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Abstract

A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated
energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK). In the method, groups of residues
are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete
macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two
simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local
connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron
plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach,
free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two
structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have
features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding
pathway has an ‘‘inside-out’’, nucleation-propagation like character.
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Introduction

Energy landscape theory and the principle of minimal

frustration, which provide both simple models and interpretative

frameworks [1,2], have contributed greatly to our understanding

of the protein folding process. Proteins have evolved to minimize

the effects of roughness of their energy landscapes by ensuring a

significant stability gap between the unfolded ensemble and the

native state. This leads to landscapes that resemble the high-

dimensional analog of a rugged funnel. Protein folding can

therefore be understood as a diffusive process across a rugged,

biased, and structurally correlated energy landscape with weak

transient trapping. Translating the ruggedness and stability gap

ideas into mathematical terms has allowed self-consistent optimi-

zation methods to learn predictive potentials from structural data

[3,4]. Coarse-grained models based directly on known protein

structures have been derived that are computationally tractable,

yet able to provide insight into, and generally show qualitative and

often even quantitative agreement with, experimental results [5].

All-atom simulations of fast folding proteins are just now becoming

reliable [6] and give results largely consistent with the rugged

funnel landscape picture [7]. However, model building is only part

of the challenge facing theorists working on protein folding since,

even on a minimally frustrated landscape, many seemingly distinct

detailed mechanisms of folding are possible.

In order to interpret raw simulation results in ways that deepen

our understanding of folding, researchers can either take

advantage of the connection between structure and energy implied

by theory and experiment to exist for natural proteins (using the

principle of minimal frustration) or try to remain agnostic as to

whether such a connection exists. The former choice leads to free

energy based methods that use global, structure based reaction

coordinates to calculate free energy profiles [8]. This global

description facilitates comparison across a wide range of systems

and development of physical intuition about details of specific

systems. Furthermore, these free energy based methods can be

combined with semi-analytical perturbation methods [9] to

extrapolate existing simulation data to new simulation conditions.

The more agnostic schemes sometimes start by using approximate

reaction coordinates suggested by landscape theory but often rely

on clustering strategies to define macrobasins. Such agnostic

schemes generally have only provided predictions of rates for each

given set of simulation conditions independently, in contrast with

experiments that usually scan a range of thermodynamic

conditions. Such schemes thus entail a significant computational
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load when comparing with experiment. Recently some suggestions

have emerged of how such general methods can be extended to

combine data from parallel tempering simulations to yield kinetic

models at arbitrary temperatures [10].

In this paper, we describe a free energy based method that can

be used to derive kinetic equations that are similar to those derived

using clustering based approaches but that take into account what

has been learned about natural protein folding. This method

maintains the attractive features of both free energy based

methods using smooth reaction coordinates and clustering

algorithms to provide predictions about rates and insight into

folding mechanisms under a continuous range of conditions. The

resulting folding mechanisms are expressed in terms of the

cumulative flux through the network of macrobasins [11].

Methods

1.1 Foldons and reaction coordinates
The most basic criterion for defining a hierarchy of states in a

kinetic model is that a separation of time scales should exist.

Dynamics within a defined macrobasin should ideally be fast

compared to the interconversion between the macrobasins. Many

clustering strategies attempt to directly apply this criterion to

simulation data. However, for folding models based on minimally

frustrated landscapes we can take advantage of the connection

between structure and energy to help choose natural ways of

coarse-graining a protein’s conformational space without already

knowing the results of the simulation. These methods are

necessarily approximate, but may, in many cases, be sufficient as

well as efficient. Even on a rough energy landscape, if there are

correlations, geometrical distances between structures are a good

guide as to the barriers between them [12].

For this study, we will define foldons as contiguous regions of

primary structure that may fold independently. This corresponds

to a putative foldon as defined by Panchenko and others, which

requires the contiguous primary structural regions to be kinetically

competent [13]. The word ‘‘foldon’’ is sometimes employed to

describe the notion of cooperatively folding substructures with no

constraint on primary structural contiguity [14]. Such a scheme

can also be useful but the first guess that contiguous regions

reconfigure most rapidly is often correct.

The study of ankyrin repeat proteins has already revealed that

the choice of folding units can be non-trivial. We use the designed

ankyrin repeat protein 4ANK [15] as illustration. We adopt

structurally motivated schemes for defining foldons in this system,

namely that each repeat, or each half repeat, is one foldon [16,17].

For other types of proteins, different schemes may be more

appropriate, and general schemes for approximate foldon assign-

ment exist [13].

To measure the foldedness of the individual foldons, we use the

reaction coordinate Q given in Equation 1.

Q~
1

Np

X
i

X
j

exp
{(rij{r

m
ij)

2

2s2
ij

" #
ð1Þ

In Equation 1, i and j are residue indices, Np is the total number of

pairs (i,j), rij is the distance between the Ca atoms of residues i and

j, r
m
ij is the same distance in the experimentally determined native

structure, and sij is a sequence separation dependent width. We

define the degree of foldedness of a foldon as the instantaneous

value Q as given in Equation 1 where the summation over i is

taken over all residues within a foldon and j goes over all residues

within the same foldon and those in native contact with residue i

as defined by an 8Å Ca{Ca distance cutoff. Q has a range

between 0 and 1, with 0 being completely unfolded and 1 being

completely folded.

1.2 Macrobasins and free energy calculations
For the purposes of defining a set of discrete macrobasins, we set

a foldedness threshold above which a foldon may be considered

essentially folded. Below this threshold, the foldon is considered to

be unfolded. For the results shown in Section 3, this threshold has

been set to Q~0:6. Using this scheme, any arbitrary structure

from a simulation of a protein with, for example, 4 foldons can be

assigned to a macrobasin such as 0101, indicating that the second

and fourth (but not the first and third) foldons exceed the

foldedness threshold. A protein with Nf foldons therefore has 2Nf

macrobasins, though not all such macrobasins would necessarily

be observed in each set of simulations. This scheme is very

analagous to the Ising model schemes used extensively by Munoz

and Eaton [18].

We performed molecular dynamics simulations in the canonical

ensemble, employing a biasing potential to umbrella sample along

a global reaction coordinate Qtot, defined as the value of Q
(Equation 1) obtained by summing over all unique (i,j) pairs. We

then used the multistate Bennet acceptance ratio (MBAR) [19] to

compute the relative free energies of all sampled macrobasins over

a range of temperatures. MBAR is a method that can be used to

combine data from multiple equilibrium simulations at different

thermodynamic states to obtain unbiased free energy differences

and expectation values.

1.3 Transition rates and kinetic equations
Before considering the transition rates between macrobasins, it

is necessary to define the connectivity of the discrete macrobasin

space. It is reasonable to assume that locality of dynamics would

imply that each macrobasin is directly connected to other

macrobasins for which only a single 0?1 or 1?0 reconfiguration

event is required to change the starting state into the final state.

That is to say the direct transition 1010?1011 is allowed, but

1010?1111 and 1010?1001 are not directly allowed because

they both require two local reconfiguration events and would in all

likelihood be made up of composites of the simpler local moves.

This is an example of a locally connected landscape; the effects of

local connectivity on folding have been discussed previously [20].

The transition rate for going from macrobasin i to macrobasin j,
Kij , is given in Equation 2 where DFij~Fj{Fi is the free energy

difference between the macrobasins’ free energies, kB is the

Boltzmann constant, T is the absolute temperature and

k0~1ms{1 is the assumed universal downhill transition rate. A

similar rate scheme was adopted by Zheng et al. [21] when

studying Trp-Cage using stochastic simulations on a kinetic

network. The value of k0 is motivated by a consideration of the

ultimate speed limit of folding and measurements of the kinetics of

downhill folding domains, as has emerged from numerous studies

starting with the Eaton group [22–24]. The diagonal values of the

matrix are defined so as to conserve probability, Kii~{
P

i=j Kij ,

where Kij refers to the element in the ith column and the jth row

of matrix K.

Kij~

k0, DFijv0

k0e
{

DFij
kBT , DFijw0

8<
: ð2Þ

From these microscopic rates it is well known how to derive the

overall kinetics by diagonalizing the rate matrix [25,26]. The set of
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dim(K) eigenvalues, frlg, and corresponding eigenvectors, fulg,
are used in Equations 3–4. The instantaneous population of state i

at time t is denoted pi(t). The time dependence of p(t), given in

Equations 3 and 4, is then a function of the rate matrix, K, and the

initial concentrations p(0) via the coefficients c~U{1p(0) where

U is the matrix of eigenvectors.

dp(t)

dt
~Kp(t) ð3Þ

p(t)~
Xdim(K)

l~1

clerltul ð4Þ

For systems obeying detailed balance the eigenvalues frlg are

all real and less than or equal to zero. Ordering them from largest

to smallest, the resulting eigenvalue spectrum falls into two limiting

scenarios [27]. If the largest non-zero eigenvalue (r2) is well-

separated from the next-largest eigenvalue, the system will initially

rapidly relax in a multi-exponential fashion, then will be

dominated by a single exponential. If several non-zero eigenvalues

are all similar in magnitude, multi-exponential decays may be

apparent.

The expression that we used to evaluate the cumulative flux

between any two macrobasins i and j over a time interval ½0,t� is

given in Equation 5.

Jij(t)~

ðt

0

Kijpi(t’){Kjipj(t’)
� �

dt’ ð5Þ

We evaluated Equation 5 from an initial concentration vector

corresponding to a completely folded or unfolded state t~?,

yielding equilibrium fluxes. We used the GraphViz software [28]

to visualize the fluxes between each pair of directly connected

macrobasins. Several examples of resulting flux diagrams are given

in Section 3.

Model

2.1 Hamiltonian
The model used for the simulations reported in Section 3 has

been previously described [29]. We only reiterate a few important

aspects here. It is an explicit chain, coarse-grained, structure

based, non-additive model. To avoid excessive computational

burden, our model is coarse-grained to the level of three atoms per

residue and does not explicitly represent solvent molecules.

Attractive interactions are dictated by the experimentally deter-

mined native structure and are of a uniform strength (independent

Figure 1. The protein 4ANK, comprised of 4 identical consen-
sus ANK repeats. Each ANK is colored distinctly. The N-terminal
repeat is colored red. The Visual Molecular Dynamics (VMD) software
package [60] was used to visualize the structures in this work.
doi:10.1371/journal.pone.0050635.g001

Figure 2. A structurally motivated foldon definition that splits
each ANK element into two parts (8 foldons total). b-hairpins are
contained within a single foldon (odd-numbered foldons).
doi:10.1371/journal.pone.0050635.g002

Figure 3. Thermal chevron plots obtained using two foldon
definitions. For the ANK foldon definition (solid line) the maximum
folding rate, at greatly stabilizing conditions, approaches the maximum
downhill rate (106 s{1). The minimum rate for the ANK definition is
around 83 s{1 , for the half-ANK definition, about 5 s{1 .
doi:10.1371/journal.pone.0050635.g003
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of the amino acid identities). A consequence of the principle of

minimal frustration [1] is that native contacts should be

significantly more favorable than non-native contacts so that only

those pairs of residues in contact in the experimentally determined

native structure are assigned attractive interactions during the

simulation. Although in reality non-native interactions are

certainly present, their primary effect is to provide an additional

source of friction, slowing the progression through the partially

native manifold [30,31]. Structure based models have generally

shown agreement with a variety of protein folding experiments

although there are a few systems such as Im7 where specific non-

native effects are quite apparent [32]. In our model, non-additive

forces are approximated by introducing a non-additivity exponent

p as shown in Equation 6, where Hna is the non-additive term in

the Hamiltonian, Ei is a pairwise additive energy term and p is the

non-additivity exponent. For the current study, a value of p~2:0
was used. Previous work indicates that adding a modest amount of

non-additivity improves predictions of experimentally determined

rate constants for both global and sub-global folding events of

natural proteins [33,34].

Hna~{
1

2

X
i

DEi Dp ð6Þ

2.2 Example system
The ankyrin repeat (ANK) is a pervasive 33-residue motif found

predominantly in eukaryotes [35]. It has been an excellent basis

for constructing model systems for protein folding [16,36–38] and

engineering [39–44]. Through detailed comparison of ANK

sequences, a consensus sequence – one that best represents the

entire family – has been defined [15]. The secondary structure of a

consensus ANK runs b-strand?a-helix?a-helix?loop?b-

strand. The resulting tertiary structure contains a b-hairpin

comprised of two rather short b strands coming from the N-

and C-terminal ends of consecutive repeats. Previous work has

shown that single ankyrin repeats in isolation do not adopt stable

tertiary structures [15]. Our example system, 4ANK (RCSB PDB

[45] ID: 1N0R [15]), is shown in Figure 1. The short b-strands are

shown as coil in this particular representation. Not all published

coordinates of ANK proteins are annotated as having b-strands

elements. However, these extended loops typically populate the b-

strand region of the Ramachandran plot. Variations in secondary

structure detection algorithms (for example, consideration of

hydrogen bonding geometry) may account for these apparent

discrepancies.

Different groups have arrived at diverse descriptions of specific

ANK protein folding mechanisms. Marchetti Bradley and Barrick,

studying the Notch ankyrin domain (comprised of 7 ANK repeats),

concluded that the central three ANKs of that protein formed the

(early) transition state, based on w value analysis. [46] Ferreiro and

coworkers, who computationally evaluated the folding of ANK

proteins ranging from 3 to 7 repeats, concluded that the folding

nucleus consists not of an integer number of repeats but of one

ANK plus the first helix of the following ANK repeat [16]. In

order to remain agnostic regarding the nature of the nucleus

without introducing unnecessary complexity, we have chosen to

characterize the foldon macrobasins at both the ANK and the

half-ANK resolution. To avoid subtleties associated with how

sequence differences between the repeats can change the folding

Figure 4. Flux diagrams for the full-ANK mechanism. The vertical coordinate approximates the free energy of each macrobasin and the precise
relative free energies in units of kT are given in parentheses. The horizontal coordinate approximates the global reaction coordinate. A line is drawn
between each pair of connected macrobasins, and the width of the line is proportional to the flux. A minimum line width is enforced for clarity.
Folding conditions are show on the left, unfolding on the right.
doi:10.1371/journal.pone.0050635.g004
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mechanism, we have chosen to study a consensus ANK protein

(containing identical repeats) and simulate a model with uniform

stabilizing contact energies.

4ANK is a designed ANK protein consisting of three identical,

consensus repeats followed by a fourth consensus ANK lacking its

final b-strand (which usually frays and promotes aggregation) [15].

A C-terminal tyrosine is the only non-consensus residue in the

protein as constructed in the laboratory. Figures 1 and 2 show the

experimentally determined structure of 4ANK and the two

different foldon definitions we explored. One foldon definition

assigns each ANK to its own foldon, while the second one divides

the protein into 8 foldons of length 12, 19, 14, 19, 14, 19, 14, and

15 residues. The second definition was chosen so that the b-turn

elements are contained within a single foldon. This allows us to

monitor the formation of previously proposed [16] folding nuclei

without deciding beforehand which ANKs would be involved.

Results

In Figure 3 we show the calculated characteristic rate

coefficients for the protein 4ANK as a function of the relative

stability of the completely folded and completely unfolded

macrobasins. At lower temperatures (more negative stabilities)

the characteristic rate reflects the rate of formation of the folded

state – this parallels the experimental scenario where denatured

protein is rapidly equilibrated in stabilizing conditions. At higher

temperatures (more positive stabilities), the unfolding process

dominates the relaxation kinetics. The rates become smallest when

the folding and unfolding rate eventually meet near the folding

temperature. For strictly two-state folders (with a transition state

that does not vary with the stability) this sort of ln(k) vs. stability

plot has a sharp V-shape and is therefore called a ‘‘chevron plot’’.

Deviations from a strict V-shape are expected for folding

mechanisms with intermediates. Experimentally, chevron plots
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Figure 5. Folding flux diagram for the half-ANK mechanism. Symbols have the same meaning as in Figure 4.
doi:10.1371/journal.pone.0050635.g005
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are typically obtained by using chemical denaturant to change the

relative stability of the folded and unfolded states. In computer

models that lack an explicit representation of chemical denatur-

ants, it is necessary to find other ways to change the relative

stability of the folded and unfolded states, and temperature is a

common choice. Although not guaranteed to behave identically,

calculated thermal chevron plots have been fruitfully compared to

experimental chemical denaturant chevron plots to shed light on

specific questions related to real biological systems [47,48].

Figure 3 shows chevron plots calculated using the ANK and

half-ANK foldon definitions. Both foldon definitions give similar

chevron plots although the rates obtained using the half-ANK

definitions are lower. Using either foldon definition, the plots show

curvature in the unfolding arm.

For each foldon definition, we calculated the cumulative folding

and unfolding fluxes using Equation 5 (Figures 4, 5 and 6). The

relative stabilty of the folded and unfolded macrobasins was

chosen to be in the range of 10kT in all cases, about half way up

the folding or unfolding arm. The flux calculation was started with

100% of the population in either the folded or unfolded state, and

Equation 5 was evaluated at t~?, yielding the equilibrium fluxes.

The mechanism inferred using ANK foldons (Figure 4) goes

through a transition state with the third repeat folded. At high

folded state stability, folding continues downhill in free energy

through several competing pathways. The unfolding mechanism at

high temperature is approximately the reverse of the folding

process at low temperature, but it differs in that a single pathway

dominates, proceeding through a broad transition state that

contains both the 0010 and 0110 macrobasins. In contrast to

folding conditions, relatively little flux flows through 0011.

Figure 5 shows the fluxes for folding according to the half-ANK

foldon definition. With 46 macrobasins sampled, the half-ANK

mechanisms are more elaborate. Flux goes through multiple

pathways that are closely related to each other and similar to the

previously discussed pathways for the ANK foldon definition.

Most of the flux goes through the macrobasin 00001000, which
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Figure 6. Unfolding flux diagram for the half-ANK mechanism. Symbols have the same meaning as in Figures 4 and 5.
doi:10.1371/journal.pone.0050635.g006
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has the N-terminal helix of repeat 3 folded, and then through

00001100 to complete the folding of the 3rd repeat. While we

predict a relatively high stability for the macrobasin 01111101, the

flux analysis shows that this macrobasin is not kinetically

significant. The mechanism does not follow trivially from the

thermodynamics; the locality of transitions matters.

The unfolding fluxes under the half-ANK foldon assignment are

shown in Figure 6. Unfolding is initiated at the termini. As with

the ANK foldon case, the half-ANK mechanism goes through an

intermediate with the center two repeats folded. For levels of

global foldedness where an even number of half ANK units are

folded, those macrobasins with all full ANK units either

completely folded or unfolded (such as 00111100 and 00001111)

are always found to be more stable than those with partially folded

ANKs (such as 00011101 and 0010110). As a result, these states

tend to have a larger fraction of the flux, although the exact

amount of flux depends on the detailed connectivity of the model.

Discussion

Kinetic equation formalisms are useful as a way of coarse-

graining protein folding landscapes and extracting measurable

kinetics [10,11,49,50]. Here we develop an approach wherein

umbrella sampling over a global folding reaction coordinate allows

for accurate quantification of the free energies of the folding

intermediates. A similar method was used by Ferreiro et al. to study

TPR repeat proteins [17]. The current method extends that work

by calculating folding kinetics and fluxes using simple assumptions

about the kinetic connectivity of the network of intermediates and

the universal rate for downhill transitions between macrobasins.

Curvature in the unfolding arm of chevron plots is a well studied

phenomenon [51–53]. Experimental studies also have shown that

ANK proteins have substantial curvature in the unfolding arm of

the chevron plot [38,46,54–57] in qualitative agreement with the

present model’s prediction. Although some simple coarse-grained

models show large amounts of rollover in the folding and

unfolding arms of calculated chevron plots, previous theoretical

work [58,59] has shown that these effects are lessened when

physically plausible many-body interactions are included, as they

are in the current study. The inferred mechanisms are consistent

with the notion that consensus ANK proteins, which lack energetic

biases that result from sequence heterogeneity between repeats,

are likely to fold through an ‘‘inside-out’’ mechanism, with the

central repeats nucleating folding. While specific folding pathways

occur, which ones dominate clearly depends on the conditions

under which the folding or unfolding occurs. Also, the resolution

at which kinetics is monitored may determine whether a single

pathway may appear to be dominant or whether multiple

pathways can be discerned.
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18. Muñoz V (2001) What can we learn about protein folding from ising-like

models? Current opinion in structural biology 11: 212–216.

19. Shirts M, Chodera J (2008) Statistically optimal analysis of samples from

multiple equilibrium states. The Journal of chemical physics 129: 124105.

20. Plotkin S, Wang J, Wolynes P (1997) Statistical mechanis of correlated energy

landscape models for random heteropolymers and proteins. Physica D:
Nonlinear Phenomena 107: 322–325.

21. Zheng W, Gallicchio E, Deng N, Andrec M, Levy R (2011) Kinetic network
study of the diversity and temperature dependence of trp-cage folding pathways:

Combining transition path theory with stochastic simulations. The Journal of

Physical Chemistry B 115(6): 1512–1523.

22. Hagen S, Hofrichter J, Szabo A, Eaton W (1996) Diffusion-limited contact

formation in unfolded cytochrome c: estimating the maximum rate of protein
folding. Proceedings of the National Academy of Sciences 93: 11615.

23. Kubelka J, Hofrichter J, Eaton W (2004) The protein folding ‘speed limit’.
Current opinion in structural biology 14: 76–88.

24. Kubelka J, Chiu T, Davies D, Eaton W, Hofrichter J (2006) Sub-microsecond
protein folding. Journal of molecular biology 359: 546–553.

25. Widom B (1965) Molecular transitions and chemical reaction rates: The
stochastic model relates the rate of a chemical reaction to the underlying

transition probabilities. Science 148: 1555–1560.

26. Widom B (1971) Reaction kinetics in stochastic models. The Journal of

Chemical Physics 55: 44–52.

27. Widom B (1974) Reaction-kinetics in stochastic-models. II. J Chem Phys 61:
672–680.

28. Ellson J, Gansner E, Koutsofios E, North S, Woodhull G (2004) Graphviz and
dynagraphstatic and dynamic graph drawing tools. Graph Drawing Software:

127–148.

29. Eastwood M, Wolynes PG (2001) Role of explicitly cooperative interactions in

protein folding funnels: a simulation study. The Journal of Chemical Physics
114: 4702.

Kinetics from Funneled Landscape Simulations

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e50635



30. Bryngelson J, Wolynes P (1989) Intermediates and barrier crossing in a random

energy model (with applications to protein folding). The Journal of Physical

Chemistry 93: 6902–6915.

31. Wang J, Saven J, Wolynes P (1996) Kinetics in a globally connected, correlated

random energy model. The Journal of chemical physics 105: 11276.

32. Sutto L, Lätzer J, Hegler J, Ferreiro D, Wolynes PG (2007) Consequences of

localized frustration for the folding mechanism of the im7 protein. Proceedings

of the National Academy of Sciences 104: 19825.

33. Ejtehadi MR, Avall SP, Plotkin SS (2004) Three-body interactions improve the

prediction of rate and mechanism in protein folding models. Proceedings of the

National Academy of Sciences of the United States of America 101: 15088–

15093.
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