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Abstract

Biliary atresia is a common disease in neonates which causes obstructive jaundice and progressive hepatic fibrosis. Our
previous studies indicate that rotavirus infection is an initiator in the pathogenesis of experimental biliary atresia (BA)
through the induction of increased nuclear factor-kappaB and abnormal activation of the osteopontin inflammation
pathway. In the setting of rotavirus infection, rotavirus nonstructural protein 4 (NSP4) serves as an important immunogen,
viral protein 7 (VP7) is necessary in rotavirus maturity and viral protein 4 (VP4) is a virulence determiner. The purpose of the
current study is to clarify the roles of NSP4, VP7 and VP4 in the pathogenesis of experimental BA. Primary cultured
extrahepatic biliary epithelia were infected with Rotavirus (mmu18006). Small interfering RNA targeting NSP4, VP7 or VP4
was transfected before rotavirus infection both in vitro and in vivo. We analyzed the incidence of BA, morphological change,
morphogenesis of viral particles and viral mRNA and protein expression. The in vitro experiments showed NSP4 silencing
decreased the levels of VP7 and VP4, reduced viral particles and decreased cytopathic effect. NSP4-positive cells had
strongly positive expression of integrin subunit a2. Silencing of VP7 or VP4 partially decreased epithelial injury. Animal
experiments indicated after NSP4 silencing, mouse pups had lower incidence of BA than after VP7 or VP4 silencing.
However, 33.3% of VP4-silenced pups (N = 6) suffered BA and 50% of pups (N = 6) suffered biliary injury after VP7 silencing.
Hepatic injury was decreased after NSP4 or VP4 silencing. Neither VP4 nor VP7 were detected in the biliary ducts after NSP4.
All together, NSP4 silencing down-regulates VP7 and VP4, resulting in decreased incidence of BA.

Citation: Feng J, Yang J, Zheng S, Qiu Y, Chai C (2011) Silencing of the Rotavirus NSP4 Protein Decreases the Incidence of Biliary Atresia in Murine Model. PLoS
ONE 6(8): e23655. doi:10.1371/journal.pone.0023655

Editor: Jean-Pierre Vartanian, Institut Pasteur, France

Received March 22, 2011; Accepted July 22, 2011; Published August 18, 2011

Copyright: � 2011 Feng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Natural Science Foundation of China (Grant No.81070284 and No.30672195; http://www.nsfc.gov.cn/Portal0/
default106.htm). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fengjiexiong@126.com

Introduction

Biliary atresia (BA) is a common biliary disease in infants. It is

characterized by progressive destruction of extrahepatic bile ducts,

resulting in obstruction of bile flow during the first few months of

children’s lives [1,2]. Interdisciplinary initiatives [3] focusing on

BA suggests it is a virus-induced autoimmune disease [4,5]. As

supported by our clinical evidence [6,7,8] and animal models

[9,10], reovirus, especially rotavirus, infection could cause biliary

injury or obstruction of bile duct lumens. Among all candidates,

rhesus rotavirus (RRV) is considered to be the most potent virus in

inducing experimental BA [9]. Nonstructural protein 4 (NSP4),

viral protein 7 (VP7) and viral protein 4 (VP4) have become

hotspots for the mechanism of rotavirus infection as they are

important in the process of rotavirus replication [11,12,13].

However, studies investigating the relationship between rotavirus

proteins and BA are lacking.

Besides the important role in the replication process of rotavirus,

NSP4 serves as a potential immunogen and an enterotoxin [5],

VP7 is necessary in rotavirus maturity [12] and VP4 is thought to

be a virulence determiner [11]. However, it is unclear what roles

they play in the pathogenesis of BA.

Since the utilization of small interfering RNA (siRNA), siRNAs

have been used as efficient and powerful tools to ‘‘silence’’

rotavirus genes [12]. In this study, rotavirus NSP4, VP7 and VP4

mRNAs are silenced in biliary epithelia. The roles of NSP4, VP7

and VP4 in the pathogenesis of virus-induced BA are investigated,

both in cultured cells and mucosal layers of bile ducts. Our

hypothesis is that the loss of function of these key genes can

prevent rotavirus associated biliary atresia in rotavirus infected

mice.

Results

In vitro studies
Cell injury, number of viral particles and maturity of

rotavirus is decreased by siRNAs. We first examined the

cytopathic effect (CPE) of cultured extrahepatic biliary epithelia

(EHBE) according to Jafri M’s method [14]. CPE was graded

according to the CPE percentage: Grade 0: no CPE; Grade 1: 1–

25%; Grade 2: 25–50%; Grade 3: 50–75%; Grade 4: 75–100%

(Figure 1A). As shown in Table 1, no significant CPE was noted in

the blank control group. siNSP4 treated EHBE had the lowest

CPE percentage.(P,0.05, compared to the negative control

group, siVP7 group and siVP4 group), while there was no

difference between siVP7 treated, siVP4 treated and negative

control EBHE. In addition, transmission electronic microscopy

showed siRNA targeting NSP4 (siNSP4) transfected EHBE

preserved the normal untrastructure (Figure 1B). siNSP4 also

decreased the number of both mature virus (triple layered

particles, TLPs) and immature virus (double layered particles,

DLPs) (both P,0.05, compared to NC). siRNA targeting VP7
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Figure 1. Rotavirus replication, maturity and cytopathic effect of cultured extrahepatic biliary epithelia (EHBE). (A) Cytopathic effect
(CPE) grading of cultured EHBE. The severity of EHBE injury was graded from 0 to 4 with 4 being the most severe. (B) Ultrastructural CPE. siNSP4
transfected EHBE had normal structure. The other 2 siRNAs also protected the shape of EHBE, but nuclear degeneration was noted (pointed by black
arrows). (C) Rotavirus particles. Significantly less double-layered particles (DLPs, pointed by black arrows) and triple-layered particles (TLPs, pointed by
black arrow heads with dash lines) existed in siNSP4 protected EHBE. siVP7 caused more synthesis of DLPs. (D) Viral particle quantification. TLPs in
EHBE significantly reduced in all siRNA trasfected groups (*N¤P,0.05, compared to NC). DLPs in siVP7 group was increased significantly (mP,0.05,
compared to NC). (E) Representative gel images of reverse transcription polymerase chain reaction (RT-PCR). RT-PCR revealed the presence of 3 viral
messenger RNAs (mRNAs) in NC group, but siNSP4 transfection reduced the level of NSP4 mRNA and completely inhibited the transcription of VP7
and VP4 mRNA. siVP7 caused absence of VP4 and VP7 mRNA. siVP4 reduced mRNA transcription. (F) Quantitative analysis using Gel Pro Analyzer.
siNSP4 decreased the relative level of all viral mRNAs (*mNP,0.05, compared to NC). siVP7 inhibited the transcription of VP7 and VP4 mRNAs
(¤wP,0.05, compared to NC). siVP4 only inhibited the mRNA expression of VP4 (&P,0.05, compared to NC).
doi:10.1371/journal.pone.0023655.g001
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(siVP7) transfected EHBE contained more DLPs but less TLPs

(both P,0.05 compared to NC); siVP4 treated EHBE contained

less TLPs, but there was no difference of the number of DLPs in

this group compared to the negative control (Figure 1C and 1D).

Viral mRNA transcription is decreased by siRNAs. RT-

PCR showed that the amplicon of VP4, VP7 could not be detected

and relatively less NSP4 transcription was noted in siNSP4

transfected EHBE. VP4 and VP7 mRNA was diminished in siVP7

transfected EHBE, but NSP4 mRNA appeared in this group.

Decreased transcription level of VP4 was noted in siVP4

transfected EHBE, but the mRNAs of VP7 and NSP4 were

both present. The statistical significance of these findings was

analyzed using Gel-Pro Analyzer (Version 3.0). (Figure 1E and

1F).

Translated products of rotavirus protein are diminished

by siRNAs. Immunofluoresent assay (IFA) showed that viral

proteins were constantly expressed in the cytoplasm of EHBE. The

distribution of NSP4, VP7 and VP4 was similar to each other,

indicating a large amount of EHBE was productively infected in

NC group. Significantly decreased number of EHBE contained

translated VP4, VP7 and NSP4 after transfection of siNSP4. siVP7

transfection could down-regulate the translated products of VP4

and VP7 in EHBE after RRV infection, but positive staining of

NSP4 in a large number of EHBE suggested most of cells could

still express NSP4. siVP4 only silenced VP4 expression, while the

other 2 proteins were still expressed (Figure 2A).

Integrin subunit a2 is increased in NSP4 positive

cells. Integrin subunit a2 was expressed on all cultured

EHBE. NSP4 positive cells had higher expression of integrin

subunit a2 than that in the blank control (Figure 2B).

In vivo studies
siRNA transfection decreases hepatobiliary injury and

reduces the incidence of biliary atresia. Hematoxylin and

eosin staining of the liver showed that siNSP4 and siVP4

transfection prevented hepatic injury (Figure 3A). According to

Petersen C’s murine model of BA [9], Grade 2 and 3 were

considered as BA. siNSP4 transfection efficiently prevented

extrahepatic bile ducts from rotavirus induced biliary atresia

with the lowest incidence of BA (0/5). In the siVP7 group and

siRNA targeting VP4 (siVP4) group, siRNA transfected mice also

reduced the incidence of BA (0/6 and 2/6 respectively), but some

mice still suffered relatively severe biliary injury in the 2 groups

(Figure 3B and 3C). Moreover, measurement of the inner/outer

Table 1. Mean CPE percentage of different groups.

Blank Controla (%) Negative Controlb (%) siNSP4c (%) siVP7d (%) siVP4e (%)

Mean CPE percentage 12.2863.12 69.39610.17# 26.7267.63* 50.5669.86m 53.5069.98N

aBlank Control, cells in blank control group that were not infected with rotavirus but transfected with siRNA Lamin A/C.
b Negative Control, cells in negative control were infected with rotavirus and transfected with siRNA Lamin A/C.
c, d, eCells in these groups were transfected with corresponding siRNAs.
doi:10.1371/journal.pone.0023655.t001

Figure 2. Immunofluorescence for rotavirus proteins and integrin a2. (A) All viral proteins were expressed in the cytoplasm of cultured
extrahepatic biliary epithelia (EHBE). Decreased viral protein expression and less infected cells were evident in siNSP4 transfected EHBE. siVP7
transfection significantly reduced VP4 and VP7 expression while leaving NSP4 expression unchanged. siVP4 inhibited the expression of VP4, but the
expression of the other 2 proteins was not influenced. Magnification, 6200. (B) NSP4 positive biliary epithelia had higher expression of integrin a2
compared to non-infected cells. Magnification, 61000.
doi:10.1371/journal.pone.0023655.g002
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Figure 3. Hepatobiliary injury, incidence of biliary atresia and intraluminal rotavirus replication in the bile ducts. (A) Hematoxylin and
eosin staining of livers. Ballooning degeneration and mononuclear cell infiltration were the basic pathologic changes in the liver of rotavirus infected
mice in the NC group, but none suffered from hepatic cirrhosis. siNSP4 and siVP4 transfection decreased hepatic injury, but siVP7 transfected mice
still suffered from significant hepatic injury. (B) Grading of extrahepatic bile duct injury. Grade 0: No obstruction, stenosis, necrotic epithelia or
inflammatory cell infiltration. Grade 1: Mild stenosis and several inflammatory cells. Grade 2: Stenosis or obstruction caused by necrotic cells or
inflammatory cells in bile duct lumens. Grade 3: Complete lumen obstruction. Black arrow pointed at the site of injury. (C) Summary of distribution of
biliary injury grading. Biliary injury was significantly inhibited by siNSP4 (0/5), (P,0.05) compared to NC (5/5). Three of siVP7 transfected mice suffered
mild biliary injury. Half of siVP4 transfected mice suffered BA. (D) Measurement of inner and outer diameters of bile ducts. The dashed line and black
line respectively indicated the inner and outer diameters. (E) Summary of distribution of inner/outer diameter index (I/O DI). siRNA transfected mice
had relatively higher index value (all P,0.05, compared to NC). siNSP4 had the highest I/O DI which was not significantly different from the blank
controls (P.0.05). (F) Quantitative analysis of viral messenger RNA (mRNA) in bile ducts on 7 dpi using real-time reverse transcription polymerase
chain reaction. siNSP4 decreased the level of all viral mRNAs (*mNP,0.05, compared to NC). siVP7 inhibited the transcription of VP7 and VP4 mRNAs
(¤wP,0.05, compared to NC). siVP4 only inhibited the mRNA expression of VP4 (&P,0.05, compared to NC).
doi:10.1371/journal.pone.0023655.g003
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diameter index (I/O DI) suggested that siNSP4 transfection could

restore normal bile flow in the well preserved bile duct lumens

(Figure 3D and 3E).

siRNA transfection decreases viral mRNA levels on day 7

post infection. All 3 rotavirus mRNAs were inhibited

significantly by siNSP4. siVP7 and siVP4 transfection could not

reduce the transcription of NSP4. siVP7 could silence VP7 mRNA

and reduce the synthesis of VP4 mRNA. siVP4 could only

significantly decrease the level of VP4 mRNA (Figure 3F).

Expression of viral proteins is decreased by siRNAs on

mucosal layer of the bile ducts. The mucosal layer was the

major site for rotavirus infection in bile ducts. siNSP4 transfected

mice had low expression of NSP4, VP7 and VP4 proteins.

Moreover their bile duct lumens were not narrowed nor

obstructed. Expressions of VP4 and VP7 were not detected in

siVP7 transfected mice. In siVP4 protected mice, VP4 was

negatively and VP7 was weakly positive. (Figure 4).

Discussion

It has been over 30 years since the report of a model of reovirus

induced BA in rodents [15]. Since then, there have been several

advances in this model including the study of rotavirus, an

important human pathogen [5]. Our previous findings indicate

that rotavirus-induced biliary atresia is mediated by nuclear factor-

kappaB [10] and abnormal activation of osteopontin inflammatory

pathway in the liver [7]. Our newly established method for

primary culture of biliary epithelia gives us a powerful means to

study the relationship between rotavirus infection and biliary

injury [16]. Rotavirus can infect biliary duct epithelial cells [17].

Therefore, EHBE is the presumptive target of rotavirus.

Previous data in bovine MA104 cells have shown that NSP4,

VP7 and VP4 are essential for rotavirus replication and infection

[11]. However, no research has ever verified whether NSP4, VP7

or VP4 protein are important in damaging EHBE and

consequently causing BA. Based on our previous findings, we

conducted a study of gene silencing to clarify the relationship

between these three rotavirus proteins and rotavirus-induced

biliary injury.

In this study, we show that NSP4 elimination can significantly

decrease the quantity of TLPs and DLPs in EHBE. This suggests

that very few mature viral particles are assembled. We detected the

mRNA and protein levels of NSP4, VP7 and VP4, because VP4

and VP7 are also essential for TLP assembly. The results show that

siRNA knockdown of NSP4 inhibits the synthesis of VP7 and VP4.

This indicates that loss of function of NSP4 inhibits the synthesis of

VP7 and VP4. [17,18] Furthermore, NSP4 co-localizes with

integrin a2 on the surface of rotavirus-infected mucosal epithelia

in the bile ducts, indicating that NSP4 up-regulates the expression

of integrin a2.

The incidence of murine BA, as reported in several studies,

ranges from 50% to 80% [18,19,20]. In this study, we semi-

quantitatively measured I/O DI, which provides a reliable

assessment of the severity of biliary obstruction. All of the negative

control (NC) mice developed BA, whereas mice treated with

siNSP4 were protected from severe biliary injury. In addition,

along with the inhibition of NSP4, the level of the other two viral

mRNAs we assayed was markedly down regulated in the bile

ducts. From both the in vitro and in vivo studies, we obtained

similar results. Thus, the loss of NSP4 inhibited other viral mRNA

and protein expression, as well as decreased epithelial injury on

cultured EHBE and the mucosal layer of extrahepatic bile ducts.

As a result, the incidence of biliary atresia decreased significantly.

In siVP7 transfected EHBE, increased proportion of DLPs is

expected, because VP7 forms the outermost protein layer of

rotavirus [12]. Administration of siVP7 decreased VP4 mRNA

and protein level, but had no effect on NSP4. Mice in this group

still have hepatobiliary injury. VP7 loss of function may be

compensated by other pathways which may be directed by NSP4

or other viral proteins. This indicates that VP7 may not be

essential in the pathogenesis of BA, but it may have an important

role in modulating the maturity of rotavirus in EHBE. We

postulate that VP7 may function in the intermediate step in the

pathogenesis of BA, but we need to perform more investigations to

clarify how it reacts with other viral proteins and EHBE.

VP4 loss of function can neither prevent EHBE from rotavirus-

induced biliary injury, nor can it achieve prevention of BA.

However, when severe ballooning degeneration is noted in the

infected mice, siVP4 transfected mice get mild ballooning

degrneration. This is probably because VP4 is important in cell

attachment, penetration, and virulence determination [21]. More-

over, siVP4 treatment results in virus particles lacking the VP4

spikes, thereby decreasing TLPs. Virus particles formed would not

spread to uninfected EHBE. However, damage to epithelium still

occurs, perhaps due to the continued production of NSP4 and

VP7, as shown above. Thus, while VP4 may play overall role in

rotavirus pathogenesis in the intestine, it is not a major

determinant of rotavirus induced BA.

Our data suggests that the non-structural protein of rotavirus

plays a major role in the pathogenesis of BA in a murine model.

There is an interaction of NSP4 with two other known

determinants for pathogenic interaction of rotavirus. However,

these proteins appear to play a less important role, based upon the

partial protection afforded with knock down of expression. The

exact mechanism for NSP4 inducing biliary disease is not clear.

Several models can be advanced, including affects on secondary

host proteins, such as integrin a2, or immune response. Further

work is needed to delineate the precise role of NSP4 in BA disease.

Materials and Methods

Ethics statement
All of the studies were carried out in accordance with

Communities Council Directive for care of laboratory animals in

an AAALAC-accredited facility following approval of study design

Figure 4. Immunofluorescent assay for viral protein expression
in biliary epithelia of extrahepatic bile ducts on 7 dpi.
Extrahepatic bile ducts infected by rotavirus expressed cytoplasmic
viral proteins in the epithelial layer. siNSP4 transfection decreased the
expression of NSP4, VP7 and VP4. In serial sections, NSP4 was positive
but VP4 and VP7 were both negative in siVP7 transfected mice. siVP4
transfected mice had positive expression of VP7 and NSP4.
doi:10.1371/journal.pone.0023655.g004
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(Permit Number 2009-AR0288) by the Institutional Animal Care

and Use of the Committee (IACUC) at Tongji Medical College

(Wuhan, China). Veterinarians skilled in the healthcare and

maintenance of rodents supervised animal care. Reasonable efforts

were made to minimize suffering of animals. The use of animals

was minimized by using an experimental design permitting

statistically-significant changes to be demonstrated with the

smallest number of animals per group and the smallest number

of groups, which was consistent with scientific rigour.

Cell and virus preparation
Rhesus monkey kidney epithelial cell line (MA104) was

provided by Dr. Yuanhong Wang (Center of Disease Control,

Wuhan, China). RRV strain mmu18006 was obtained from Dr.

Greg M. Tiao (Pediatric Surgery Division and Liver Care Center,

Cincinnati Children’s Hospital Medical Center, USA). RRV was

propagated on MA104, Dulbecco’s Modified Eagle Medium

(DMEM, GIBCO, Grand Island, N.Y., USA) with trypsin (3 mg/

ml, Sigma, St. Louis, M.A., USA), 1% penicillin and 1%

phytomycin. When cytopathic effect (CPE) percentage reached

to 80%, RRV was harvested and its titer was determined by the

plaque forming assay. The RRV titer of supernatant was 2.06106

Plaque Forming Unit per ml.

siRNAs and Primers
The siRNAs targeting RRV genes were produced by Guangz-

hou RIBOBIO Corporation, Guangdong, China. The siRNA

sequences and mRNA targets were listed in Table 2. siRNA

Lamin A/C (AAC UGG ACU UCC AGA AGA ACA) served as

the control siRNA [12]. siRNAs and primers were designed and

based on the rhesus rotavirus mRNA sequences of NSP4

(Genebank Accession Number EU636933), VP7 (Accession

Number AF295303.1) and VP4 (Accession Number AY033150).

In vitro studies
Isolation and culture of EHBE. The primary EHBE were

cultured based on the method described in our previous work [16].

Briefly, the extrahepatic bile ducts of adult Balb/C mice were

removed and transferred into DMEM/HamF12 medium

(GIBCO, Grand Island, N.Y., USA). The bile ducts were cut

into fragments with the diameter less than 0.5 mm and digested by

0.25% trypsin and DNase I (20 IU/ml, Invitrogen, Carlsbad,

C.A., USA) for 10 mins at 37uC. Subsequently, collagenase IV

(200 U/ml, Invitrogen, Carlsbad, CA, USA) was added and

incubated for 30 mins at 37uC. After centrifugation, the detached

cells were re-suspended and separated from the undigested tissues

by filtration. The cell density was adjusted to 16106/ml. The cells

were seeded in plastic culture-flasks containing DMEM/HamF12

with 10% fetal bovine serum and epidermal growth factor (10 ng/

ml, PeproTech, Rochy Hill, N.J., USA). On the 4th day of

culturing, cultured EHBE were identified by cytokeratin-19

immunocytochemical staining and MTT cell proliferation assay

[16].

SiRNA transfection and RRV infection. After the EHBE

were washed with PBS, 2 ml of Opti-MEM-I (Invitrogen,

Carsbad, C.A., USA) was added. After 2 h, Opti-MEM-I was

removed. The transfection mixture consisting of 0.49 ml of Opti-

MEM-I, 0.1 nmol of siRNA and 5 ul of lipofectinTM2000

(Invitrogen, Carlsbad, C.A., USA) was added. Six hours later,

1.5 ml of DMEM with 10% fetal bovine serum was added. At

24 h post-transfection, the transfection mixture was removed. The

EHBE was incubated with 500 ml of RRV supernatant at 37uC.

The EHBE in the blank control group were transfected with

transfection mixture with siRNA Lamin A/C, with no RRV

infection. The EHBE the NC group were infected with RRV and

transfected with siRNA Lamin A/C. The EHBE in the siRNA

groups were transfected with corresponding siRNA and then

infected with RRV.

CPE determination. According to the method of titer

determination by Landau SM [22], at 24 hours post inoculation,

CPE percentage in 6 random vision fields (6100 magnification)

was determined and expressed as mean6SD from 3 independent

experiments.

Ultrastructure of EHBE and virus quantification. Based

on the modified method of Esparza J, et al [23], the cell suspension

was centrifuged for 10 min at 1000 rpm. The cell pellet was

washed with PBS, fixed in 2.5% glutaraldehyde overnight at 4uC
and postfixed in 2% OsO4 for 2 h and dehydrated. Fixed cell

masses were embedded in Epon-812 and made into ultra-thin

sections with the thickness of 100 nm. The sections were further

stained with uranyl acetate and lead citrate. Sections were

observed under transmission electron microscope (FEI-Tecnai

G2-12-type, Holland). Viral particles in 6 random vision fields

were counted. The number of viral particles was expressed as

mean6SD from 3 independent experiments.

Reverse transcription polymerase chain reaction. For

the evaluation of mRNA of NSP4, VP7 and VP4 in the cultured

EHBE, total RNA was isolated from EHBE with the Trizol

reagent, and 2 ml of total RNA was reverse transcribed to

synthesize cDNA with a ReverTra Ace-a- kit (TOYOBO, FSK-

100, Japan). Each PCR reaction containing 1 ml of cDNA, 2.5 ul

of 106PCR Buffer, 0.25 ml of dNTP (10 mmol/L), 0.5 ml of

primers (5 pmol/ml, Table 3), 0.25 ml of rTaq DNA polymerase

and 20.5 ml of deionized water was heated at 95uC for 5 mins,

followed by 30 cycles consisting of 95uC for 25 s, renaturation (at

58uC for b-actin and NSP4, at 60uC for VP4 and VP7) for 25 s

and 72uC for 30 s. After cycles accomplished, the amplification

products were maintained at 72uC for 3 mins. All tested samples

were run in triplicate. The PCR products were subjected to

electrophoresis on 1.5% agrose gels containing ethidium bromide.

Gel-Pro Analyzer (Version 3.0) was used to analyze the relative

levels of mRNA. The relative value of target mRNA/b-actin in the

NC group was defined as 100%, and relative value in each group

was expressed as mean6SD from 3 independent experiments.

Table 2. siRNA targets and sequences against NSP4, VP7 and VP4.

siNSP4 siVP7 siVP4

Gene Target GGCCTCGGTTCCAACCATG CTAGAATGATGGACTTTAT CCAGCAAACTATCAATATA

Positive-sense strain 59GGCCUCGGUUCCAACCAUG dTdT 39 59CUAGAAUGAUGGACUUUAU dTdT39 59CCAGCAAACUAUCAAUAUAdTdT39

Anti-sense strain 39dTdT CCGGAGCCAAGGUUGGUAC59 39dTdT GAUCUUACUACCUGAAAUA59 39dTdTGGUCGUUUGAUAGUUAUAU59

doi:10.1371/journal.pone.0023655.t002

Rotavirus NSP4 in Murine Biliary Atresia

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23655



IFA of rotavirus protein in cultured EHBE. Primary

antibodies (mouse IgG, 2 ml/ml) for detecting NSP4, VP7 or

VP4 were kindly provided by Prof. Harry Greenberg (Stanford

University School of Medicine, Stanford, USA). Integrin subunit

a2 on the EHBE was detected by FITC-labeled Hamster-anti-

mouse integrin subunit a2 (CD49b) antibody (Biolegend, San

Diego, C.A., USA), in order to label all EHBE. The EHBE were

fixed with 4% paraformaldehyde for 30 mins at 37uC. Nonspecific

reactions were blocked with normal goat serum at 37uC for

30 mins. After incubated with primary antibodies at 4uC
overnight, EHBE was incubated at 37uC for 2 h with

Rhodamine-conjugated goat-anti-mouse secondary antibody

(Santa Cruz, San Diego, C.A., USA) and analyzed with a

confocal fluorescence microscope (FV500, Olympus, Japan).

In vivo studies
Animals, siRNA transfection and RRV infection. In the

first 6 h of life after birth, 5 pups in the siNSP4 group, 6 pups in

the siVP7 group and 6 pups in the siVP4 group underwent

intraperitoneal injection of transfection mixture consisting of

siRNA (0.15 nmol/g of bodyweight) dissolved in 50 ml of in vivo-jet

PEITM (201-10G, Polyplus transfection Inc, C.A., USA) with the

N/P ratio of 6 according to the instruction. The pups in the blank

(N = 5) or the NC group (N = 5) were subjected to siRNA Lamin

A/C transfection. Six hours later, all pups were injected with 50 ml

of RRV supernatant except the blank group. After RRV infection,

all pups were monitored for 14 days. On 7 dpi, half of the pups in

each group were sacrificed, and their bile ducts were used for

mRNA and protein detection. The rest were euthanized on 14 dpi,

and their extrahepatic bile ducts and livers were harvested.
Histopathology. Formalin fixed, paraffin-embedded bile

duct and liver sections were stained with hematoxylin and eosin.

The I/O DI, representing the value of bile duct diameter divided

by lumen diameter, was calculated and expressed as mean6SD.
Real-time reverse transcription polymerase chain

reaction. Total RNA was isolated from EHBE with the Trizol

reagent, and 2 ml of total RNA was reverse transcribed to

synthesize cDNA with a ReverTra Ace-a- kit (TOYOBO, FSK-

100, Japan). To carry out relative quantification, real-time RT-

PCR was performed for measurements of NSP4, VP7 and VP4

mRNAs according to a standard protocol using the SYBR Green

PCR Master Mix (Qiagen, C.A. USA) and ABI-Prism 7700

Sequence detection system (Applied Biosystems, Tokyo, Japan).

Each PCR reaction contained 12.5 ml of SYBR-Green mix, 2.5 ml

of plus-solution, 2 ml of primers (5 pmol/ml), 8 ml of ddH2O and

2.5 ml of cDNA. After the cDNA were preheated at 50uC for

2 mins and heated at 95uC for 10 mins, it was followed by 30

cycles consisting of 95uC for 15 s, renaturation (at 58uC for b-actin

and NSP4, at 60uC for VP4 and VP7) for 15 s and 72uC for 45 s.

After these cycles, the amplification products were maintained at

72uC for 10 mins. All tested samples were run in triplicate. The

value of 22ggCT was expressed as mean6SD from 3 independent

experiments.

IFA of rotavirus proteins in mucosal layer of biliary

epithelia. Serial-sections were made for IFA. After nonspecific

reaction was blocked, primary antibody of NSP4, VP7 or VP4 was

incubated at 4uC overnight. Rhodamine-conjugated goat-anti-

mouse secondary antibody (Santa cruz, San Diego, C.A., USA)

was then incubated at 37uC for 1 h. The slides were observed with

a confocal fluorescence microscope (FV500, Olympus, Japan).

Statistical analysis. Analysis of Variance (ANOVA) was

used to compare mean values. Fisher’s exact test was used to

compare the incidence of BA. All data was analyzed with SPSS

11.0 (SPSS, Chicago, III). P,0.05 was considered statistically

significant.
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