
Resting State Brain Function Analysis Using Concurrent
BOLD in ASL Perfusion fMRI
Senhua Zhu1,2, Zhuo Fang1,2, Siyuan Hu2,4, Ze Wang2,3*, Hengyi Rao1,2,3*

1 Department of psychology, Sun Yat-Sen University, Guangzhou, Guangdong, China, 2 Center for functional Neuroimaging, Departments of Neurology, University of

Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America, 3 Department of Psychiatry, University of Pennsylvania Perelman School

of Medicine, Philadelphia, Pennsylvania, United States of America, 4 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing,

China

Abstract

The past decade has seen astounding discoveries about resting-state brain activity patterns in normal brain as well as their
alterations in brain diseases. While the vast majority of resting-state studies are based on the blood-oxygen-level-dependent
(BOLD) functional MRI (fMRI), arterial spin labeling (ASL) perfusion fMRI can simultaneously capture BOLD and cerebral
blood flow (CBF) signals, providing a unique opportunity for assessing resting brain functions with concurrent BOLD
(ccBOLD) and CBF signals. Before taking that benefit, it is necessary to validate the utility of ccBOLD signal for resting-state
analysis using conventional BOLD (cvBOLD) signal acquired without ASL modulations. To address this technical issue,
resting cvBOLD and ASL perfusion MRI were acquired from a large cohort (n = 89) of healthy subjects. Four widely used
resting-state brain function analyses were conducted and compared between the two types of BOLD signal, including the
posterior cingulate cortex (PCC) seed-based functional connectivity (FC) analysis, independent component analysis (ICA),
analysis of amplitude of low frequency fluctuation (ALFF), and analysis of regional homogeneity (ReHo). Consistent default
mode network (DMN) as well as other resting-state networks (RSNs) were observed from cvBOLD and ccBOLD using PCC-FC
analysis and ICA. ALFF from both modalities were the same for most of brain regions but were different in peripheral
regions suffering from the susceptibility gradients induced signal drop. ReHo showed difference in many brain regions,
likely reflecting the SNR and resolution differences between the two BOLD modalities. The DMN and auditory networks
showed highest CBF values among all RSNs. These results demonstrated the feasibility of ASL perfusion MRI for assessing
resting brain functions using its concurrent BOLD in addition to CBF signal, which provides a potentially useful way to
maximize the utility of ASL perfusion MRI.
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Introduction

Resting state brain activity represents a major type of brain

activity and has attracted enormous research interest in the past

decade. Due to its high spatio-temporal resolution and noninva-

siveness, BOLD signal based fMRI has become the major tool for

assessing resting brain functions. Consistent resting state activity

patterns have been repeatedly revealed in different studies [1–4],

suggesting the existence of an organized mode of resting brain

function [5–8].

Approximately ten resting-state networks (RSNs) have been

reported in independent studies using various hypothesis- and

data-driven approaches [4]. Among these networks, the default

mode network (DMN) comprising mainly the posterior cingulate

cortex/precuneus (PCC/PCu), medial prefrontal cortex (MePFC),

and the angular/lateral parietal cortex, has been most reliably

reported. Activity in the DMN is proposed to reflect the default

brain function in the absence of external stimuli or tasks [9–12].

Disturbed DMN function has also been associated with various

brain diseases, including Alzheimer’s Disease [13–15], depression

[16–18], drug addiction [19–22], schizophrenia [23], and stroke

[24]. Other reported RSNs include the sensorimotor network, the

visual network, the auditory network, the salience network, as well

as the attention and executive function networks [4].

ASL fMRI is a non-invasive technique for quantifying cerebral

blood flow (CBF) using magnetically labeled arterial blood water

as an endogenous tracer. Since CBF is reflective of regional brain

function, ASL MRI has been widely used for brain function

studies using either the static mean CBF or the dynamic CBF time

series [25,26]. Using resting CBF, our group and others identified

similar brain activity patterns to those observed using PET

[9,27,28], which were further found to be related to several

BOLD-imaging derived dynamic resting state measures: including

seed-region based FC (SRFC), regional homogeneity (ReHo), and

amplitude of low frequency fluctuation (ALFF) [29], suggesting

using ASL CBF as a complementary approach for assessing resting

brain functions. One noticeable feature of ASL MRI is that the

same ASL sequence can acquire both BOLD signal and CBF

signal, giving a potential for assessing the dynamic resting brain

function (through BOLD) and the static resting state without
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acquiring additional data. One such acquisition technique is

through the dual echo ASL sequence [30], and the other one is to

use the concurrent BOLD (ccBOLD) signal acquired in a T2*-

weighted gradient echo planar imaging sequence, which is widely

used in ASL-based research. While ccBOLD is usually considered

a nuisance variable and is removed before CBF quantification, it

provides an opportunity for performing data analyses that usually

relies on conventional BOLD (cvBOLD) imaging. However, the

feasibility and utility of ccBOLD for imaging resting-state brain

function has not been quantitatively examined. The purpose of

this study was to compare ASL ccBOLD with cvBOLD and

validate its utility for resting state brain activity analysis. Standard

conventional resting BOLD and ASL data were acquired from the

same cohort of normal subjects with similar spatial resolution.

Four widely used resting-state brain analyses were performed for

quantitative comparisons, including SRFC, ICA, ALFF, and

ReHo.

Materials and Methods

Subjets
A total of 89 healthy subjects (46 males, mean age = 28.2, age

ranges 20–52 years) participated in this study. All subjects were

screened for neurologic and psychiatric conditions. This study was

approved by the Institutional Review Board of the University of

Pennsylvania. Written informed consent was obtained from each

subject before the study.

MRI data acquisition
MR imaging was conducted in a 3T whole-body scanner

(Siemens Medical Systems, Erlangen, Germany). High-resolution

structural images were acquired for spatial brain normalization

using a 3D MPRAGE sequence. A standard EPI sequence was

used for cvBOLD fMRI data acquisition with the following

parameters: TR = 0.9 s, TE = 27 ms, FOV = 2206220 mm2, ma-

trix = 64664616, slices thickness = 6 mm, inter-slice

gap = 1.5 mm. ASL perfusion images were acquired by using a

pseudo continuous ASL (pCASL) sequence with the following

parameters: TR = 4 s, TE = 17 ms, FOV = 2206220 mm2, ma-

trix = 64664616, slices thickness = 6 mm, inter-slice gap

= 1.5 mm, labeling time = 1.77 s, delay time = 1.0 s. A total of

360 images and 60 images were acquired in BOLD and pCASL

sequence separately. Participants were instructed to lie down still

in the scanner at rest and keep eyes open.

Imaging Data Processing and analyses
Image data processing and analyses were carried out with the

Statistical Parametric Mapping software (SPM8, Wellcome

Department of Cognitive Neurology, UK) and the REST 2.0

toolbox (http://resting-fmri.sourceforge.net/), implemented in

Matlab 14 (Math Works, Natick, MA). The ccBOLD were firstly

extracted from ASL data by regressing out the spin labeling

paradigm [21, 1 … 21, 1] from the label/control image series

[31]. The cvBOLD and ccBOLD images were then realigned and

resliced to correct for head motion. No subject had head motion

exceeded 2 mm or rotation exceeded 2.0u during scanning.

Structural images were coregistered with the mean volume of

functional images and subsequently smoothed using an isotropic

Gaussian kernel with a full-width at half-maximum (FWHM) of

4 mm. Images were then normalized to the standard Montreal

Neurological Institute (MNI) space and resampled with isotropic

36363 mm3 voxel size. Linear trends were also removed. All

functional volumes were finally band pass filter at (0.01 Hz , f ,

0.08 Hz) to reduce low-frequency drift and physiological high-

frequency respiratory and cardiac noise. Nuisance covariates

including the six head motion parameters, global mean signal,

white matter signal and CSF signal were regressed out from both

cvBOLD and ccBOLD [32]. ALFF and ReHo were calculated

from the preprocessed data after band pass filtering.

For the ALFF calculation, each voxel’s BOLD time series was

transformed into the frequency domain and the mean amplitude

of the spectrum over the frequency range of 0.01–0.08 Hz was

calculated as the ALFF [33].

For the regional coherence calculation, the Kendall’s coefficient

concordance (KCC, also known as Kendall’s W) [34] of each voxel

Figure 1. FC results from PCC seed-based analyses showed
very similar pattern between conventional BOLD (cvBOLD) (A)
and concurrent BOLD (ccBOLD) from ASL data (B). Only minor
differences (C) were observed for conventional BOLD comparing with
concurrent BOLD (cvBOLD vs. ccBOLD). Threshold was set as FWE
corrected p,0.05.
doi:10.1371/journal.pone.0065884.g001

Table 1. Peak MNI coordinates of the 4 clusters of the paired
t-test result of cvBOLD and ccBOLD (p = 0.05, k = 15, FWE-
corrected).

Regions
Cluster
size Peak t MNI Coordinates

x y z

Left Medial Orbital Frontal 33 5.78 0 36 29

Right Caudate 17 4.71 12 18 9

Left Cerebellum 31 5.73 26 254 254

doi:10.1371/journal.pone.0065884.t001

Concurrent BOLD Imaging of Resting Brain
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with around 26 nearest neighboring voxels was calculated. The

collection of all voxels’ Kendall’s W formed the so-called ReHo

map.

For seed-based FC analysis, the PCC seed was defined as a

sphere with a radius of 10 mm located in MNI coordinate (0, 250,

31) [35]. For each individual subject, the mean BOLD fMRI

signal time series was extracted from the seed and used as the

regressor in the PCC-FC analysis. The correlation coefficients

between the time series of PCC and other brain regions were

grouped into an individual PCC-FC map, which was transformed

into z-score through a Fisher’s r-to-z transformation to improve

the normality of the correlation coefficients. The same process was

repeated for the ccBOLD data. These z-transformed individual

FC maps were then entered the second level group analysis using

one-sample t-tests. Group-level paired t-test was also conducted to

examine the differences of PCC-FC between the cvBOLD and

ccBOLD. Threshold was defined as family-wise error (FWE)

corrected p,0.05 [36].

For ICA analysis, the preprocessed time series of cvBOLD and

ccBOLD after head motion correction, smoothing and spatial

normalization were concatenated along time to form a 4-

dimensional (4D) dataset. GIFT-toolbox [37] was used to

decompose the 4D cvBOLD and ccBOLD data into 20 mutually

independent components respectively. All the component maps

were transformed to standard z-score and thresholded at z. = 1

for display. These analyses identified 12 RSNs for both cvBOLD

and ccBOLD data. CBF maps of each subject were reconstructed

from the ASL perfusion data after head motion correction and

smoothing with a homebrew toolbox [38], and finally the CBF

maps were spatially normalized to MNI space. Mean CBF values

of each RSN were extracted for each subject. One-way ANOVA

were performed to examine the mean CBF differences across 12

RSNs. Paired t-tests were conducted to compare the CBF

differences in each RSN between cvBOLD and ccBOLD.

In order to examine the spatial consistency of the RSNs

acquired from cvBOLD and ccBOLD, Dice’s similarity coefficient

(DSC) was employed [39,40]. DSC is defined as two times of the

intersection volume of the compared RSN maps divided by their

sum. The same analysis was performed for both of the group level

RSNs and individual level RSNs to evaluate spatial consistency of

the networks extracted using ccBOLD and cvBOLD.

Results

Fig. 1 shows the PCC-FC results for both cvBOLD (Fig. 1A)

and ccBOLD (Fig. 1B). The two types of BOLD data produced

very similar PCC-FC patterns, which is generally dubbed as the

DMN, with minor disparities. The Dice index between the PCC-

FC of the cvBOLD and ccBOLD was 0.77. A direct comparison of

the two modalities regarding the PCC-FC patterns showed a few

scattered brain regions with higher PCC-FC in cvBOLD than

ccBOLD, including the left medial orbital frontal cortex, right

caudate and left cerebellum area (Fig.1C and Table 1).

Fig. 2 shows the ICA-derived group level RSNs using both types

of BOLD signals. After visually excluding the noise components

based on the literature [41], 12 RSNs were identified for both

cvBOLD and ccBOLD, including the DMN (RSN 1), left and

Figure 2. Resting-state networks (RSNs) identified from ICA analysis of conventional BOLD (up-levels) and concurrent BOLD (lower-
levels) data. RSN1: default mode network (DMN); RSN 2: left attention networks; RSN 3: right attention network; RSN 4: primary visual network; RSN
5: secondary visual network; RSN 6: sensorimotor network; RSN 7: auditory network; RSN 8: executive network; RSN 9: dorsal medial prefrontal
network (DMPFC); RSN 10: ventral medial prefrontal network (VMPFC); RSN 11: salience network, RSN 12: medial temporal limbic network.
doi:10.1371/journal.pone.0065884.g002

Figure 3. The Dice’s similarity coefficients of the 12 RSNs between two BOLD modalities at the group level.
doi:10.1371/journal.pone.0065884.g003
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right attention networks (RSN 2 and 3), primary and secondary

visual networks (RSN 4 and 5), sensorimotor network (RSN 6),

auditory network (RSN 7), executive network (RSN 8), dorsal and

ventral medial prefrontal network (DMPFC and VMPFC, RSN 9

and 10), salience network (RSN 11), and the medial temporal

limbic network (RSN 12).

Fig. 3 shows the Dice index for the group level RSNs.

Consistent with Fig. 2, the RSNs derived from both types of data

were highly stable. Most of the RSNs had good spatial overlap

consistency (DSC.0.3) except the salience network (DSC = 0.09).

Similar across-modality reproducibility of these RSNs from each

individual subjects was observed in the mean and standard error of

the Dice index as shown in Fig. 4.

The mean CBFs extracted from the 12 RSNs of both cvBOLD

and ccBOLD were illustrated in Fig. 5. No significant CBF

difference was observed except in the VMPFC network (p,0.05

Figure 4. The averaged Dice’s similarity coefficients of the 12 RSNs between two BOLD modalities at the individual level.
doi:10.1371/journal.pone.0065884.g004

Figure 5. Mean CBF values extracted from the 12 resting-state networks by ICA analyses. Significant difference was observed only in the
VMPFC, with concurrent BOLD (ccBOLD) showed lower CBF values than conventional BOLD (cvBOLD). Error bar represented standard error. * p,0.05.
doi:10.1371/journal.pone.0065884.g005

Concurrent BOLD Imaging of Resting Brain
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Figure 6. The map of averaged CBF across subjects (A) and the overlays of DMN (B & C) and auditory network acquired from
cvBOLD and ccBOLD (D & E).
doi:10.1371/journal.pone.0065884.g006
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after multiple-comparison correction). One-way ANOVA analysis

showed that mean CBF values were significantly different across

the 12 RSNs for both of the cvBOLD and ccBOLD (both

p,0.0001). Among these RSNs, DMN and auditory networks

showed the highest CBF while the sensorimotor network,

secondary visual network, and VMPFC were the lowest ones.

To directly show the CBF distributions across different RSNs,

DMN and auditory network, which had the highest CBF as

compared to other RSNs, were overlaid on the mean CBF map of

all subjects in Fig.6.

ALFF and ReHo analysis yielded different results using

cvBOLD and ccBOLD. Fig. 7 and 8 show the mean ALFF and

ReHo within the 12 ICA-derived RSNs, respectively. Significant

ALFF difference was observed in the primary visual, auditory,

DMPFC, salience and limbic network (p,0.05 after multiple-

comparison correction), and significant ReHo difference was

Figure 7. Mean ALFF values extracted from the 12 resting-state networks by ICA analyses. Significant difference was observed in the
primary visual, auditory, DMPFC, salience and limbic network. Error bar represented standard error. * p,0.05.
doi:10.1371/journal.pone.0065884.g007

Figure 8. Mean ReHo values extracted from the 12 resting-state networks by ICA analyses. Significant difference was observed in all RSNs
except DMN network. Error bar represented standard error. * p,0.05.
doi:10.1371/journal.pone.0065884.g008
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observed in all RSNs (p,0.05 after multiple-comparison correc-

tion) except in the DMN network.

Discussion

Using data from a large cohort of 89 subjects, we demonstrated

that the concurrent BOLD signal from the T2*-weighted 2D EPI-

based ASL MRI can reliably detect DMN and other frequently

reported RSNs as compared to conventional BOLD. These results

suggest an effective way to assess resting brain FC and RSNs using

the T2* weighted ASL MRI sequence, which is very useful for

studies with limited scan time where only ASL data can be

acquired.

PCC-FC has been shown to be a very stable resting state

measures [3,11,28,42–44], and was selected for the resting FC

analysis in this study. The group level PCC-FC results from both

types of data were very similar with some minor differences in FC

strengths. These differences might be due to the SNR and degree-

of-freedom differences between these two types of BOLD data.

The ASL MRI acquisition used a shorter TE than the optimal TE

used in the conventional BOLD imaging acquisition, resulting in a

relatively weaker BOLD signal in ccBOLD. Meanwhile, ccBOLD

had much lower temporal resolution and 6 times fewer time-points

than conventional BOLD. The cross-modality resting state brain

activity analysis comparison suggests that PCC-FC is a stable

resting state brain activity analysis method that can be examined

with data with different SNR (determined by the acquisition echo

time) and different temporal resolution even with only 60 time-

points.

ICA based RSN analysis is stable across modalities as well.

However, these findings do not suggest using ICA for cross-

population RSN comparisons since our previous test-retest

study[42] showed that ICA-derived RSNs had a poor voxel-wise

test-retest stability, which might be partly caused by the scale

ambiguity of ICA. The stable across-modality ICA RSN patterns

rather suggest using them as ROIs for assessing changes of other

physiological measures with those networks. One such example

was shown in the RSN-based CBF analysis. Consistent with

previous findings [43,44], DMN showed higher CBF than other

RSNs except for the auditory network, supporting that DMN is

the most prominent active network during the resting state. High

CBF in auditory networks has also been reported in other resting

brain imaging studies [45], which may be due to the unavoidable

noise during MR scanning. Nevertheless, the systematic CBF

differences observed between these RSNs suggest that RSN-based

CBF may be a potential marker for regional brain activity changes

in cross-sectional or longitudinal studies.

ALFF and ReHo were mostly not comparable across cvBOLD

and ccBOLD. One potential reason for the ALFF inconsistency is

differences in the temporal resolution and sampling rate. cvBOLD

had much higher temporal resolution than ccBOLD, which

consequently captured wider power spectrum of the underlying

resting brain activity. Since ALFF is directly derived from the

power spectrum, any substantially alterations to the acquisition

frequency band would bring significant changes to ALFF value.

The different number of BOLD images directly affects the

temporal SNR, which affects the power spectrum estimation too.

ReHo depends on the data coherences within a prior regional

neighborhood and it can be expected to decrease when SNR drops

or more time points are included (like in cvBOLD as compared to

ccBOLD). Since noise is unavoidable in fMRI, more time points

means more discrepancies to the regional data coherence, which

inevitably induces a globally ReHo value drop. Although we can

intentionally match the number of time points for both cvBOLD

and ccBOLD, the sampling rate and SNR differences would still

bring a systematic difference between ALFF and ReHo values of

the two BOLD modalities as the two measures.

Our results of using the fewer temporal points to reliably assess

RSNs (using PCC-FC or ICA) are consistent with Tagliazucchi et.

al (2012) [46], where evidence was shown for reliably revealing

resting brain activity patterns using a small portion of data. By

performing ICA at the group level (using the concatenated data)

and the individual level (using each subject’s data separately), we

showed high reproducibility of the RSNs measured with the Dice

index. A DSC.0.3 is generally considered as good overlap [47].

Our results showed that both the group level RSNs and individual

level RSNs had DSC.0.3. The individual level cvBOLD vs

ccBOLD RSN Dice index also showed a very small variations,

suggesting a stable assessment of those RSNs using both types of

BOLD signal at the individual level.

In summary, this study demonstrates the utility of concurrent

BOLD and CBF signals from ASL perfusion MRI for assessing

resting brain function. Although not studied in this work, the CBF

time series may be also used for resting brain activity analysis. As

BOLD is affected by macro-vascular effects, CBF reflects activity

more in tissue capillary bed. Therefore ASL CBF may provide a

more sensitive approach to measure differences in resting brain

activity or RSNs, although this need be assessed in future works.
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