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Abstract

Background: There are urgent needs for rapid and accurate drug susceptibility testing of M. tuberculosis. GenoType
MTBDRsl is a new molecular kit designed for rapid identification of the resistance to the second-line antituberculosis drugs
with a single strip. In recent years, it has been evaluated in many settings, but with varied results. The aim of this meta-
analysis was to synthesize the latest data on the diagnostic accuracy of GenoType MTBDRsl in detecting drug resistance to
fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol, in comparison with the phenotypic drug
susceptibility test.

Methods: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guideline. The search terms of ‘‘MTBDRsl’’ and ‘‘tuberculosis’’ were used on PubMed, EMBASE, and Web of Science.
QUADAS-2 was used to assess the quality of included studies. Data were analyzed by Meta-Disc 1.4. We calculated the
sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and
corresponding 95% confidence interval (CI) for each study. From these calculations, forest plots and summary receiver
operating characteristic (SROC) curves were produced.

Results: Patient selection bias as well as flow and timing bias were observed in most studies. The summarized sensitivity
(95% CI) was 0.874(0.845–0.899), 0.826(0.777–0.869), 0.820(0.772–0.862), 0.444(0.396–0.492), and 0.679(0.652–0.706) for
fluoroquinolones, amikacin, capreomycin, kanamycin, and ethambutol, respectively. The specificity (95% CI) was
0.971(0.961–0.980), 0.995(0.987–0.998), 0.973(0.963–0.981), 0.993(0.985–0.997), and 0.799(0.773–0.823), respectively. The
AUC (standard error) were 0.9754(0.0203), 0.9300(0.0598), 0.9885(0.0038), 0.9689(0.0359), and 0.6846(0.0550), respectively.

Conclusion: Genotype MTBDRsl showed good accuracy for detecting drug resistance to fluoroquinolones, amikacin and
capreomycin, but it may not be an appropriate choice for kanamycin and ethambutol. The lack of data did not allow for
proper evaluation of the test on clinical specimens. Further systematic assessment of diagnostic performance should be
carried out on direct clinical samples.
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Introduction

Extensive drug resistant tuberculosis (XDR-TB) was first

described in March 2006 by World Health Organization

(WHO) and Centers for Disease Control and Prevention (CDC)

of the United States [1], and has since been reported in more than

50 countries[2–4]. WHO has expressed concern over the

emergence of XDR-TB and called for measures to prevent the

spread of this type of deadly strain [5]. XDR-TB is a rare type of

multidrug-resistant TB (MDR-TB) (i.e. resistant to isoniazid and

rifampicin) and is resistant to the fluoroquinolones and at least one

of three injectable second-line drugs (i.e. amikacin, kanamycin, or

capreomycin) [6]. Drug resistance is a severe challenge to

tuberculosis control, as it raises the possibility of a condition that

can no longer effectively be treated with anti-tuberculosis drugs

[7]. Threats of MDR-TB and XDR-TB highlight the urgent need

for rapid and accurate drug susceptibility testing (DST) to optimize
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the treatment regimen and reduce the risk of acquired resistance

[8].

Conventional DST for XDR strains is performed sequentially in

a two-step procedure beginning with a culture and first-line drug

testing, proceeding to further drug testing in the case of multidrug

resistance. It takes more than 10 days for traditional culture-based

drug resistance detection, even with the new automated liquid

media culture systems. For example, the BACTEC MGIT 960

and BACTEC 460TB need 13.3 days and 10.6 days on average to

report the drug resistance results, respectively [9]. A rapid,

reliable, and accurate test is therefore necessary to avoid clinical

deterioration, improve patient management, and prevent further

transmissions [10]. During the last decade, a great deal of effort

has gone into the development of the molecular-based rapid DST

[11,12]. In 2008, WHO endorsed the line-probe assays (LPAs) for

the rapid detection of drug resistance in low and middle income

settings [13]. LPAs, in general, focus on detection of drug-

resistance gene mutations [14]. The GenoTypeH MTBDRplus and

MTBDRsl (Hain Lifescience, Nehren, Germany) are two types of

LPAs designed for the detection of the first-line and second-line

anti-tuberculosis drug resistance, respectively. Both rely on

hybridization of amplified DNA fragments from Mycobacterium

tuberculosis (M. tuberculosis) complex species to specific probes

immobilized on nitrocellulose strips. In addition to GenoTypeH
MTBDRplus which detects common mutations in katG gene, inhA

promoter, and rpoB gene, GenoType MTBDRsl detects the most

common mutations in gyrA gene for fluoroquinolones (FLQs)

resistance, in rrs gene for amikacin (AM), capreomycin (CAP), and

kanamycin (KAN) resistance, and in embB gene for ethambutol

(EMB) resistance. GenoTypeH MTBDRsl contains 16 probes for

mutation detection and 6 probes for quality control. Six control

probes consist of a conjugate control (CC), an amplification

control (AC), an M. tuberculosis complex control (TUB), and three

loci controls for gene amplification (gyrA, rrs, and embB) [15]. The

remaining 16 probes include wild type gene probes and mutation

probes: gyrA wild-type probes WT1 to WT3 (codons 85–90, 89–93

Figure 1. Flow chart of the meta analysis.
doi:10.1371/journal.pone.0055292.g001
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and 92–97); gyrA mutant probes MUT1, MUT2, MUT3A,

MUT3B, MUT3C, and MUT3D for codons A90V, S91P,

D94A, D94N/Y, D94G, and D94H, respectively; rrs wild-type

probes WT1 (codons 1401 and 1402) and WT2 (codon 1484); rrs

mutant probes MUT1 and MUT2, with A1401G and G1484T

changes, respectively; embB wild-type probe WT1, covering codon

306; and embB probes MUT1A and MUT1B for the mutations of

M306I and M306V, respectively [16].

To our knowledge, recent studies have conducted the diagnostic

performance of GenoTypeH MTBDRsl in many settings, but the

results are inconsistent. The aim of this meta-analysis is to offer a

systematic overview on the diagnostic accuracy of GenoTypeH
MTBDRsl in detecting drug resistance to FLQs, AM/CAP/KAN

and EMB in comparison with phenotypic DST.

Methods

Systematic Review
This systematic review was performed according to the

guidelines of Preferred Reporting Items for Systematics Reviews

and Meta-Analyses (PRISMA) set by the PRISMA Group [17].

This review was registered (registration No: CRD42012002481) in

PROSPERO (http://www.crd.york.ac.uk/prospero/), which is an

international database of prospectively registered systematic

reviews in health and social care.

Data Resource and Search Strategy
Two investigators independently performed a systematic search

based on the PubMed, EMBASE and Web of Science database for

original articles published before 1 June 2012. The search items

‘‘MTBDRsl’’ and ‘‘tuberculosis’’ were used. There were no

language restrictions. In addition, the bibliographies of each

article were reviewed carefully to identify additional relevant

articles.

Inclusion and Exclusion Criteria
Studies that evaluated GenotypeH MTBDRsl for detection of

drug resistance of M. tuberculosis to FLQs, AM, CAP, KAN, and

EMB were included. Included studies should use the phenotypic

DST as a gold standard. The exact number of true-resistance

(drug resistance was correctly identified by MTBDRsl assay), false-

resistance (drug resistance was falsely identified by MTBDRsl

assay), false-susceptibility (drug susceptive sample was falsely

identified by MTBDRsl assay), and true-susceptibility (drug

susceptive sample was correctly identified by MTBDRsl assay)

should be available to reconstruct two by two tables. Relevant

publications were excluded if they were duplicated articles, reviews

(to avoid repeated data), or conference abstracts if the full texts

were not available.

Quality of Studies
The Quality Assessment of Diagnostic Accuracy Studies

(QUADAS-2) was used to assess the quality of each study

(http://www.bris.ac.uk/quadas/). QUADAS-2 is the current

version of QUADAS and the tool for use in systematic reviews

to evaluate the risk of bias and applicability of diagnostic accuracy

studies. It consists of four key domains: patient selection, index test,

reference standard, and flow and timing. Each is assessed in terms

of risk of bias and the first three in terms of concerns regarding

applicability. Signalling questions are included to assist in

judgments about the risk of bias [18]. Risk of bias was judged as

‘‘low’’ if the answers to all signal questions for a domain were

‘‘yes’’, as ‘‘high’’ if any signal question in a domain was ‘‘no’’, or as

‘‘unclear’’ if insufficient information was provided [18]. Concern

about applicability was assigned as ‘‘low’’, ‘‘high’’ or ‘‘unclear’’

with the similar criteria.

Data Extraction
Two investigators reviewed the articles independently. Infor-

mation was extracted on author, publication year, country (where

the specimen came from), specimen type, sample size, gold

standard, the number of true-resistance, the number of false-

Table 2. Quality assessment of included studies (QUADAS-2).*

Study Risk of bias Applicability concerns

Patient
selection Index test

Reference
standard Flow and timing

Patient
selection Index test

Reference
standard

Hillemann 2009 qq q q qq qq q q

Hillemann 2009 qq q q q qq q q

Brossier 2010 qq q q q qq q q

Kiet 2010 qq q q q qq q q

Van Ingen 2010 qq q q q qq q q

Huang 2011 qq q q q qq q q

Kontsevaya 2011 q q q qq q q q

Ignatyeva 2012 qq q q qq qq q q

Lacoma 2012 qq q q qq qq q q

Lacoma 2012 qq q q qq qq q q

Miotto 2012 ? ? ? qq qq q q

Miotto 2012 ? ? ? qq qq q q

Said 2012 q ? ? qq q q q

Tessema 2012 q ? ? q qq q q

*:q = low risk; qq = high risk; ? = unclear.
doi:10.1371/journal.pone.0055292.t002

Meta-Analysis on Genotype MTBDRsl
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resistance, the number of false-susceptibility, and the number of

true-susceptibility to each drug.

Meta Analysis
We used Meta-Disc 1.4 (http://www.hrc.es/investigacion/

metadisc_en.htm) to analyze data [19]. Heterogeneity was

identified by using chi-square test and I2 (P,0.05 and I2.50%

indicated significant heterogeneity) [19–21]. According to the

results of heterogeneity testing, we chose an appropriate statistic

model (random or fixed model) to pool the sensitivity, specificity,

positive likelihood ratio (PLR), negative likelihood ratio (NLR),

and diagnostic odds ratio (DOR). Sensitivity and specificity and

corresponding 95% confidence interval (CI) of each study were

calculated according to the reconstructed two by two tables.

Pooled sensitivity, specificity, PLR, NLR, and DOR were

calculated. Additionally, summary receiver operating characteris-

tic (SROC) curves were plotted. The area under the curve (AUC)

and Q* index were also counted to evaluate the overall

performance of the diagnostic test accuracy [19,22]. The AUC

of an SROC is a measure of the overall performance of a

Figure 2. Forest plot of sensitivity for drug resistance to fluoroquinolones. A. Sensitivity; B. Specificity.
doi:10.1371/journal.pone.0055292.g002

Meta-Analysis on Genotype MTBDRsl
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diagnostic test to accurately differentiate those with and those

without the condition of interest. Q* index is defined by the point

where sensitivity and specificity are equal, which is closest to the

ideal top-left corner of the SROC space. Both values range

between 0 and 1, with higher values indicating better test

performance. Moreover, in consideration of practical application,

subgroup analysis was performed by considering specimen types

(clinical specimen or clinical isolates) in this study.

Results

General Characteristics of Studies
A flow chart of inclusion and exclusion procedure of articles is

illustrated in Figure 1. In brief, the PubMed search identified 13

articles; the EMBASE search identified 20 articles; and the Web of

Science search identified 10 articles. A total of 24 articles was

removed due to duplication. Based on the inclusion and exclusion

criteria, additional 8 articles were excluded. Finally, 11 eligible

articles were included in the meta-analysis and all of them were

published in English[15,16,23–31]. As some articles evaluated

more than one GenotypeH MTBDRsl diagnostic test using

different specimen types, we defined 14 independent studies

(including 2322 samples) from the 11 articles. Among these 14

studies, 3 studies tested clinical specimens, and others used clinical

isolates. Among them, 2 studies were performed in Asia, 2 studies

were performed in Africa, 8 studies were performed in Europe,

and 2 studies didn’t clearly show the study area. Four types of

culture media (L-J PM; agar PM; BACTEC MGIT 960;

BACTEC 460TB) were used to perform DST in these studies.

We summarized the diagnostic characteristics of these 14 studies in

Table 1.

Quality Assessment
According to QUADAS-2 assess, only three (21%) studies were

at low risk of patient selection bias while nine (65%) studies were at

high risk of selection bias due to inconsecutive or nonrandom

patient selection. The index test bias was minimal compared to

patient selection bias. Although four (29%) studies were lacking

information to judge, the remaining ten (71%) studies were all at

low risk of index test bias. A similar situation was observed in the

reference standard bias. Eight (57%) studies were at high risk of

flow and timing bias, resulting from the fact that not all selected

patients were included in the diagnostic analysis. As for

Figure 3. Forest plot of sensitivity for drug resistance to amikacin. A. Sensitivity; B. Specificity.
doi:10.1371/journal.pone.0055292.g003

Meta-Analysis on Genotype MTBDRsl
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applicability concerns, the overwhelming majority (86%) studies

were at high risk of patient selection; however, all selected studies

were at low risk of index test and the reference standard. In

general, patient selection was the most high-risk bias and high-risk

applicability concerns (Table 2).

Heterogeneity
Significant heterogeneity was observed when we pooled

sensitivity, specificity, PLR, NLR, and DOR of selected studies,

except for the sensitivity to AM. The heterogeneity test results of

sensitivity and specificity are illustrated in the forest plots (Figure 2,

3, 4, 5, 6).

Diagnostic Accuracy
The pooled sensitivity, specificity, PLR, NLR, DOR and their

95% CIs are listed in Table 3. The summarized sensitivity (95%

CI) of GenoTypeH MTBDRsl was 0.874 (0.845–0.899), 0.826

(0.777–0.869), 0.820 (0.772–0.862), 0.444 (0.396–0.492), and

0.679 (0.652–0.706) for FLQs, AM, CAP, KAN, and EMB,

respectively. The specificity (95% CI) was 0.971 (0.961–0.980),

0.995 (0.987–0.998), 0.973 (0.963–0.981), 0.993 (0.985–0.997),

and 0.799 (0.773–0.823) for FLQs, AM, CAP, KAN, and EMB,

respectively. The AUC (standard error) was 0.9754 (0.0203),

0.9300 (0.0598), 0.9885 (0.0038), 0.9689 (0.0359), and 0.6846

(0.0550) for FLQs, AM, CAP, KAN, and EMB, respectively.

Additionally, Q* index (standard error) was 0.9288 (0.0353),

0.8651 (0.0718), 0.9550 (0.0089), 0.9181 (0.0573), and 0.6407

(0.0434) for FLQs, AM, CAP, KAN, and EMB, respectively. The

SROC curves (pooled sensitivity against 1-(pooled specificity)) are

shown in Figure 7. Figure 2, 3, 4, 5, 6 depicts the forest plots of

sensitivity and specificity.

Subgroup Analysis
According to the type of specimen, 14 studies were classified

into two groups for subgroup analysis. Pooled sensitivity,

specificity, PLR, NLR and DOR for FLQs, AM, CAP, and

EMB are presented in Table 4. As KAN resistance was only

performed in the clinical isolates, subgroup analysis was not

performed for KAN.

Figure 4. Forest plot of sensitivity for drug resistance to capreomycin. A. Sensitivity; B. Specificity.
doi:10.1371/journal.pone.0055292.g004

Meta-Analysis on Genotype MTBDRsl

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e55292



Discussion

In this study, we evaluated the diagnostic accuracy of

GenotypeH MTBDRsl in order to identify whether it was a good

tool for rapid drug resistance detection. Findings from this meta-

analysis indicated that GenotypeH MTBDRsl had higher values in

detecting drug resistance to FLQs, AM, and CAP by considering

the diagnostic index.

Drug resistant tuberculosis has been a severe public health issue

worldwide. About 440,000 MDR-TB cases and 25,000 XDR-TB

cases are estimated to emerge annually, and 150,000 persons with

MDR-TB die each year [32]. The 2009 world health assembly

resolution has urged WHO member states ‘‘to achieve universal

access to diagnosis and treatment of MDR-TB and XDR-TB’’

[32]. Challenges in standardization for conventional DST persist,

especially detection time, inoculum size and dispersion of bacillary

clumps, subculture bias, testing environment and critical concen-

tration of second-line drug resistance testing [33]. Newer

automated liquid media platforms, such as BACTEC system,

may be prone to a higher risk of contamination [34]. Molecular

DST mostly utilizes Polymerase Chain Reaction (PCR) to amplify

mutation-related genes, and it could significantly shorten detection

time. The benefits of rapid DST included increased cure rates,

decreased mortality, reduced the development of additional drug

resistance, and a reduced likelihood of treatment failure and

relapse. The emergence of drug resistant tuberculosis has

stimulated the development of molecular kits for rapid detection

[35]. Since GenoTypeH MTBC (differentiation of the M.

tuberculosis complex from cultured material) was available in

2002–2003, GenoTypeH MTBDR was developed in 2004 and

then followed by GenoTypeH MTBDRplus in 2007 and GenoTy-

peH MTBDRsl in 2009. GenoTypeH MTBDRplus was designed to

identify the M. tuberculosis complex and its resistance to rifampicin

and/or isoniazid from pulmonary clinical specimens or cultivated

samples. The identification of rifampicin resistance is enabled by

the detection of the most significant mutations of the rpoB gene

(coding for the b-subunit of the RNA polymerase). For testing the

high level isoniazid resistance, the katG gene (coding for the

catalase peroxidase) is examined. For testing the low level isoniazid

resistance, the promoter region of the inhA gene (coding for the

NADH enoyl ACP reductase) is analyzed. The GenoTypeH
MTBDRsl gives the possibility to diagnose patients with MDR-TB

to receive information on further antibiotic resistances to

fluoroquinolones, aminoglycosides/cyclic peptides and ethambu-

tol. The identification of drug resistance to fluoroquinolones is

enabled by the detection of the mutations of the gyrA gene. For the

detection of resistance to aminoglycosides/cyclic peptides, the 16S

rRNA gene (rrs) is examined. For the detection of resistance to

ethambutol, the embB gene (which, together with the genes embA

and embC, codes for arabinosyl transferase) is examined.

In recent years, studies focusing on the diagnostic value of

GenoTypeH MTBDRsl were conducted in many settings, but with

varied results. Thus, a systematic review is necessary to provide an

Figure 5. Forest plot of sensitivity for drug resistance to kanamycin. A. Sensitivity; B. Specificity.
doi:10.1371/journal.pone.0055292.g005
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overall evaluation. Results from this meta-analysis showed that

MTBDRsl test has a relatively high sensitivity for FLQs, AM and

CAP, but not for KAN and EMB. Moreover, high specificity was

observed except for EMB, which indicated that EMB susceptible

strains or specimens would be identified as resistant ones with a

low possibility. Significant heterogeneity was observed when we

pooled sensitivity, specificity, PLR, NLR, and DOR of selected

studies, except for the sensitivity to AM. Data were pooled by

Figure 6. Forest plot of sensitivity for drug resistance to ethambutol. A. Sensitivity; B. Specificity.
doi:10.1371/journal.pone.0055292.g006

Table 3. Summarized diagnostic accuracy of Genotype MTBDRsl.

Drug Se (95% CI) Sp (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI)

FLQs 0.874(0.845–0.899) 0.971(0.961–0.980) 26.368(12.851–54.102) 0.182(0.109–0.303) 176.370(69.230–449.330)

AM 0.826(0.777–0.869) 0.995(0.987–0.998) 68.851(7.845–604.234) 0.192(0.150–0.245) 446.130(66.651–2986.200)

CAP 0.820(0.772–0.862) 0.973(0.963–0.981) 18.211(9.964–33.285) 0.151(0.037–0.609) 143.140(56.896–360.120)

KAN 0.444(0.396–0.492) 0.993(0.985–0.997) 48.693(7.289–325.260) 0.561(0.430–0.732) 163.620(29.811–898.090)

EMB 0.679(0.652–0.706) 0.799(0.773–0.823) 4.879(2.250–10.581) 0.498(0.383–0.648) 12.019(4.189–34.481)

Abbreviations: Se = sensitivity; Sp = specificity; PLR = positive likelihood ratio; NLR = negative likelihood ratio; DOR = diagnostic odds ratio; CI: confidence interval;
FLQs = fluoroquinolones; AM = amikacin; CAP = capreomycin; KAN = kanamycin; EMB = ethambutol.
doi:10.1371/journal.pone.0055292.t003
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proper models according to the heterogeneity results. To illustrate

the overall significance of MTBDRsl test, we used multiple index

such as AUC, Q* index, and DOR. AUC and Q* index in SROC

curve were widely used as the summary index of overall test

performance [36]. High AUC and Q* index of FLQs, AM, CAP

and KAN except for EMB showed the high accuracy for detecting

the resistance to these drugs. The DOR is defined as the ratio of

the odds of the test being positive if the subject has a disease

relative to the odds of the test being positive if the subject does not

have the disease [37]. Higher values of DOR indicate better

discriminatory test performance. In this meta-analysis, we

observed that DOR of EMB was lower than that of FLQs, AM,

CAP and KAN, which indicated that MTBDRsl test might not be

a good choice for detecting EMB drug resistance. Although SROC

curve and DOR could present the overall performance of the test,

they are not easy to be used in clinical practice, and the likelihood

ratios (LRs) are of more clinical significance [36]. The LRs

combine the sensitivity and specificity into a summary index and

indicate how much a given diagnostic test result will raise or lower

the pretest probability of the target disease [38]. Although in the

current analysis, index such as AUC, Q* index, DOR, and PLR

showed good performance for KAN resistance detection, its

sensitivity was much lower than FLQs, AM and CAP. In other

words, more patients with drug resistance to KAN would be

misdiagnosed.

Studies have shown that resistance to fluoroquinolones is

associated with mutations in a quinolone resistance-determining

region of gyrA and gyrB gene (coding A and B subunits of type II

topoisomerase)[39–41]. Although Ala-90 and Asp-94 have been

the most frequently mutated positions in gyrA, Gly-88, Ser-91 and

Ala-74 were also reported as the possible mutation sites. However,

these potential mutation positions were not all included in the

GenotypeH MTBDRsl strips [42,43]. Moreover, FLQs stand for a

series of antibiotics including ofloxacin, ciprofloxacin, moxiflox-

acin and gatifloxacin, etc. Moxifloxacin and ofloxacin were the

most frequently used drugs in the studies that were involved in this

meta-analysis. Mutations in rrs gene have been associated with the

resistance to AM, CAP and KAN, especially at the positions 1401,

1402 and 1484[44–46]. All of these mutation positions were

covered by GenotypeH MTBDRsl. A systematic review has

revealed double mutations (for example, A1401G mutation

together with A514C, A513C or A1338C) occurred only in

resistant strains and has not been reported to occur in any strain

susceptible to AM, KAN and/or CAP, whereas the A1401G

mutation in rrs gene alone was found to occur in up to 7% of CAP-

susceptible strains [47]. Cross-resistance between KAN and AM or

between KAN and CAP has been observed [45–48]. Mutations in

eis promoter region of M. tuberculosis was also reported to be

associated with KAN resistance but not being covered by

MTBDRsl strip [49,50]. These facts may explain the discordant

accuracy results among AM, CAP and KAN although they were

tested by one strip with the same mutation positions.

While mutations in codon 306 of embB were recognized to be

related to EMB resistance [51,52], the molecular basis of

MTBDRsl for EMB was not sufficient. Previous studies showed

that percentage of emb306 mutations in EMB resistant strains

varied from 30% to 87.5% [15,23,24,53]. Furthermore, mutations

at emb306 were reported to be associated with a broad antibiotic

resistance rather than EMB resistance [54]. In addition, Huang

and colleagues (2012) identified codon 319, codon 497 and other

seven novel mutation positions of embB gene in the EMB-resistant

strains [26]. These facts implied that emb306 mutation was not a

stable and unique marker for detecting EMB drug resistance.

Plinke et al. (2009) found that EMB resistant clinical isolates had an

increased minimum inhibitory concentration (MIC) as compared

to the susceptible ones; but the increase of the MIC was below the

value of the critical concentration (2 mg/ml EMB) [55]. There-

fore, these strains were regarded as susceptible to EMB by the

conventional DST method on Lowenstein Jensen (LJ) media.

Previous reports have highlighted the problems of the phenotypic

DST on EMB carried out by MGIT [56,57]. Indeed, EMB testing

by MGIT is more affected by lower sensitivity/specificity, lower

reproducibility and higher rate of false-positive in detecting

resistant cases. In this regard, MGIT as the gold standard when

comparing with MTBDRsl may under-evaluate the sensitivity and

specifity for EMB resistance detection. One paper included in this

meta-analysis clearly considered this point providing sensitivity

Figure 7. Summary receiver operating characteristic (SROC) curve for drug resistance to fluoroquinolones, amikacin, capreomycin,
kanamycin, and ethambutol. A. Summary receiver operating characteristic (SROC) curve for drug resistance to fluoroquinolones B Summary
receiver operating characteristic (SROC) curve for drug resistance to amikacin C. Summary receiver operating characteristic (SROC) curve for drug
resistance to capreomycin D. Summary receiver operating characteristic (SROC) curve for drug resistance to kanamycin E. Summary receiver operating
characteristic (SROC) curve for drug resistance to ethambutol.
doi:10.1371/journal.pone.0055292.g007

Table 4. Subgroup analyses by specimen type.

Drug Specimen type Se (95% CI) Sp (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI)

FLQs Clinical isolates 0.879(0.850–0.904) 0.970(0.958–0.979) 26.399(11.610–60.027) 0.167(0.103–0.269) 192.690(71.070–522.420)

Clinical specimen 0.750(0.533–0.902) 0.986(0.951–0.998) 31.083(4.631–208.629) 0.225(0.031–1.653) 159.810(6.512–3921.400)

AM Clinical isolates 0.833(0.783–0.876) 1.000(0.996–1.000) 120.34(28.834–502.202) 0.179(0.138–0.233) 1354.100(321.070–5710.500)

Clinical specimen 0.722(0.465–0.903) 0.949(0.885–0.983) 16.517(1.211–225.306) 0.310(0.153–0.628) 50.934(4.094–633.740)

CAP Clinical isolates 0.803(0.750–0.849) 0.975(0.964–0.983) 20.535(11.418–36.933) 0.181(0.038–0.855) 124.310(42.688–361.990)

Clinical specimen 0.968(0.833–0.999) 0.951(0.878–0.986) 17.159(1.394–211.166) 0.089(0.013–0.589) 361.390(39.769–3284.000)

EMB Clinical isolates 0.690(0.662–0.718) 0.805(0.778–0.830) 6.919(2.538–18.865) 0.467(0.345–0.632) 17.182(4.720–62.538)

Clinical specimen 0.536(0.424–0.645) 0.732(0.622–0.824) 1.935(0.743–5.038) 0.631(0.488–0.816) 3.839(0.960–15.355)

Abbreviations: Se = sensitivity; Sp = specificity; PLR = positive likelihood ratio; NLR = negative likelihood ratio; DOR = diagnostic odds ratio; CI: confidence interval;
FLQs = fluoroquinolones; AM = amikacin; CAP = capreomycin; EMB = ethambutol.
doi:10.1371/journal.pone.0055292.t004
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and specificity for EMB resistance adjusted for the results obtained

retesting discrepant cases between MGIT and MTBDRsl [29].

There are several limitations of this study. While the bias of

patient selection, index test, reference standard and flow and

timing were all observed in this meta-analysis according to the

QUADAS-2 assessment, most studies (79%) were at high-risk bias

in patient selection. The lack of blinding resulted in unclear

assessments of bias of index and reference test sections. In

addition, regarding data analysis in each study, not all samples

included were analyzed because of invalid results, leading to a high

risk of flow and timing section bias. As for the review-level, four

studies identified by the searching strategy were conference

abstract and could not provide exact two by two tables, which

affected the pooled data. Moreover, only 3 out of 14 studies tested

clinical specimens, providing insufficient data for subgroup

analysis for all five drugs.

Conclusions
Genotype MTBDRsl showed good accuracy for detecting drug

resistance to FLQs, AM, and CAP of M. tuberculosis, but may not

be an appropriate choice for KAN and EMB. The lack of data did

not allow for proper evaluation of the test on clinical specimens.

Further systematic assessment of diagnostic performances should

be carried out on direct clinical samples.
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