularity (Q), optimal

number of modules, average clustering coefficient (C), character-

istic path length (L), scaled clustering coefficient relative to a

population of random networks (c=C/Crand), scaled characteristic

path length relative to a population of random networks (l=L/

Lrand), and small-world index, defined as a ratio (C/Crand)/(L/

Lrand). In the randomized networks, each edge was rewired 1,000

times and an average of 100 networks was used. In addition, the

physical connection length of the network edges was calculated as

the Euclidian distance between the positions of the two connected

nodes, which is a reasonable approximation even for cortical fiber

tracks [9]. The connection length distribution was averaged across

subjects within each group.

To identify modules of the network, the spectral community

detection algorithm was applied [31]. The optimal community

structure is a subdivision of the network into non-overlapping

groups of nodes in a way that maximizes the number of within-

group edges and minimizes the number of between-group edges.

The modularity Q is a statistic that quantifies the degree to which

the network may be subdivided into such clearly delineated

groups. Using Q, we determined the optimal number of modules

for each subject. Unlike other network measures, the optimal

modular structure for a given network was estimated using an

optimization algorithm rather than computed exactly.

Group analysis and regression analysis were performed on the

obtained global network properties using Matlab. Due to the

exploratory nature of the analyses, the significance threshold was

set to 0.05.
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