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Abstract

Earlier studies have shown considerable intersubject synchronization of brain activity when subjects watch the same movie
or listen to the same story. Here we investigated the across-subjects similarity of brain responses to speech and non-speech
sounds in a continuous audio drama designed for blind people. Thirteen healthy adults listened for ,19 min to the audio
drama while their brain activity was measured with 3 T functional magnetic resonance imaging (fMRI). An intersubject-
correlation (ISC) map, computed across the whole experiment to assess the stimulus-driven extrinsic brain network,
indicated statistically significant ISC in temporal, frontal and parietal cortices, cingulate cortex, and amygdala. Group-level
independent component (IC) analysis was used to parcel out the brain signals into functionally coupled networks, and the
dependence of the ICs on external stimuli was tested by comparing them with the ISC map. This procedure revealed four
extrinsic ICs of which two–covering non-overlapping areas of the auditory cortex–were modulated by both speech and non-
speech sounds. The two other extrinsic ICs, one left-hemisphere-lateralized and the other right-hemisphere-lateralized, were
speech-related and comprised the superior and middle temporal gyri, temporal poles, and the left angular and inferior
orbital gyri. In areas of low ISC four ICs that were defined intrinsic fluctuated similarly as the time-courses of either the
speech-sound-related or all-sounds-related extrinsic ICs. These ICs included the superior temporal gyrus, the anterior insula,
and the frontal, parietal and midline occipital cortices. Taken together, substantial intersubject synchronization of cortical
activity was observed in subjects listening to an audio drama, with results suggesting that speech is processed in two
separate networks, one dedicated to the processing of speech sounds and the other to both speech and non-speech
sounds.
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Introduction

In everyday life, we are surrounded by environmental sounds,

speech, and music. Recent methodological advances with natu-

ralistic settings in functional brain imaging have given new insight

into how the brain copes with this kind of complex environment

[1,2,3,4,5,6,7,8,9,10]. For example, voxel-wise intersubject corre-

lation (ISC) analysis of functional magnetic resonance imaging

(fMRI) data collected from subjects freely viewing a movie

demonstrated widespread intersubject synchronization of cortical

activity on a time-scale of seconds [2]. In addition to this kind of

stimulus-driven extrinsic brain activity, several cortical areas display

intrinsic activity that is not usually correlated across subjects [11].

The intrinsic system is thought to be associated with inner-oriented

processing [11], and thus less affected by the external input, except

for general dampening during stimuli or tasks. Well-organized

networks in the resting brain are sometimes referred to as intrinsic

[12]. Our use of the terms extrinsic and intrinsic refers to the

distinction between the extrinsic and intrinsic brain networks that

was originally based on replicability of the within-subject

activation during two movie-viewing sessions [11,13]. During

such a complex stimulus, the between-subjects temporal similarity

of brain activity is typically high in extrinsic areas and low in

intrinsic areas [11,13], and the ISC map provides a good

approximation of the stimulus-related extrinsic system.

Both extrinsic and intrinsic brain networks can be further

characterized by independent component analysis (ICA) [14,15].

ICA is a data-driven, blind signal separation method that uses

higher-order statistics to estimate a predefined number of

independent components (ICs). ICA can be used to explore

subdivision of both resting state and stimulus-driven brain activity

[16]. In fact, ICA conveys information of the spatially independent

sub-networks within the ISC map [9].

A few earlier fMRI studies have focused on brain responses to

naturalistic auditory stimulation by exposing the subjects to
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narratives read by a single person. ISC analysis of fMRI data

collected from subjects listening to such a complex stimulus

revealed synchronized activity in a wide network including the

middle and superior temporal gyrus, anterior temporal lobe,

superior and inferior frontal gyri, and cerebellum [5,6,8].

Furthermore, brain responses were organized into clusters with

similar temporal receptive windows so that, for example, the early

auditory cortices responded to short-time-scale changes in the

auditory input while parietal and frontal areas had the longest

temporal receptive windows, likely integrating information needed

for comprehension of the full narrative [8].

Here we used fMRI to investigate the across-subjects similarity

of brain responses to complex natural sounds presented in an

audio drama, which contained dialogs, narrations, and natural

non-speech sounds. An ISC map was computed to assess the

across-subjects common features in the stimulus-driven extrinsic

network. Additionally a group-level ICA was performed and the

dependence of the ICs on external stimuli was tested by comparing

them with the ISC map. As the extrinsic and intrinsic systems are,

by definition, separate in their spatial extent and reactivity, the

way external stimuli affect e.g. the default-mode network [10,17]

and likely also other parts of the intrinsic network is unclear. We

thus explored the coupling of the extrinsic and intrinsic systems by

examining the temporal correlations between the extrinsic and

intrinsic ICs. A recent study [18] described two functional

networks, one responding to a variety of auditory stimuli and

another preferentially to speech. As our main focus was in the

processing of auditory information in a naturalistic listening

condition, we also aimed to classify brain activity as speech-sound-

related, as non-speech-sound-related, or both.

Materials and Methods

1. Subjects
Fifteen healthy right-handed young adults with no history of

hearing problems, psychiatric or neurological illnesses participated

in this study. One subject was excluded because of several

instances of sudden translational head movement in the range of

6 mm. Another subject was excluded as he could not recall the

storyline and failed to answer correctly to nine of eleven questions

regarding the storyline. Thus, 13 subjects (6 females, 7 males;

mean age 23.3 yrs, range 19–30 yrs) were included in the analysis.

The subjects were native Finns fluent in Finnish, and they

participated after written informed consent. The study had

received prior approval from the ethics committee of the Helsinki

and Uusimaa Hospital District. Before the scanning, the subjects

were screened according to the local MRI safety regulations.

2. Audio Drama Stimulus
The stimulus was an audio drama lasting for 18 min 51 s,

comprising separate sequences extracted from a Finnish movie

‘‘Postia Pappi Jaakobille’’ (Letters to Father Jaakob, director Klaus

Härö, Production company: Kinotar Oy, Finland, 2009).

In the movie, a woman released from jail arrives to a run-down

parsonage where she is employed to help an old blind priest. Her

main task is to read and write letters. The audio drama included

sounds from the original movie, and an additional narration

describing the visual actions and surroundings of the movie for

blind people. The scenes from which the audio tracks were

selected included a dialogue between a woman and a priest and

between the priest and a mailman, as well as natural outdoor and

indoor sounds, such as birdsong, rain, clatter of dishes, and sounds

of furniture moved around. The movie was not shown at any stage

of the experiment, but four subjects reported that they had

previously seen it.

Before brain imaging, outside of the scanner, the subjects

listened to a 9-min introduction in which the film director

described the main characters and the scenery. This procedure

guided all subjects to construct a similar understanding of the

material before the experiment. During scanning, the stimulus was

presented binaurally with an UNIDES ADU2a audio system

(Unides Design, Helsinki, Finland) from a PC with an audio

amplifier (Denon AVR-1802) and a power amplifier (Lab.gruppen

iP 900). The sounds were delivered to the subject through plastic

tubes connected to eartips (Etymotic Research, ER3, IL, USA)

that were inserted into the ear canals. The subject’s hearing was

further protected from the background noise of the magnet by

earmuffs. Subjects were instructed to hold their eyes closed while

they listened to the sound track.

A method-of-limits approach was used to obtain crude

individual hearing thresholds. A complex 50-ms sound, comprising

5 sinusoidal tones of 300, 700, 1000, 1350, and 1850 Hz, was

presented binaurally in descending and ascending series with 5 dB

steps. The subject reported whether the sound was heard or not.

The process was repeated until we found a threshold measure

where the subject heard $70% of the sounds. The mean 6 SD

threshold intensity for the binaurally presented test sound was

10.462.9 dB SPL in each earplug. The sound level was first

adjusted to 50 dB above the individual hearing threshold

measured in the scanner room. We then replayed parts of the

introduction to the subjects and gradually raised the sound level

until the sound was loud but still comfortable to listen, resulting in

an average sound level of 64 dB (range 60–70 dB) above the

hearing threshold.

3. Constructing Sound Regressors
To model speech and non-speech sounds, we constructed a

speech regressor (combined dialog and narration) and a non-speech

regressor (all sounds excluding the dialog and narration), using

Matlab-based MIRtoolbox (http://www.mathworks.com/

matlabcentral/fileexchange/24583-mirtoolbox). We were granted

access to the original movie soundtrack and thus had separate

recordings for the dialogs, the narrations, and the surrounding

sounds. The regressors were created by extracting, from the

movie’s original multi-channel soundtracks, the dialog, and the

narration into one soundtrack, and all other sounds into another

soundtrack with a sampling rate of 48 kHz. Next a full-wave

rectification and low-pass filtering (infinite impulse response filter

with 8 Hz cut-off frequency) was performed. The smoothed signal

was down-sampled with a factor of 16, resulting in a sampling rate

of 3 kHz. The two regressors were convolved with a hemodynamic

response function (HRF) and further down-sampled to 0.4 Hz to

correspond to the sampling rate of the fMRI. The Matlab function

used for resampling contained a linear-phase finite-impulse-

response anti-aliasing filter.

The speech regressor contained, with minor exceptions, only

speech; however, as the dialogs were not recorded in a studio, it

also included some non-speech sounds related to acting (such as

moving a chair). The non-speech regressor included music, echoes

and other effects, such as birdsong and rain, and the stereophon-

ically presented non-speech sounds sometimes elicited percepts of

3-D auditory space. Analysis of the root-mean-square (RMS)

energy of the speech and non-speech soundtracks showed that

speech was present for 60% and non-speech sounds for 65% of the

audio drama. When speech and non-speech sounds occurred

simultaneously, speech sounds were louder for 77% and non-

Brain Activation during Audio Drama
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speech sounds for 23% of the total time. On average, speech was

3.9 dB louder than the non-speech sounds.

4. fMRI Data Acquisition and Analysis
4.1 Data acquisition and preprocessing. MRI data were

obtained with a Signa VH/i 3.0 T MRI scanner (General Electric,

Milwaukee, WI, USA). Functional images were acquired using a

gradient echo-planar-imaging (EPI) sequence with the following

parameters: TR=2.5 s, TE=30 ms, flip angle = 75u,
FOV=22.0 cm, matrix = 64664, slice thickness = 3.5 mm, voxel

size = 3.463.463.5 mm3 and number of oblique axial slices = 43.

Altogether 462 volumes were collected, but 6 dummy volumes

were automatically discarded. A structural image was acquired

using a T1-weighted 3D-MPRAGE-sequence with TR=10 ms,

TE= 30 ms, preparation time= 300 ms, flip angle = 15u,
FOV=25.6 cm, matrix = 2566256, slice thickness = 1 mm, voxel

size = 16161 mm3, and number of axial slices = 178.

We first acquired the structural images. Next a 10-min resting-

state scan was collected for other purposes, and we then collected

the data for this experiment. The subjects were instructed to lie still

with their eyes closed and to listen attentively to the audio drama.

After the experiment we asked the subjects to fill a questionnaire in

which they estimated their vigilance at the beginning, in the

middle and at the end of the audio drama on a scale from 1–10

(1 = very sleepy, 10 = very attentive). They also answered eleven

questions about the storyline and were asked to describe the main

theme of the story with a few sentences.

To remove transient nonspecific signal changes related to the

sudden onset and offset of the stimulus, we cut three EPI volumes

from the start and two from the end of the experiment and, thus,

451 volumes were included in the analysis. The data were

preprocessed using SPM8 software (http://www.fil.ion.ucl.ac.uk/

spm/) by including realignment, co-registration of the functional

images to the anatomical images, normalization into MNI space,

and smoothing with a Gaussian filter (full-width-half-maximum

8 mm). No slice-time correction was performed.

4.2 Intersubject correlation. For ISC calculation, the

variance of movement (six realignment parameters from the

SPM realignment procedure), linear drift, constant term, and the

global mean signal were removed from the data through linear

regression. Correlation images of all subject pairs were calculated.

First the Pearson’s voxel-by-voxel correlation coefficients were

determined and, then, Fisher transformation was applied to

convert the correlation coefficients to normally distributed

variables. Correlation images for all subject pairs were used to

search for statistically significant correlations at group-level. T-

statistics exceeding the threshold corresponding to p,0.01 (family-

wise error [FWE] corrected, t .5.1, 77 degrees of freedom [df])

and the extent of 20 voxels were defined as brain areas with

statistically significant correlations between subjects [9]. The df

value 77 refers to the total number of subject pairs (n*(n–1)/

2= 13*12/2= 78). A null distribution obtained with a Monte

Carlo simulation, and a previous study [5] show this to be a valid

df for the ISC analysis.

4.3 General linear model. Analysis based on general linear

model (GLM) was performed in SPM8 to assess brain areas related

to the processing of either speech or non-speech sounds. The

GLM design matrix included the speech and non-speech

regressors, a linear drift model, and the global mean and

realignment parameters. The correlation coefficient between the

speech and non-speech regressors was 0.09 (p = 0.056). Serial

correlations were handled with a first order autoregressive [AR(1)]

model. The contrast images of the main effects from each subject

(mean responses to either speech or non-speech regressor) were

entered into second-level analysis and t-tests were performed. The

resulting activity maps were thresholded at FWE-corrected

p,0.05 and cluster size .10 voxels.

4.4 Independent component analysis, and sorting of the

independent components. Independent component analysis

was performed with the group ICA toolbox GIFT v1.3 (http://

icatb.sourceforge.net/). The minimum-description-length algo-

rithm [19] implemented in GIFT estimated the mean number of

sources to be 55. Spatial ICs were determined using the Infomax

algorithm [20]. The ICASSO method [21] was used to assess the

replicability of the ICs by running the algorithm 150 times. As the

ICA typically gives slightly different results each time, the result

was a cluster of estimates for each IC. The most representative IC

of each cluster was selected as the IC of choice. Back-

reconstruction of individual ICs and time-courses was done with

GICA3 [22], also implemented in GIFT software. For labeling

and visualization, the subject-specific images for each IC were

entered into a second-level analysis and subjected to one-sample t-

tests in SPM8 [4] with a FWE-corrected threshold of p,0.01 and

cluster size .20 voxels.

The ISC map can be used as a functional template identifying

extrinsic stimulus-related ICs [9]. To identify ICs with the

strongest stimulus-related extrinsic characteristics, we sorted the

ICs according to their spatial correlations with the thresholded

ISC map using the GIFT software. As the method is biased by the

spatial extent of the thresholded ICs, we additionally calculated

the percent overlap of the ICs with the ISC map. An IC that had

strong or moderate positive correlation (r .0.3) and .50%

overlap with the ISC map was defined as an extrinsic IC. Because

of these strict criteria, some extrinsic ICs may have been labeled as

intrinsic.

Although the ICs derived from a spatial ICA are spatially

maximally independent, their time-courses can exhibit temporal

dependencies as has been demonstrated with both real and

simulated data [23,24]. Such temporal dependencies among

spatial ICs can inform about functional network connectivity

[25], and we thus searched for functional network connectivity by

correlating–within each subject–the time-courses of the stimulus-

related extrinsic ICs with the non-extrinsic ICs. For each pair of

the extrinsic and intrinsic ICs the Pearson’s correlation coefficient

was determined and, then, Fisher transformation was applied to

convert the correlation coefficients to normally distributed

variables. A two-tailed one-sample t-test (p,0.05, Bonferroni

corrected for 160 tests, 12 df) was employed to identify significant

correlations.

To describe the ICs according to their reactivity to speech and

non-speech sounds, we subjected each IC time-course to a

multiple regression analysis comparing them with the speech

and non-speech regressors.

4.5 Labeling of activation areas and visualizing the

activations. Activations seen in the group analysis were labeled

with the Automated Anatomical Labeling (AAL) tool [26].

Mricron (http://www.cabiatl.com/mricro/) and FreeSurfer

(http://surfer.nmr.mgh.harvard.edu/) were used for visualization.

Results

1. Vigilance Questionnaire
The mean 6 SD vigilance reported by the subjects was 6.961.8

in the beginning, 5.561.8 in the middle, and 4.662.7 in the end of

the experiment. Six subjects answered correctly to all eleven

questions, six to ten questions, and one subject to nine. The subject

discarded for drowsiness answered only two questions correctly.

Brain Activation during Audio Drama
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2. Intersubject-correlation Map
Figure 1 (top) shows the ISC map viewed from the lateral and

medial aspects of both hemispheres. Six larger bilateral activation

clusters are evident, covering the superior and middle temporal

gyri (STG, MTG), extending to the temporal pole (TP), the

middle/posterior cingulate cortex (CC), precuneus (PreCun), the

cuneus (Cun), and the middle and inferior frontal gyrus (MFG/

IFG). Further, bilateral activations were seen in the inferior

parietal lobe and supramarginal gyrus (IPL/SMG) and amygdala

(Amyg). Further activations (not labeled in the figure) were in the

Heschl’s gyrus, Rolandic operculum, angular gyrus and hippo-

campus.

Moreover, unilateral activations were found in the left pre- and

postcentral gyrus (Pre and PostCG), left lingual gyrus, left

calcacrine gyrus, left superior and middle occipital gyrus, left

cerebellum, right anterior CC, right supplementary motor area,

and right fusiform gyrus; for more details, see Table 1.

3. Activations Related to Speech and Non-speech Sounds
Figure 1 (middle, bottom) also shows the GLM results for speech

and non-speech sounds. Speech-related activations (middle panels)

covered bilaterally the STG, and unilaterally the left MTG. The

non-speech-related clusters (bottom panels) differed partly from

the speech-related activations, covering only the left STG. Table 2

summarizes the activated areas. Since we used a naturalistic

continuous stimulus, it was difficult to construct a proper set of

GLM regressors describing specific stimulus features, which likely

explains the limited activations found in the speech and non-

speech GLM analyses. Thus data-driven methods (ICA and ISC)

are beneficial for the analysis of brain activations related to this

kind of stimuli.

4. Independent Component Analysis
The ICA resulted in components involved in functionally

plausible brain networks and other components possibly reflecting

biological and non-biological noise sources. Eleven out of the

original 55 ICs were discarded from further analysis: eight because

of a stability index less than 0.9 (on a scale from 0 to 1) [21] and

three that were not located in gray matter.

Figure 2 displays the spatial correlation coefficients of all 55 ICs

with the ISC map in descending order, as well as the ISC map

(top) and the ICA patterns for the four most correlated ICs

(bottom). These four ICs (IC1–IC4) were defined as extrinsic.

They had a strong spatial similarity with the ISC map with the

following spatial correlations: IC1, r = 0.67; IC2, r = 0.52; IC3,

r = 0.40; IC4, r = 0.40. Furthermore, of all ICs, IC1–IC4 had the

highest percentage of overlap with the ISC map (overlaps 97%,

87%, 70% and 90%, for IC1–IC4, respectively). Table 3 lists the

anatomical areas covered by these four extrinsic ICs and the

coordinates of the peak voxel for each cluster.

The time-courses of the four extrinsic ICs (IC1–IC4) correlated

significantly (p,0.05, Bonferroni corrected) with the time-courses

of 16 intrinsic ICs. The correlations were numerous, but here we

describe correlations to the four intrinsic ICs (IC5–IC8, displayed

in Figure 3) that seem linked to speech and non-speech sounds.

Each of these four intrinsic ICs correlated significantly with two of

the extrinsic ICs. The numbers in the middle of Figure 3

correspond to the mean correlation strengths between the extrinsic

and intrinsic ICs.

Figure 4 (left) shows the mean correlation strengths for the

extrinsic IC1–IC4 and the intrinsic IC5–IC8 in a correlation

matrix. The remaining 12 intrinsic ICs (IC9–IC20) that correlated

significantly with the extrinsic ICs are described in supplementary

materials (Figure S1 and Table S1 and S2). The time-courses of

IC5 (encompassing bilaterally STG, Rolandic operculum, TP,

putamen and insula) and IC6 (bilateral SMG, STG, left IPL)

correlated significantly with the time-courses of the extrinsic IC1

Figure 1. The ISC map and the GLM results for speech and non-
speech sounds. The intersubject correlation (ISC) map (top panels)
and general linear model (GLM) results overlaid on a MNI305 template
brain and viewed from the lateral and medial aspects of both
hemispheres. The GLM maps show brain areas correlating with the
speech sounds (middle panels) and non-speech sounds (bottom
panels). The GLM maps are thresholded at FWE-corrected p,0.05,
cluster size .10 voxels, the ISC map at FWE corrected p,0.01, cluster
size .20 voxels. STG= superior temporal gyrus, MTG=middle temporal
gyrus, IPL = inferior parietal lobule, SMG = supramarginal gyrus,
TP = temporal pole, MFG=middle frontal gyrus, IFG = inferior frontal
gyrus, Cun=Cuneus, PreCun= PreCuneus, CC= cingulate cortex, Amy-
g = amygdala, L = left hemisphere, R = right hemisphere.
doi:10.1371/journal.pone.0064489.g001
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and IC2, and the time-courses of IC7 (bilateral SFG and medial

part of SFG, and right MFG) and IC8 (bilateral PreCun, Cun and

posterior-CC) with those of the extrinsic IC3 and IC4. IC7 and

IC8 encompassed areas of the medial prefrontal cortex, posterior-

CC, and PreCun, i.e. areas that have been proposed to belong to

the default-mode-network (DMN) [17]. One-way analysis of

variance was used to test for differences in correlation strengths

among the four extrinsic ICs towards each of IC5–IC8 (Table S3

and S4). Spatial correlations between these intrinsic ICs and the

ISC map were low (Figure 2): IC5, r = 0.13; IC6, r = 0.10; IC7,

r = 0.01; IC8, r = 0.02.

Table 3 lists the anatomical areas covered by ICs 1–8 and the

coordinates of the peak voxel for each cluster.

Figure 4 (right) shows the activation strengths (beta values) for

IC1–IC8 derived from a multiple regression analysis with both the

speech and non-speech regressor (orange and blue colours,

respectively). IC1–IC4 and IC8 fluctuated similarly as the speech

regressor (IC1: partial r = 0.47, t (12) = 18.1, uncorrected

p,0.0001; IC2: r = 0.22, p,0.0001; IC3: r = 0.28, p,0.0001;

IC4: r = 0.23, p,0.0001; and IC8: r = 0.07, p = 0.0067, respec-

tively). IC1, IC2, IC5 and IC6 correlated positively with the non-

speech regressor (IC1: r = 0.10, t (12) = 3.7, p= 0.0026; IC2:

r = 0.12, p= 0.0007; IC5: r = 0.14, p = 0.0130; IC6: r = 0.11,

p = 0.0355, respectively). Negative correlations were found

between IC3 and the non-speech sounds (r = –0.16, t (12) = –

2.84, p = 0.0148).

Discussion

We investigated the across-subjects similarity of brain activity to

speech and non-speech sounds within an audio drama. Intersub-

ject synchronization was strongest in the temporal lobe auditory

areas, frontal cortex, and in the Cun and PreCun. The fMRI data

were also analyzed using ICA, and by comparing the spatial

overlaps of ICs with the ISC map, four ICs were determined

extrinsic. These extrinsic ICs were modulated by either speech

sounds or by both speech and non-speech sounds. ICs with little or

no overlap with the ISC map were considered intrinsic.

Statistically significant functional connectivity was found

between the stimulus-related extrinsic brain areas (MTG, STG,

posterior insula, inferior TP, and MFG/IFG) and networks that

were considered intrinsic (anterior insula, superior TP, SFG,

middle- and posterior-CC, Cun, PreCun, and SMG/IPL). The

time-courses of the intrinsic ICs correlated either with the time-

courses of the extrinsic ICs reacting to the speech sounds or with

those fluctuating similarly with speech and non-speech sounds.

We thus propose in Figure 5 the involvement of two separate

large-scale networks in the processing of an audio drama: one best

described as a speech network (boxes surrounded by solid lines),

Table 1. Peak voxel coordinates (x, y, and z in MNI system) and anatomical labels for the ISC map.

x y z Region N

Left Hemisphere –60 –18 2 Superior and middle temporal gyrus, Rolandic operculum, Heschl’s gyrus, {temporal pole,
postcentral gyrus, supramarginal gyrus, angular gyrus

1168

–12 –77 30 Cuneus, precuneus, superior occipital gyrus, calcacrine gyrus, lingual gyrus, cerebellum 467

–46 35 10 Middle frontal gyrus, *frontal inferior triangular part 198

–26 –4 –18 Amygdala, hippocampus 51

–40 –77 2 Middle occipital gyrus 64

–26 –7 48 Superior frontal gyrus, precentral gyrus 46

–29 –42 –15 Fusiform gyrus 84

–54 –52 48 Inferior parietal gyrus 28

–40 –42 44 Inferior parietal gyrus 30

–40 –24 44 Postcentral gyrus 22

Right Hemisphere 66 –14 2 Superior and middle temporal gyrus, Heschl’s gyrus, Rolandic operculum, {temporal pole,
middle and posterior cingulate gyrus, precuneus, supplementary motor area,
inferior parietal gyrus, supramarginal gyrus, angular gyrus

1544

48 42 10 Middle and superior frontal gyrus, frontal inferior triangular and opercular part 440

24 –7 –15 Amygdala, hippocampus 35

2 35 24 Anterior cingulate gyrus 65

27 –42 –15 Fusiform gyrus 28

* = rostral/anterior part.
{=posterior part.
N refers to the number of voxels in each cluster. Anatomical labeling is based on the group data, and was performed with the Automated Anatomical Labeling (AAL)
tool. Labels are listed if an ISC map cluster extended $10 voxels into the AAL defined area.
doi:10.1371/journal.pone.0064489.t001

Table 2. Peak voxel coordinates (x, y, and z in MNI system)
and anatomical labels for the GLM maps.

x y z Region N

Speech sounds regressor

Left Hemisphere –57 –46 6 Superior and middle temporal gyrus 72

Right hemisphere 66 –14 –1 Superior temporal gyrus 40

Non-speech sounds regressor

Left hemisphere –54 –24 16 Superior temporal gyrus 27

N refers to the number of voxels in each cluster. Anatomical labeling is based
on the group data, and was performed with the Automated Anatomical
Labeling (AAL) tool. Labels are listed if a GLM map cluster extended $10 voxels
into the AAL defined area.
doi:10.1371/journal.pone.0064489.t002

Brain Activation during Audio Drama

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e64489



the other reacting to speech sounds and non-speech sounds (boxes

surrounded by dashed lines). These networks only share the

supratemporal auditory cortex and contain several nodes of both

extrinsic (blue lettering) and intrinsic (red lettering) networks.

1. Extrinsic Independent Components
The ISC analysis revealed across-subjects synchronized activity

in the Heschl’s gyrus, STG, MTG, and MFG/IFG, i.e. in cortical

areas that previous ISC analysis experiments have linked to the

processing of complex auditory stimuli [5,6]. Across-subjects

synchronized activity was also observed in the amygdala. As the

audio drama consisted of several voices with strong acted

emotions, the between-subjects synchronization in the amygdala

might reflect responses to the emotional prosody of the actors

[27,28]. Accordingly, in an earlier study about brain responses to

vocal expressions of anger and happiness, the amygdala responded

to emotional vocal expression [29]. Interestingly, we also found

ISC in the inferior TP, an area that is interconnected with the

amygdala and is critical for linking the representation of faces, and

possibly auditory cues, to person-specific memories [30]. Thus, it is

Figure 2. Sorting of the ICs based on correlations with the ISC map. The bar graph shows the independent components (ICs) organized in a
descending order based on their spatial correlations with the intersubject correlation (ISC) map. The colors of the four most stimulus related extrinsic
ICs (IC1–IC4) in the bar graph correspond to the colors in the independent component analysis (ICA) map illustrating their spatial distribution. The
four ICs (IC5–IC8) that correlated temporally with two extrinsic ICs are also marked in the bar graph. The ISC and IC maps are thresholded at FWE
corrected p,0.01, cluster size .20 voxels. L = left hemisphere, R = right hemisphere.
doi:10.1371/journal.pone.0064489.g002

Table 3. Peak voxel coordinates (x, y, and z in MNI system) and anatomical labels for IC1–IC8.

x y z Region N

IC1 –60 –18 6 Superior and middle temporal gyrus 175

62 –7 2 Superior temporal gyrus 130

IC2 –40 –21 16 Superior temporal gyrus, Rolandic operculum, Heschl’s gyrus, insula 267

52 –21 10 Superior temporal gyrus, Rolandic operculum, Heschl’s gyrus, insula 248

IC3 –57 –46 13 Superior and middle temporal gyrus, angular gyrus 520

–50 24 –12 {Temporal pole, inferior frontal gyrus orbital part 23

IC4 55 –32 –4 Superior and middle temporal gyrus, {temporal pole 419

IC5 –46 –4 –8 Superior temporal gyrus, insula, Rolandic operculum, `temporal pole, putamen 260

48 14 –12 Superior temporal gyrus, insula, Rolandic operculum, `temporal pole, putamen 268

IC6 –57 –35 16 Supramarginal gyrus, superior temporal gyrus, inferior parietal gyrus 217

66 –28 27 Supramarginal gyrus, superior temporal gyrus, Rolandic operculum 282

IC7* 2 56 27 Middle frontal gyrus, superior frontal gyrus, superior frontal gyrus medial part, supplementary motor area568

IC8 2 –60 30 Precuneus, cuneus, calcacrine, middle and posterior cingulate cortex 538

*Left dominant.
{= Inferior/posterior part.
`= Superior/posterior part.
N refers to the number of voxels in each cluster. Anatomical labeling is based on the group data, and was performed with the Automated Anatomical Labeling (AAL)
tool. Labels are listed if an IC cluster extended $10 voxels into the AAL defined area.
doi:10.1371/journal.pone.0064489.t003
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Figure 3. Spatial maps for IC1–IC8. The extrinsic independent components (ICs), IC1–IC4, are shown on the left and the intrinsic ICs, IC5–IC8 on
the right. Extrinsic and intrinsic ICs are grouped with green boxes. Mean intersubject correlation values of the ICs time-courses are written below the
IC number. Correlation values between the extrinsic and intrinsic ICs are displayed in the middle. The group-level t-maps are thresholded at FWE
corrected p,0.01, cluster size .20 voxels and overlaid on an average of the subjects’ normalized anatomical images. MNI z-coordinates are
presented beside the axial slices. L = left, R = right, r =mean Pearson correlation strength.
doi:10.1371/journal.pone.0064489.g003

Figure 4. Correlations between the time-courses of the independent components (ICs) and reactivity of the ICs to speech and non-
speech sounds. The correlation matrix for the time-courses of IC1–IC8 is presented on the left. The colour of each square represents the subjects’
mean correlation strengths. The colour key is given to the right of the matrix. The bar graph on the right presents mean beta value results from the
analysis where the time-courses of the spatial ICs were subjected to a multiple regression analysis with the speech (brown) and non-speech (blue)
regressors. * p,0.05, **p,0.005.
doi:10.1371/journal.pone.0064489.g004
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possible that the intersubject synchronization of the amygdala [28]

and TP reflect processing important for identifying speakers and

voice prosody.

We identified four ICs that covered areas that were also

displayed in the ISC map. Two of these extrinsic ICs, one with

bilateral activity in the STG and the other with bilateral activity in

the STG, Rolandic operculum, Heschl’s gyrus, and posterior

insula, had time courses that varied similarly with the speech and

non-speech sounds. The partial correlations between these

extrinsic ICs and the speech regressor were larger than those for

the non-speech regressor. The speech sounds of the audio drama

were in the foreground making it easy to follow the dialogs and

narrations. Accordingly, the hemodynamic fluctuations in the

speech and non-speech-related ICs were mainly driven by the

speech sounds. The third extrinsic IC, a left-lateralized extrinsic

IC with activation in the MTG, STG, angular gyrus, inferior TP,

and orbital part of IFG, correlated positively with the speech

sounds and negatively with the non-speech sounds. An IC with a

similar spatial distribution, as this left-lateralized extrinsic IC, was

also previously characterized as extrinsic and sensitive to speech

[9]. The fourth extrinsic IC with activity unilaterally in the right

STG, MTG, and inferior TP correlated with the speech sounds

but not with the non-speech sounds.

An earlier fMRI–ICA study exploring brain activity to 30-s

story narrations presented in a block design to 5–19 year-olds [31]

described six stimulus-related ICs of which four were similar to the

extrinsic ICs we found. Two ICs of that study, partitioning the

STG similarly as our speech and non-speech ICs, were suggested

to participate in spectral and temporal processing of sounds. A left-

lateralized network, comprising the MTG and IFG, resembling

our left-lateralized speech-related IC, was suggested to integrate

contents of sentences to larger narratives and integrate semantic,

syntactic, and pragmatic information. Furthermore, a right-

dominant IC found bilaterally in the STG and thought to be

important for achieving a final interpretation of the story [31], was

similar to our speech-related right-lateralized IC.

In fMRI studies, susceptibility artifacts in the amygdala and

limbic forebrain regions can reduce the signal-to-noise ratio and

increase between-subject variance [32], thereby possibly reducing

the inter- and intra-subject correlations in the amygdala. However,

one extrinsic IC correlated significantly with an IC encompassing

the amygdala/hippocampal area, an area previously linked to

narrative processing [31]. This amygdala/hippocampal IC over-

lapped the amygdala activation in the ISC map (Figure S1, IC18;

Table S1). As a majority of the 78 individual pair-wise correlations

were significant in the left and right amygdala cluster, and

susceptibility artifacts in the amygdala increase intersubject

variance [32], the result suggests that all subjects had a reasonable

signal from the amygdala area.

2. Functional Network Connectivity
Correlation patterns in fMRI experiments might have non-

neural causes such as head movement [33], or in the case of

functional network connectivity, spatial overlap of true sources

[22]. As the intrinsic ICs we focused on showed significant

correlations with two extrinsic ICs, the risk of correlations due to

various sources of confound was possibly reduced. Two intrinsic

ICs correlated with the extrinsic speech-related ICs. Two other

intrinsic ICs correlated with the extrinsic speech- and non-speech-

related ICs. The latter intrinsic ICs fluctuated similarly as the non-

speech regressor, and did not correlate with the speech regressor

or the extrinsic speech ICs. The first of these non-speech-sounds

sensitive intrinsic ICs (IC5) covered areas of the STG, Rolandic

operculum, superior TP, and putamen and the border of the

anterior and posterior insula. A functional connectivity study

suggests that the insula could be partitioned in an anterior,

posterior, and transitional zone [34]. The posterior insula is

involved in sensory-motor integration [35], the anterior insula

participates in the processing of emotions and belongs to the task-

set system [35,36], a system important for shifting attention, and

the transitional zone might guide both attention and sensory

motor integration [34]. The transitional insula activation to non-

speech sounds seems plausible as non-speech sounds, such as foot

steps, give a feeling of movement, and sounds such as birdsong can

change the listener’s thought frame from an indoors scene to an

outdoors scene. Localizing moving sounds is thought to involve the

SMG [37], suggesting that the other intrinsic non-speech-sounds

component, IC6, encompassing SMG is involved in spatial

orientation based on auditory cues. Auditory orientation cues

were found among the non-speech sounds.

We found that two extrinsic speech-related ICs correlated

positively with two intrinsic ICs, one encompassing the MFG,

SFG, and medial part of SFG and the other encompassing

PreCun, Cun, and middle- and posterior-CC, i.e. areas that are

attributed to the DMN [17]. The functional network connectivity

between these intrinsic ICs encompassing DMN areas and the

extrinsic speech ICs suggests that some DMN areas contribute

indirectly to the perceptual experience that an audio drama,

especially its speech, produces. Some ISC studies link PreCun,

posterior-CC, and MFG areas to semantic processing [5] and

speculate that PreCun and MFG integrate speech information

over a timescale of more than 30 s [8]. Furthermore, an fMRI

study in which subjects listened to words revealed connectivity

between ICs comprising temporal, parietal, and frontal areas [38].

Figure 5. A schematic summary of the extrinsic and intrinsic
speech and non-speech networks. The extrinsic areas are labeled
with blue letters, the intrinsic with red letters. Areas of the speech
network are marked by solid boxes, areas of the non-speech sound
network by dotted boxes. The summary is based on the characteristics
of independent components (ICs) IC1–IC8. Extrinsic areas are based on
the correlation and overlap of the ICs with the intersubject correlation
(ISC) map. Speech and non-speech brain areas are based on the
similarity of the time-courses of the ICs to the speech and non-speech
regressors, and on functional connectivity analysis. Abbreviations:
MTG=middle temporal gyrus, IN = insula, SFG= superior frontal gyrus,
SFGmed= superior frontal gyrus medial part, MFG=middle frontal
gyrus, IFG= inferior frontal gyrus, TP = temporal pole, IPL = inferior
parietal lobule, SMG= supramarginal gyrus, CC = cingulate cortex,
Cun = Cuneus, PreCun = PreCuneus, ant = anterior, post = posterior,
sup = superior, inf = inferior, trans = transitional.
doi:10.1371/journal.pone.0064489.g005
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The extrinsic ICs had a strong relationship to the stimulus,

while the intrinsic ICs had weak or no relationship to the stimulus.

The extrinsic ICs covered areas corresponding to the previously

described extrinsic cortical division [11]. The intrinsic ICs that we

found in the inferior parietal cortices, posterior-CC, and PreCun

correspond to the previously described intrinsic cortical division

[11]. However, one intrinsic non-speech IC (IC5; the STG, insula,

Rolandic operculum, and TP) encompassed areas that were earlier

described as extrinsic. Taking into account the strict criteria used

for defining extrinsic ICs, these areas might have both extrinsic

and intrinsic characteristics.

A two-stream hypothesis of visual perception, describing a

ventral stream that is involved in object identification and a dorsal

stream that is involved in the guiding of vision for action and in

recognizing object position, is commonly accepted [39,40]. A

similar dual-pathway model has been suggested for the auditory

system, with two largely segregated processing streams, a ventral

stream for the identification of objects based on audition, including

speech and environmental sounds, and a dorsal stream for the

localization of sounds in space [41,42,43,44]. The dorsal stream

might in addition have a role in speech perception and auditory-

motor integration [45]. Although our current experimental setup

was not specifically planned to explore the ventral and dorsal

stream divisions, the present findings lend some support to the

dual-stream model of auditory/speech processing (see Fig. 5). The

extrinsic speech- and non-speech related network encompassed

temporal cortical areas that are part of the ventral stream

bordering the dorsal stream areas. The speech-related network

covered areas of both the ventral and dorsal stream.

Conclusion
In conclusion, the results showed substantial synchronization of

cortical activity among the subjects listening to an audio drama

and suggest that natural sounds are processed in two separate

networks, one dedicated to speech processing and the other to

both speech and non-speech sounds. This dual network division of

auditory perception is suggested by data driven methods.
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Figure S1 IC9–IC20 depicted in three orthogonal direc-
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R= right, A= anterior, P= posterior.
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