
Hepatitis C Virus Network Based Classification of
Hepatocellular Cirrhosis and Carcinoma
Tao Huang2,3,4, Junjie Wang9,10, Yu-Dong Cai1,5,14*, Hanry Yu6,7,8,9,10,11,12,13*, Kuo-Chen Chou14*

1 Institute of Systems Biology, Shanghai University, Shanghai, People’s Republic of China, 2 Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences,

Chinese Academy of Sciences, Shanghai, People’s Republic of China, 3 Shanghai Center for Bioinformation Technology, Shanghai, People’s Republic of China, 4 Graduate

School of the Chinese Academy of Sciences, Beijing, People’s Republic of China, 5 Centre for Computational Systems Biology, Fudan University, Shanghai, People’s

Republic of China, 6 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, 7 Institute of Bioengineering

and Nanotechnology, A*STAR, Singapore, Singapore, 8 NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, Singapore,

9 Mechanobiology Institute of Singapore, Temasek Laboratories, National University of Singapore, Singapore, Singapore, 10 Singapore-MIT Alliance, Computational and

System Biology Program, Singapore, Singapore, 11 NUS Tissue Engineering Program, DSO Labs, National University of Singapore, Singapore, Singapore, 12 Singapore-MIT

Alliance for Research and Technology, Singapore, Singapore, 13 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,

United States of America, 14 Gordon Life Science Institute, San Diego, California, United States of America

Abstract

Hepatitis C virus (HCV) is a main risk factor for liver cirrhosis and hepatocellular carcinoma, particularly to those patients with
chronic liver disease or injury. The similar etiology leads to a high correlation of the patients suffering from the disease of
liver cirrhosis with those suffering from the disease of hepatocellular carcinoma. However, the biological mechanism for the
relationship between these two kinds of diseases is not clear. The present study was initiated in an attempt to investigate
into the HCV infection protein network, in hopes to find good biomarkers for diagnosing the two diseases as well as gain
insights into their progression mechanisms. To realize this, two potential biomarker pools were defined: (i) the target genes
of HCV, and (ii) the between genes on the shortest paths among the target genes of HCV. Meanwhile, a predictor was
developed for identifying the liver tissue samples among the following three categories: (i) normal, (ii) cirrhosis, and (iii)
hepatocellular carcinoma. Interestingly, it was observed that the identification accuracy was higher with the tissue samples
defined by extracting the features from the second biomarker pool than that with the samples defined based on the first
biomarker pool. The identification accuracy by the jackknife validation for the between-genes approach was 0.960,
indicating that the novel approach holds a quite promising potential in helping find effective biomarkers for diagnosing the
liver cirrhosis disease and the hepatocellular carcinoma disease. It may also provide useful insights for in-depth study of the
biological mechanisms of HCV-induced cirrhosis and hepatocellular carcinoma.
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Introduction

Hepatitis C virus (HCV) is an important risk factor for liver

cirrhosis and hepatocellular carcinoma [1,2,3,4]. The pathogenesis

of these diseases is a multi-step process, including hepatocellular

damage and apoptosis, wound-healing responses, inflammatory

responses, and hepatocellular regeneration [5]. It is also well

known that liver cirrhosis has high potential to lead to

hepatocellular carcinoma, especially in the case of HCV-induced

cirrhosis [6]. Thus, these two diseases are often correlated with

each other, and diagnosis of cirrhosis and HCC at early stages

remains challenging [7]. The detailed mechanisms of HCV-

induced cirrhosis and hepatocellular carcinoma are unknown [4].

Rapid detection of liver cirrhosis or hepatocellular carcinoma will

help provide a timely and appropriate treatment so as to enhance

the survival rate of the patient [8,9]. Understanding of the detailed

mechanisms of disease progression can help in developing

therapeutic strategies. For example, after revealing the roles of

vascular endothelial growth factor receptor (VEGFR) and

fibroblast growth factor receptor signaling in hepatocellular

carcinoma, their inhibitor Brivanib provides a novel therapeutic

treatment against hepatocellular carcinoma [10]. To find effective

diagnosis methods for cirrhosis and hepatocellular carcinoma and

reveal their mechanisms, knowledge of large-scale HCV infection

networks from high-throughput experimental techniques is very

useful [11,12,13]. In the traditional biomarker studies, the selected

biomarkers were often quite different for different studies, and only

had a very small overlap [14,15]. Since there was little

concordance among the reported markers, it was hard to identify

high-quality biomarkers.

In our approach, we defined two potential biomarker pools,

which we will refer to as the ‘‘target genes’’ and ‘‘between genes’’.

The target genes were the human genes associated with the HCV

proteins. The between genes were the human genes that were on
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the shortest paths between the target genes in the protein

interaction network. Such two sets of genes have strong biological

rationales in correlation with the risk factors that cause liver

cirrhosis and hepatocellular carcinoma. Utilizing the concrete

HCV-human interaction information would help to exclude the

false positive markers. Selecting biomarkers from the target genes

and the between-genes would not only make them have an

intrinsic correlation with liver cirrhosis and hepatocellular

carcinoma diagnosis, but also provide useful information for

HCV-induced liver transformation. Indeed, we found that the

information of the between-genes among the target genes of HCV

can be used to better classify the liver cirrhosis and hepatocellular

carcinoma samples than the target genes of HCV. These findings

suggest that the interactions between the target genes of HCV are

more important than the target genes themselves in triggering liver

cirrhosis and hepatocellular carcinoma. It was observed by

examining the selected biomarkers that some meaningful corre-

lations did exist among liver cirrhosis, hepatocellular carcinoma,

and the genes involved in other cellular processes. The biomarkers

found in this study may be of use for diagnosing HCV-induced

cirrhosis and hepatocellular carcinoma, as well as for revealing

their pathogenic mechanisms.

Methods

According a recent review [16], to develop a useful model or

predictor for biological systems, the following procedures were

usually needed to consider: (i) benchmark dataset construction or

selection; (ii) mathematical formulation for biological samples that

can truly reflect their intrinsic correlation with the target to be

predicted; (iii) introducing or developing a powerful algorithm (or

engine) to operate the prediction; (iv) properly performing cross-

validation tests to objectively evaluate the anticipated accuracy of

the predictor. Below, let us elaborate how to deal with these

procedures.

Benchmark dataset: gene expression profiles of normal,
cirrhotic, and carcinoma liver tissues

The benchmark dataset used in this study contained 124 tissue

samples, of which 19 samples were from normal persons, 58 from

the cirrhotic patients, and 47 from the hepatocellular carcinoma

patients. The corresponding gene expression profiles for the 19

normal, 58 cirrhotic, and 47 hepatocellular carcinoma (HCC) liver

tissue samples were from Mas’s work [17] at http://www.ncbi.

nlm.nih.gov/projects/geo/query/acc.cgi?acc = GSE14323. The

data from the two Affymetrix platforms, HG-U133A and HG-

U133A 2.0, were combined by means of the R package

matchprobes [18]. The Robust Multi-Array (RMA) method was

utilized to process the data [19]. Duplicated probes for each gene

were averaged and the processed data were normalized with the

quantile method [20]. There were a total of 12,936 genes, and

their expression levels were measured in the 124 samples.

According to the set theory, the benchmark dataset S can be

formulated as

S~S1|S2|S3 ð1Þ

where the subset S1 contains 19 normal liver tissue samples, subset

S2 contains 58 cirrhotic liver tissue samples, subset S3 contains 47

hepatocellular carcinoma liver tissue samples, and | represents

the symbol for ‘‘union’’.

Tissue sample representation
To develop a powerful statistical prediction method for

identifying the attributes of biological samples, one of the most

important steps is to extract the core and essential features of the

samples that are closely correlated with the target to be identified

[21]. According to Eq. 6 of [16], the representation of a tissue

sample, or its feature vector, can be formulated as

T~ y1 y2 � � � yu � � � yV½ �tran ð2Þ

where T represents the tissue sample, tran the transpose operator,

the components y1, y2, … and V will depend on how to extract

the desired information from the tissue sample, as will be

elaborated below.

Hepatitis C virus network
In de Chassey et al.’s study, they identified 481 interactions

between HCV and human proteins by the yeast two-hybrid

experiments and literature mining [22]. Here, we used the

interactions identified by them to construct the hepatitis C virus

– human network. The human-protein interaction networks we

used were downloaded from STRING [23]. STRING is a

comprehensive protein-protein interaction network and the

interactions in STRING include physical and functional associa-

tions between proteins derived from previous knowledge, genomic

context, conserved coexpression and high-throughput experiments

[23]. The weight of STRING network was defined as one minus

the confidence score.

The target genes of HCV and the between genes among
target genes of HCV

We defined two potential biomarker pools that have strong

biological rationales associated with the culprits of the liver

cirrhosis and hepatocellular carcinoma: (i) the target genes, and (ii)

the between-genes. Figure 1 shows the relationship among the

HCV proteins, target genes and the between genes. The target

genes were the human target genes of the HCV proteins. The

Figure 1. The relationship among the HCV proteins, the target
genes and the between genes. The yellow node (V1, V2) are HCV
proteins. The target genes (blue nodes, T1, T2 and T3) were the human
target genes of HCV proteins. The between genes (red nodes, B1, B2
and B3) were human genes that were on the shortest paths between
target genes in protein interaction network. The grey nodes were other
human proteins that were neither target genes, nor between genes.
doi:10.1371/journal.pone.0034460.g001
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between genes were the human genes that were on the shortest

paths between the target genes in the STRING network.

There were 290 target genes associated with the 10 HCV

proteins that were measured in our dataset and can be mapped

onto the STRING network.

To obtain the between-genes among the target genes of HCV,

we linked each pair of the target genes of the 10 HCV proteins by

searching the shortest paths between them. The technique we used

to find the shortest path was Dijkstra’s algorithm [24,25,26]. The

genes on the shortest paths between the target genes of HCV were

defined as the between-genes among the target genes of HCV.

There were 684 between-genes among the target genes of HCV.

Accordingly, if using the features of the target genes to represent

the tissue samples, Eq. 2 will become a vector with V~290
components; i.e.,

T~ y1 y2 � � � y260½ �tran ð3Þ

If using the features of the between genes to represent the tissue

samples, Eq. 2 will become a vector with V~684 components; i.e.,

T~ y1 y2 � � � y684½ �tran ð4Þ

Minimum Redundancy Maximum Relevance (mRMR)
In this study, we used the mRMR (Minimum Redundancy

Maximum Relevance) approach [27] to select the genes that can

be used for classification of liver cirrhosis and hepatocellular

carcinoma from the 290 target genes and the 684 between genes,

respectively. The advantage of using the mRMR method here is

that it can balance the minimum redundancy and the maximum

relevance. The maximum relevance would guarantee selecting

those features with the most contributions to the classification,

while the minimum redundancy would guarantee excluding those

features that had already been covered by the selected features.

During the selecting process, one feature at a time was selected by

mRMR into the selected list. In each round, a feature with the

maximum relevance and minimum redundancy was selected. As a

result, we obtained an ordered list of features. The mRMR

program is available at http://penglab.janelia.org/proj/mRMR/.

Nearest neighbor algorithm
In this study, the nearest neighbor algorithm (NNA) [28,29,30]

was used as a prediction engine to identify sample classes as

implemented in the NNA program (available at http://pcal.

biosino.org/NNA.html). Owing to its good performance and

simple-to-use feature, the NNA classifier is quite popular in

pattern recognition and has been widely used to deal with varieties

of biological problems (see, e.g., [31,32,33,34,35,36,37,38,39,40,

41,42]). According to the NNA rule, the query sample should be

assigned to the same class as the one in the training dataset that is

nearest to the query sample. In case there are two or more samples

in the training dataset that have exactly the same closest distance

to the query sample, then the query sample will be randomly

assigned to any one of their classes although this kind of case rarely

happens. There are many different metrics to measure the

‘‘nearness’’, such as Euclidean distance [42], Hamming distance

[43], and Mahalanobis distance [44,45,46]. In the current study,

the following equation was adopted to measure the nearness

between two samples:

D(T1,T2)~1{
T1
:T2

T1k k: T2k k ð5Þ

where T1 and T2 are two vectors representing two samples (cf. Eq.
1), T1

:T2 is their dot product, T1k k and T2k k are their moduluses.

The smaller the D(T1,T2), the more similar the two samples are.

For a concise formulation of the NNA classifier, see Eq. 17 of [16];

for an intuitive illustration of how the NNA classifier works, see

Fig. 5 of [16].

Jackknife test
In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling test,

and jackknife test [43]. However, as illustrated in [47] and

demonstrated by Eq. 50 of [31], among the three cross-validation

methods, the jackknife test is deemed the least arbitrary that can

always yield a unique result for a given benchmark dataset, and

hence has been increasingly used by investigators to examine the

accuracy of various predictors (see, e.g., [33,34,35,37,38,40,42,

48,49,50,51,52,53,54,55]. Accordingly, in this study, the predic-

tion model was examined by the jackknife test, also known as

leave-one-out cross-validation (LOOCV) test. During the course of

jackknife test, each sample in the benchmark dataset was in turn

singled out as the prediction target and the rest of the samples were

used to train the prediction model. The following equation was

used to reflect the prediction accuracy:

Q~
Y1zY2zY3

N1zN2zN3
ð6Þ

where Y1, Y2 and Y3 represent the numbers of correctly predicted

events for the ‘‘normal’’, ‘‘cirrhotic’’, and ‘‘hepatocellular

carcinoma’’ tissue samples, respectively; while N1, N2 and N3

stand for the numbers of ‘‘normal’’, ‘‘cirrhotic’’, and ‘‘hepatocel-

lular carcinoma’’ samples investigated, respectively.

Incremental feature selection (IFS)
Based on the ranked features according to their importance

evaluated by the mRMR approach, we used Incremental Feature

Selection (IFS) [56,57] to determine the optimal number of

features. During the IFS procedure, features in the ranked feature

set were added one by one from higher to lower rank. A new

feature set was composed when one feature had been added. Thus

N feature sets would be composed for the N ranked features. The i-

th feature set is given by

Si~ f1,f2, � � � ,fif g (1ƒiƒN) ð7Þ

For each of the N feature sets, an NNA classifier was constructed

and examined using the jackknife test on the benchmark dataset.

By doing so we obtained an IFS table with one column for the

index i and the other columns for the prediction accuracy. Thus,

we could obtain the optimal feature set (Soptimal), with which the

predictor would yield the highest prediction accuracy.

Results and Discussion

The IFS results of target genes and between genes
By analyzing the gene expression profiles for the normal,

cirrhotic, and hepatocellular carcinoma liver tissue samples with

the mRMR method, we ranked the 290 target genes and 684

Classification of Liver Cirrhosis and Cancer
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between genes according to their importance to liver cirrhosis and

hepatocellular carcinoma classification. Subsequently, we selected

the optimal gene set from the aforementioned ranked genes by

means of the IFS procedure. The IFS curves of the target genes

and between genes are shown in Figure 2, where the blue curve is

the IFS curve for the target genes and the highest accuracy was

0.944 with 155 genes. The red curve is the IFS curve for the

between genes and the corresponding highest accuracy was 0.960

with 162 genes. The IFS tables for the target genes and the

between genes were given in Table S1 and Table S2,

respectively. As shown in Figure 2, the accuracies for the

between genes were always higher than those for the target genes.

The selected 155 target genes and selected 162 between genes can

be found in Table S3 and Table S4, respectively. Furthermore,

an integrated system containing 916 genes was constructed by

combining the set of 290 target genes and the set of 684 between

genes. The IFS curve for such 916 target/between genes was

shown in Figure S1, from which we can see that the

corresponding highest accuracy was 0.968 and IFS curve of the

combined gen set was twisted with the IFS curve of the between

genes, indicating that no significant improvement for the

prediction was observed by integrating the target genes with the

between genes.

Analysis of the selected target genes and between genes
with HCV

It is known that HCV is primarily comprised of a single long

open-reading-frame encoding an approximately 3000-amino-acid-

long protein that is cleaved into three mature structural proteins

(CORE, E1, E2), six non-structural proteins (NS2, NS3, NS4A,

NS4B, NS5A, NS5B) and a small membrane protein (p7) [58,59].

To analyze which HCV protein can be related to liver cirrhosis

and hepatocellular carcinoma, we calculated the number of the

selected target genes for each HCV protein and the number of the

selected between genes for each of the HCV protein pairs. Shown

in Figure 3 is the number of selected target genes for each of the

HCV proteins. According to Figure 3, HCV proteins NS3, NS5A

and CORE are the most important ones because they were

observed interacting with many target genes in the selected

optimal target gene set. The number of the selected between genes

for each of the HCV protein pairs is shown in Figure 4, from

which we can see that the following pairs are involved with more

than 80 selected between genes and hence are more important:

NS3_NS5A, CORE_NS3, F_NS3, E2_NS3, NS3_NS5B, COR-

E_NS5A and E1_NS3. Among the above seven pairs, NS3

appeared six times; NS5A, two times; CORE, two times. The

outcome is quite similar to that of the target gene. Although there

were only 19 genes overlapped between the selected 155 target

genes and the selected 162 between genes, the results were quite

robust for the HCV protein level. This is because it was found that

NS3, NS5A and CORE were important from both the analysis of

the selected target genes for each of the HCV proteins and the

analysis of the selected between genes for each of the HCV protein

pairs. NS3 and NS5A are both non-structural proteins which are

responsible for the function of replication and for packaging the

viral genome into capsids [58]. NS3 is a bifunctional protease/

helicase [60], and is associated with the tumour suppressor p53

[61]. NS3 has been intensely studied as drug targets [62].

Figure 2. The IFS curves of target genes and between genes. In the IFS curve, the X-axis is the number of genes used for classification, and the
Y-axis is the prediction accuracies of nearest neighbor algorithm evaluated by the jackknife test (or LOOCV). The blue curve is the IFS curve of target
genes and the highest accuracy was 0.944 with 155 genes. The red curve is the IFS curve of between genes and the highest accuracy was 0.960 with
162 genes.
doi:10.1371/journal.pone.0034460.g002

Classification of Liver Cirrhosis and Cancer
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Although no enzymatic activity has been ascribed to NS5A, it was

reported that an inhibitor of HCV NS5A could suppress virus

replication in clinical trials [63]. CORE protein plays an essential

role in the formation of virion and it interacts with other HCV

proteins [64,65].

Comparison of the selected target genes and between
genes with the known hepatocellular carcinoma genes

To compare the selected target genes and the between genes

with the known hepatocellular carcinoma genes, an enrichment

analysis was performed for the 155 selected target genes and the

162 selected between genes on the OncoDB.HCC [66] genes.

OncoDB.HCC is a comprehensive database of hepatocellular

carcinoma related genes [66]. The results thus obtained for the

155 selected target genes and the 162 selected between genes on

OncoDB.HCC genes are shown in Table 1, from which we can

see that the 162 selected between genes were significantly (having

hypergeometric test p value = 1.25E-05) more enriched with the

OncoDB.HCC genes than the 155 selected target genes. Besides,

the selected between genes also had greater overlapping with the

OncoDB.HCC genes in comparison with the 155 selected target

genes.

The biological meanings of the selected target genes and
the between genes

To reveal the biological meanings, we performed the KEGG

enrichment analysis on the 155 selected target genes and the 162

selected between genes using GeneCodis [67,68]. Shown in Table
S5 and Table S6 are the KEGG enrichment results thus obtained

for the 155 selected target genes and the 162 selected between

genes, respectively. As we can see from the two tables, the 155

selected target genes were enriched on many cancer-related

pathways, such as pancreatic cancer, pathways in cancer, chronic

myeloid leukemia, colorectal cancer pathways, and other signaling

pathways, such as neurotrophin signaling pathway, T cell receptor

signaling pathway, B cell receptor signaling pathway, chemokine

signaling pathway. Likewise, the 162 selected between genes were

also enriched on cancer and signaling pathways, such as

pancreatic cancer, chemokine signaling pathway, axon guidance,

focal adhesion, and T cell receptor signaling pathway. We also

enriched the original 290 target genes and 684 between genes into

the KEGG pathways. The selected 155 target genes and selected

162 between genes had more enriched cancer-related pathways

and signaling pathways than the original 290 target genes and 684

between genes. Listed in Table S7 are the numbers of the top 20

enriched KEGG pathways for the 155 selected target genes, the

162 selected between genes, the original 290 target genes, and the

original 684 between genes.

The top five genes in the selected target genes were EFEMP1

(EGF-containing fibulin-like extracellular matrix protein 1), JAG2

(Protein jagged-2), TACSTD2 (Tumor-associated calcium signal

transducer 2), STAT3 (Signal transducer and activator of

transcription 3) and STAT1 (Signal transducer and activator of

transcription 1). EFEMP1 binds EGF receptor and activates

downstream signaling pathways. Expression of EFEMP1 promotes

angiogenesis and accelerates cancer growth [69]. EFEMP1 is a

novel tumor-suppressor gene found in hepatocellular carcinoma

[70]. JAG2 is involved in the mediation of Notch signaling and is

critical for cell development [71,72,73]. TACSTD2 encodes a

carcinoma-associated antigen and contributes to tumor pathogen-

esis [74]. STAT3 and STAT1 are members of the STAT (Signal

Transducers and Activators of Transcription) family of transcrip-

tion factors that regulates cell differentiation, growth and survival

[75]. In primary tumours, the STAT pathway is usually

dysregulated and causes increased angiogenesis, enhanced survival

of tumours and immunosuppression [76].

The top five genes in the selected between genes were PDIA3

(Protein disulfide-isomerase A3), LCP2 (Lymphocyte cytosolic

protein 2, also known as SLP-76, Src homology 2 domain

containing leukocyte protein of 76 kDa), IL23A (Interleukin-23

subunit alpha), SCAMP3 (Secretory carrier-associated membrane

protein 3) and ISG15 (Interferon-induced 17 kDa protein).

STAT3 ranked sixth in the selected between genes. PDIA3 is

part of the MHC (major histocompatibility complex) class I

peptide-loading complex, which is vital for the formation of

antigen conformation and export from the endoplasmic reticulum

Figure 3. The number of selected target genes of each HCV protein. The HCV proteins NS3, NS5A and CORE have the largest numbers of
target genes in the optimal set of the 155 selected target genes.
doi:10.1371/journal.pone.0034460.g003
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(ER) to the cell surface [77]. LCP2 plays important roles in

promoting T cell development and activation [78]. IL23A

activates the Jak-Stat signaling cascade, induces autoimmune

inflammation and may be important for tumorigenesis [79,80,81].

SCAMP3 can form association with the EGF Receptor [82].

ISG15 targets to diverse cellular pathways, such as JAK, STAT

and MAPK [83] and has antiviral activity [84].

The KEGG enrichment results for the top five target genes

(EFEMP1, JAG2, TACSTD2, STAT3 and STAT1) and for the

top five between genes (PDIA3, LCP2, IL23A, SCAMP3, ISG15)

are given in Table 2, where it can be seen that STAT1 and

STAT3 participated in several well-studied hepatocellular carci-

noma pathways, such as Jak-STAT signaling pathway, hepatitis C

pathway, and pathways in cancer. Interestingly, both the target

genes STAT1/STAT3 and the between gene IL23A were

involved in Jak-STAT signaling pathway; the latter is associated

with HCV clinical syndromes [22,85].

The advantages of between genes as biomarkers and
drug targets

The between genes are not only the coordinator of HCV that

triggers the disease-causing signaling, but also the carrier that

executes such order and actually causes the pathological changes.

Among the top five between genes, ISG15 was on the shortest path

of 289 HCV target gene pairs. It regulates and functions in diverse

cancer-related pathways [83]. It has been identified as an antiviral

Figure 4. The number of selected between genes for each of the HCV protein pairs. The following pairs have more than 80 selected
between genes: NS3_NS5A, CORE_NS3, F_NS3, E2_NS3, NS3_NS5B, CORE_NS5A and E1_NS3.
doi:10.1371/journal.pone.0034460.g004

Table 1. The enrichment of the 155 selected target genes and the 162 selected between genes on OncoDB.HCC genes.

Gene Set
Hyper geometric
test p value

Number of overlapped
genes with OncoDB.HCC Overlapped genes with OncoDB.HCC

Selected target genes 0.001984 15 BAX, CD81, CTGF, FAS, GRN, HSPA5, IGLL1, KRT19, NPM1, RAF1,
SERPINF2, SERPING1, SRC, THBS1, VIM

Selected between genes 1.25E-05 20 ALB, AR, CDC20, CDKN2A, COL4A1, CXCL12, DCN, DUSP1, E2F1,
ERBB2, GNAS, HSPA5, MAP2K1, MAPRE1, MMP2, MYC, PSMD4,
PTK2, ROBO1, SCAMP3

doi:10.1371/journal.pone.0034460.t001
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molecule [84]. As the bridge of HCV infection, the between genes

are responsible for the initiation and progression of hepatocellular

cirrhosis and carcinoma. They have closer relationship with the

pathological changes during the transformation of hepatocellular

cirrhosis and carcinoma than HCV proteins or their target genes.

The target genes may indicate the early response of HCV

infection, but the between genes can more accurately reflect the

post-infection pathological processes and hence be used to serve as

a better biomarker. The classification accuracy of the 162 selected

between genes was 0.960, higher the accuracy of the 155 selected

target genes, 0.944. The accuracy of the top five between genes

was 0.815, also higher the accuracy of the top five target genes,

0.782. Classifier based on the between genes performed better

than the classifier based on the target genes. Since the between

genes play important roles in the course of both initiating the

disease and its aggravation, they may become a drug target for

both the preventive and therapeutic purposes, like the between

gene ISG15 already did [84].

Supporting Information

Figure S1 The IFS curve of the combined gene set. (A) The IFS

curve of the combined gene set, between genes and target genes.

The black, red and blue lines represent the IFS curve of the

combined gene set, between genes and target genes, respectively.

The curve of between genes is consistently higher than the curve of
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Table 2. The KEGG enrichment of the top five target genes (EFEMP1, JAG2, TACSTD2, STAT3 and STAT1) and the top five between
genes (PDIA3, LCP2, IL23A, SCAMP3, ISG15).

KEGG Corrected hyper geometric p value Genes

04630 :Jak-STAT signaling pathway 0.000327 STAT1,IL23A,STAT3

05212 :Pancreatic cancer 0.002516 STAT1,STAT3

05160 :Hepatitis C 0.003061 STAT1,STAT3

05162 :Measles 0.003619 STAT1,STAT3

05145 :Toxoplasmosis 0.00439 STAT1,STAT3

04062 :Chemokine signaling pathway 0.004439 STAT1,STAT3

05152 :Tuberculosis 0.004603 STAT1,IL23A

04380 :Osteoclast differentiation 0.005503 LCP2,STAT1

05200 :Pathways in cancer 0.011662 STAT1,STAT3

04330 :Notch signaling pathway 0.033518 JAG2

05140 :Leishmaniasis 0.034105 STAT1

04664 :Fc epsilon RI signaling pathway 0.034608 LCP2

04622 :RIG-I-like receptor signaling pathway 0.036039 ISG15

05221 :Acute myeloid leukemia 0.036899 STAT3

05323 :Rheumatoid arthritis 0.037517 IL23A

04612 :Antigen processing and presentation 0.03827 PDIA3

04620 :Toll-like receptor signaling pathway 0.040087 STAT1

04660 :T cell receptor signaling pathway 0.040175 LCP2

04920 :Adipocytokine signaling pathway 0.040873 STAT3

04650 :Natural killer cell mediated cytotoxicity 0.045794 LCP2
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