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Abstract

Background: Associative conditioning is a ubiquitous form of learning throughout the animal kingdom and fear
conditioning is one of the most widely researched models for studying its neurobiological basis. Fear conditioning is also
considered a model system for understanding phobias and anxiety disorders. A fundamental issue in fear conditioning
regards the existence and location of neurons in the brain that receive convergent information about the conditioned
stimulus (CS) and unconditioned stimulus (US) during the acquisition of conditioned fear memory. Convergent activation of
neurons is generally viewed as a key event for fear learning, yet there has been almost no direct evidence of this critical
event in the mammalian brain.

Methodology/Principal Findings: Here, we used Arc cellular compartmental analysis of temporal gene transcription by
fluorescence in situ hybridization (catFISH) to identify neurons activated during single trial contextual fear conditioning in
rats. To conform to temporal requirements of catFISH analysis we used a novel delayed contextual fear conditioning
protocol which yields significant single- trial fear conditioning with temporal parameters amenable to catFISH analysis.
Analysis yielded clear evidence that a population of BLA neurons receives convergent CS and US information at the time of
the learning, that this only occurs when the CS-US arrangement is supportive of the learning, and that this process requires
N-methyl-D-aspartate receptor activation. In contrast, CS-US convergence was not observed in dorsal hippocampus.

Conclusions/Significance: Based on the pattern of Arc activation seen in conditioning and control groups, we propose that
a key requirement for CS-US convergence onto BLA neurons is the potentiation of US responding by prior exposure to a
novel CS. Our results also support the view that contextual fear memories are encoded in the amygdala and that the role of
dorsal hippocampus is to process and transmit contextual CS information.
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Introduction

Neurobiological models of basic associative conditioning

propose that neurons critical to learning receive convergent

information from pathways responsive to the CS and US, and that

activity-dependent changes in these neurons encode the formation

of the associative memory trace [1–3]. In mammalian fear

conditioning, where an initially innocuous CS becomes capable

of evoking conditioned fear responses (CRs) after contingent

pairing with an aversive US [4,5], long-lasting synaptic plasticity

and learning-induced changes in cellular and molecular activity

have been demonstrated in the BLA (basal and lateral nuclei of the

amygdala), a brain region implicated in the encoding of fear

memory [6–11]. However, the crucial evidence yet to be secured is

whether a population of amygdalar neurons receives convergent

information at the time of training, and if it does so only when the

CS-US arrangement produces fear conditioning.

Using electrophysiological methods, several studies have shown

learning-induced changes in amygdalar neurons following fear

conditioning. For instance, tone-evoked potentials recorded in

neurons of the lateral amygdala (LA) have been shown to increase

after auditory fear conditioning [12], and the magnitude of long-

term potentiation (LTP) is larger in the BLA of fear conditioned

rats compared to those of control rats [13–15].

Fear conditioning and LTP have also been associated with

increased induction of Arc (or Arg3.1), an immediate early gene

expressed in glutamatergic neurons, in the BLA [16,17]. The

importance of Arc in the acquisition of conditioned fear is

underscored by reports that viral-mediated overexpression of

cAMP response element binding protein (CREB) in BLA enhances

fear learning and increases the number of Arc+ neurons in the

amygdala of wild type and CREB knockout mice [18]; and that

knock-down of Arc mRNA in LA interferes with auditory fear

conditioning in rats [16]. However, Arc assessment after CS-US

pairing in these studies could not distinguish between CS

responsive, US responsive, and both CS and US responsive

neurons, so it remains unclear whether observed responses

occurred in neuronal populations receiving convergent activations.

To our knowledge then, there is no definitive evidence that CS-

US information converges on individual neurons in the amygdala
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at the time of fear conditioning. In the present study, we employed

the functional imaging technique Arc catFISH to distinguish

neuronal populations activated by a behavioral experience with

the CS and US. CatFISH utilizes the dynamic compartmental-

ization of Arc mRNA as a time stamp for recent neuronal activity:

following induction, Arc mRNA is confined to the nucleus for

about 5 minutes, after which it moves to cytoplasm where it is

completely restricted by ,25–30 minutes [19,20]. Thus by using

the subcellular distribution of Arc mRNA, catFISH analysis can

mark neuronal populations engaged by the CS, the US, and the

pairing of the two stimuli during fear learning.

However, because catFISH analysis requires that presentation

of stimuli be separated by ,25 min, a fear conditioning protocol

had to be modified to make it amenable to this analysis (Figure 1A).

An initial behavioral study indicated that contextual fear

conditioning can occur in a single trial when introduction to a

novel context CS is followed 26 min later by delivery of footshock

US. Subsequently, catFISH analysis of sections from both the BLA

(the putative site of fear conditioning) [6–11] and dorsal

hippocampus (implicated in processing context-spatial informa-

tion) [20–23], allowed us to determine whether neurons in these

regions are dually activated by the CS and US during acquisition

of conditioned fear.

Results

Single trial contextual fear conditioning
When placed in a novel chamber for 30 min, control rats

exhibited several minutes of active exploration after which they

became less active and, in some cases, went to sleep. The delayed

shock (DS) rats behaved similarly to controls, but following

footshock, they demonstrated robust freezing (an index of fear)

during the last 4 min postshock period in the chamber (Figure 1B).

In contrast, the immediate shock (IS) group, which experienced

footshock instantly upon placement in the chamber [24], displayed

virtually no postshock freezing (5.662.9%, for an equivalent

4 min postshock period) and behaved like the control group for the

remaining time in the chamber. Latent inhibition (LI) rats

experienced the same chamber-footshock interval as the DS rats,

but because of substantial context pre-exposure, exhibited earlier

and larger episodes of inactivity/sleep in the chamber than other

groups preceding the footshock (group main effects: F3,27 = 5.578,

Figure 1. Single Trial Fear Conditioning. (A) A schematic timeline outlining presentation of the context CS and footshock US for Controls,
Immediate Shock (IS), Delay Shock (DS), and Latent Inhibition (LI) groups during training. (B) Freezing behavior on training day. Animals introduced
to the novel chamber initially explored the context and then became less active as the chamber became familiar. This was especially evident in the LI
group. IS animals showed minimal freezing following footshock. In contrast, DS animals, and LI animals to a lesser extent, showed robust freezing
following shock (P = .01). Grey-filled symbols represent the period when postshock freezing was assessed in DS, IS and LI animals. (C) Freezing
behavior on retention test next day. Only DS animals showed significant freezing 24 hours after conditioning (P = .01). (D) Animals used for catFISH
analysis showed similar trends of activity and freezing during training as behaviorally tested animals. These animals were sacrificed immediately after
30 minutes in the chamber. Data are represented as percent means6SEM.
doi:10.1371/journal.pone.0006156.g001
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P = .004; P’s,.05 for LI vs.DS/IS, Tukey’s HSD) and significantly

less postshock freezing (42.5613.8%) than DS animals

(71.8+8.7%). Indeed, among animals that received footshock

(i.e., DS, IS and LI groups), ANOVAs indicate no main effect of

group during the first 4 minutes in the chamber (F2,21 = .092,

P = .913) but a significant main effect of group during the last 4

(postshock) minutes in the chamber (F2,21 = 21.199, P = .000;

P’s,.05 for DS vs. IS & LI groups, Tukey’s HSD).

The next day, when rats were placed back in the test chamber

for 8 min to assess the retention of contextual fear memory, similar

group effects were observed (Figure 1C). Only DS animals showed

evidence of having acquired a conditioned fear response, as

indicated by robust freezing; whereas control, IS and LI animals

did not (group main effects: F3, 27 = 7.53, P = .001; P’s,.05 for DS

vs. all other groups, Tukey’s HSD). These behavioral data indicate

that significant contextual fear conditioning can be acquired using

temporal parameters that are compatible with catFISH analysis.

Specifically, animals can acquire long-term fear associations when

a novel context is paired with shock 26 minutes later (DS group),

but not when a familiar context is similarly paired with shock (LI

group).

Arc catFISH in the amygdala
Rats used for catFISH analysis underwent the same control, DS,

IS, and LI training as above, except they were sacrificed promptly

30 min after introduction into the chamber. Once again, control

and IS animals exhibited essentially no freezing, and DS animals

displayed significantly more freezing than LI animals during the 4

minute post-shock period (Figure 1D).

Introduction to a novel context (CS) and delivery of shock (US)

were effective in promoting Arc mRNA expression in BLA neurons

(Figure 2A–B). Because the central nucleus (CeA) showed

negligible Arc+ neurons following conditioning, analysis was

confined to the BLA. The CS-induced Arc signal was always

cytoplasmic since introduction to the test chamber occurred

30 min before sacrifice for all groups (Figure 2C). However the

location of US-induced Arc signal varied between the IS and DS/

LI groups since the former received a shock 30 minutes prior to

sacrifice whereas the latter two received it only 4 minutes prior (no

shock-induced Arc was seen in control animals since they did not

receive the US). Moreover, the LI group showed little or no Arc

signal to the chamber, indicating that Arc induction in BLA is

sensitive to context novelty (group main effects: F3, 12 = 7.99,

P = .003; P’s,.01 for LI vs. all other groups, Tukey’s HSD). A

notable observation is that the context CS did not appear to

induce continual Arc expression over the entire 30 minutes, but

rather appeared to induce Arc during the initial 5–10 minutes of

context exploration. This is evident by the fact that control

animals showed a robust cytoplasmic Arc signal with minimal

nuclear signal. The ‘‘punctuate’’ nature of the response to context

Figure 2. Arc induction in the BLA is sensitive to both the CS and US. (A) A representative image (46) of the BLA displaying Arc+ staining (in
red, nuclei are counter-stained green) following DS fear conditioning. (B) A higher magnification image (46) of the BLA showing cytoplasmic Arc+

staining (blue arrows), nuclear Arc+ staining (orange arrows), and both nuclear and cytoplasmic staining (yellow arrows). For DS animals, cytoplasmic
staining corresponds to the context CS event and nuclear staining corresponds to the footshock US event. (C) Total number of cells in the BLA with
Arc+ cytoplasmic and nuclear staining across groups (n = 4 rats/group). (Note: for IS animals, cytoplasmic staining corresponds to both CS and US
stimuli). The total number of neurons with Arc+ cytoplasmic staining was significantly lower for context-familiar LI animals than for all other groups
(*P,.01), indicating that Arc induction in BLA is sensitive to a novel CS. Moreover, groups receiving shock four minutes prior to sacrifice (DS and LI)
show significant levels of nuclear staining compared to Controls, indicating that Arc is also sensitive to the US (++P,.005). Interestingly, DS animals
showed a significantly greater number of neurons responding to the US than LI animals (+P,.01). (D) Number of neurons showing dual Arc+ staining
in both the nucleus and cytoplasm across groups. Only animals in the DS group showed a significant number of neurons responding to both the CS
and US (**P,.001). Data are represented as means6SEM.
doi:10.1371/journal.pone.0006156.g002
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made it possible to assess convergence because it was clear that

nuclear Arc in the DS group was provoked by shock and not by

context. Two groups display a nuclear Arc signal which can be

clearly identified as responsive to shock-US delivery: the DS and

LI groups (group main effects: F3,12 = 37.40, P,.001; P’s,.01 for

DS/LI vs. control, Tukey’s HSD). Interestingly, a significantly

larger number of US-responsive cells were seen in the DS group

than in the LI group (P = .01, Tukey’s HSD), suggesting that

exposure to a novel CS context potentiates the US response in

BLA [22].

DS exposure, the only condition which supported robust one-

trial fear conditioning, resulted in a significant number of neurons

displaying both cytoplasmic and nuclear expression of Arc mRNA

(group main effects: F3,12 = 33.08, P,.001; P’s,.001 for DS vs. all

other groups, Tukey’s HSD) (Figure 2D). The total number of

neurons sampled in BLA can be examined in Table 1, which also

includes the number and percentage of neurons displaying Arc+

staining, as well as a breakdown of staining in only the cytoplasmic

and/or nuclear compartments. The total percentage of cells that

displayed Arc+ staining did not differ between the DS group

(18.3%), which learned, and the IS and control groups (,16%),

which did not. However, the percentage of cells that showed dual

Arc+ activation (in both the nuclear and cytoplasmic compartment)

clearly distinguished the group that learned (DS = 3.9%, P,.001)

from all other groups (0.6–1.3%).

It is also noteworthy that the number of neurons showing only

nuclear staining did not differ between DS and LI groups (Table 1),

indicating that the observed enhancement in US-responding for

the DS group was largely attributable to the presence of dual

activated neurons.

Arc catFISH in the hippocampus
In hippocampus, introduction to the novel context CS was

effective in promoting Arc expression, whereas exposure to a

familiar context CS and/or delivery of shock US were not

(Figure 3A–B). Specifically, control, DS and IS animals showed

comparable cytoplasmic Arc+ staining in CA1 that was significantly

greater than LI animals (Figure 3C) (group main effects:

F3,12 = 11.27; P = .001; P’s,.005 Tukey’s HSD). In CA3, higher

levels of cytoplasmic Arc were again seen in IS and DS as

compared to LI animals (group main effects: F3,12 = 7.41; P = .005;

P’s,.01, Tukey’s HSD), whereas control animals showed inter-

mediate Arc that did not differ from other groups (Figure 3E).

Staining in DG was relatively low and did not differ between

groups (Figure 3G). Unlike the BLA, hippocampal regions from

DS and LI groups did not show significant nuclear Arc staining to

shock. Not surprisingly, dual activation of Arc in cytoplasmic and

nuclear compartments was not detected in the hippocampal

neurons of DS animals (Figure 3D,F,H).

N-methyl-D-aspartate (NMDA) receptor blockade and Arc
catFISH

Given that BLA showed evidence of CS/US convergence, and

that this pattern emerged only when animals learned, we then

investigated whether NMDA receptor blockade, which prevents

fear conditioning, similarly alters evidence of convergence in this

region. 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-

5,10imine (MK801; a noncompetitive NMDA receptor antagonist)

was administered systemically (0.3 mg/kg, i.p.) [25,26] just before

animals began DS training. Systemic administration was necessary

as targeted infusions would require the presence of cannulae,

which would impede rapid extraction of the brain and could

damage the BLA, thereby interfering with catFISH analysis.

Behaviorally, treatment with MK801 effectively blocked one-

trial contextual fear conditioning using our delayed protocol

(Figure S1A–B). In animals used for catFISH analysis, MK801-DS

rats vigorously reacted to footshock and exhibited impaired post-

shock freezing (t7 = 2.58, P = 0.036) (Figure S1C). Subsequent

examination of Arc mRNA showed that introduction to the novel

context CS and delivery of footshock US promoted robust Arc

induction in BLA neurons of saline-DS animals (Figure 4A). In

comparison, MK801-DS animals had significantly reduced Arc+

staining in response to the CS and US (t7 = 3.62, P = .01 for

cytoplasmic staining; t7 = 5.71, P = .001 for nuclear staining). The

number of cells showing both nuclear and cytoplasmic Arc+

staining was also significantly lower in MK801-DS animals

compared to saline-DS animals (t7 = 6.66, P,.001) (Figure 4B).

Discussion

Fear conditioning is an adaptive, defensive associative learning

task that can be acquired in a single trial [27]. Our behavioral

results indicate that contextual fear conditioning can reliably occur

in a single trial even when delivery of footshock is delayed for

26 min after introduction to a novel chamber (DS animals). Thus,

the temporal parameters of contextual fear conditioning in the

present studies conform to those needed for catFISH analysis.

Specifically, they allowed us to determine whether cells in BLA

and/or hippocampus are convergently activated by the CS and

US, and whether convergence is specific to pairings that are

Table 1. Number and Percentage of Arc+ neurons in sampled area of BLA.

# neurons that showed Arc+ staining in:

Group n Total # of Neurons Total # of Arc+ Neurons Cytoplasm only Nucleus only Both Nuc. & Cyto.

Control 4 32367.15 50.3610.2 40.869.9 5.2561.0 4.2560.6

(15.6%) (13.9%) (3.0%) (1.3%)

IS 4 33869.10 56.368.90 49.569.7 1.716.85 3.560.6

(16.5%) (15.5%) (2.0%) (1.0%)

DS 4 33067.37 60.864.02 25.363.6 23.562.9 1361.3**

(18.3%) (11.3%) (11.0%) (3.9%)

LI 4 326611.6 29.361.54 5.006.91 22.362.7 2.060.6

(9.0%) (2.1%) (7.4%) (0.6%)

**P,.001.
doi:10.1371/journal.pone.0006156.t001
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effective in promoting fear learning (DS) as compared to those

which are not (IS; LI). The location of such convergent cells was of

particular interest as both BLA and hippocampus have been

implicated in contextual fear conditioning [6–11,21–23].

Previous contextual fear conditioning studies have shown that

amygdalar neurons undergo learning-associated changes in neural

activity [e.g., 9], but these plasticity-associated changes do not

actually demonstrate that those neurons were responsive to both

CS and US during learning. In the present studies, catFISH served

as a functional imager that allowed us to visualize patterns of

neuronal activation in response to the CS and US in animals that

were awake and acquiring a one-trial learned association. The

analysis demonstrates that during acquisition of contextual fear

conditioning CS and US information converges on a subset of cells

in the BLA, but not in dorsal hippocampus, only when

presentation of the stimuli are effective in promoting learning. In

Figure 3. Arc induction in the hippocampus is sensitive to the CS, but not the US. (A) A representative image (46) of the CA1, CA3, and DG
regions of hippocampus displaying Arc+ staining following DS fear conditioning. (B) A higher magnification (406) image of CA1 showing primarily
cytoplasmic Arc+ staining. (C) Total number of cells in CA1 showing Arc+ cytoplasmic and nuclear staining across groups (n = 4 rats/group). Robust
cytoplasmic staining is seen following novel context CS exposure (as compared to LI group, **P,.001), but little nuclear staining is seen following
shock. (D) No evidence for CS-US convergence could be found in CA1. (E–F) CA3 showed similar patterns of Arc+ staining to CA1 with DS and IS
animals showing significantly higher cytoplasmic (as compared to LI group, **P,.01). (G–H) DG showed relatively little Arc+ staining that did not
differ between groups. Data are represented as means6SEM.
doi:10.1371/journal.pone.0006156.g003
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fact, our data provide no indication that dorsal hippocampus is

responsive to a single footshock US. This pattern of results

supports the contention that fear memories, including contextual

fear memories, are encoded in the amygdala and that the role of

dorsal hippocampus in these associations is to process and transmit

contextual CS information, such as novelty [30–32,35].

Context novelty is clearly critical to rapid learning under these

conditions. While LI animals did show moderate levels of

postshock freezing during conditioning, they showed no evidence

of learning when tested 24 hours later. Furthermore, overall Arc

expression in BLA was notably lower for the LI group than in all

other groups (Table 1). This appears to be largely due to the lack

of cytoplasmic Arc+ staining that accompanies exposure to a novel

(but not familiar) context. The LI group did show significant

nuclear Arc in response to the shock, but this cellular response to

the US was not as strong as in DS animals. Finally, since there was

minimal response to the familiar context CS, little to no

convergence was seen in LI animals. This lack of convergence

parallels the lack of fear conditioning in this group.

To assess whether activation of NMDA receptors is necessary

for convergent Arc+ activation and one-trial context fear learning

in our paradigm, we tested the effects of the NMDA receptor

antagonist, MK801, on both learning and Arc induction after

conditioning. Consistent with previous reports that NMDA

receptors play a crucial role in fear conditioning [36–38], we

found that systemic injection of MK801 effectively blocked

contextual fear conditioning. Paralleling the behavioral effect,

MK801 significantly altered patterns of Arc expression. Arc+

staining in response to the CS and US was reduced in BLA

neurons and there was little evidence of dual activation.

The low percentage of cells in BLA showing dual activation

(3.9%) implies that, during a single learning trial, convergently

activated neurons are quite sparsely distributed. This could reflect

the fact that the BLA, in addition to fear conditioning, is also

involved in appetitive, sexual and several other motivated

behaviours [39]. Regardless, it is important to note that, unlike

the total number of Arc+ cells, the appearance of convergently

activated neurons in BLA is specific to conditions which support

learning. Table 2 offers an overview of the relationship between

conditions that are effective or ineffective in promoting learning

and the pattern of Arc induction in cells of the amygdala and

hippocampus. The appearance of significant levels of dual

activation in amygdala clearly characterizes conditions supportive

of learning and not conditions which are not.

One subtle feature of the Arc response to the US deserves

mention as it may bear a critical relationship to the appearance of

dual activation. The number of neurons in BLA that are Arc+ after

footshock is significantly larger when it occurs in a novel (rather

than a familiar) context CS, and only the novel CS yields one-trial

learning and convergent CS-US activation. One potential

Figure 4. Treatment with MK801 prior to conditioning reduces neuronal convergence in BLA. (A) catFISH analysis showed that MK801-
treated animals had significantly lower levels of CS-induced Arc (cytoplasmic staining, ++P = .01) US-induced Arc (nuclear staining, **P = .001) than
saline animals. (B) Treatment with MK801 significantly reduced the number of neurons showing dual Arc+ staining in both the cytoplasmic and
nuclear compartments (**P = .001). Data are represented as means6SEM.
doi:10.1371/journal.pone.0006156.g004

Table 2. Relative levels of nuclear and cytoplasmic Arc in the BLA and Hippocampus of various groups that received CS and/or US
exposure.

BLA Hippocampus (CA1 & CA3)

Groups Cytoplasmic Nuclear Both Cytoplasmic Nuclear Both Learned CS-US Association?

Exp. 1

Control ++ - - + - - no

IS ++ - - ++ - - no

DS ++ ++ + ++ - - yes

LI - + - - - - no

Exp. 2

DS-Saline ++ ++ + na na na yes

DS-MK801 + + - na na na no

na, not applicable.
doi:10.1371/journal.pone.0006156.t002

Neuronal Stimulus Convergence
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explanation of the elevation in US responding could be an

alteration in excitability of a subset of neurons in BLA that receive

strong CS input and weak US input such that, when a novel CS

precedes the US, these neurons become more sensitive to

subsequent US input and convergent activation is seen. Interest-

ingly, the increase in the number of activated neurons to the US

corresponds to the number of neurons that display dual activation

(Table 1), suggesting a critical link. Although the notion of US

input as weak runs counter to prevailing views of the nature of

associative learning (as well as the associative or Hebbian LTP

model of fear conditioning [36,37]), we postulate that the

‘weakness’ of US input may be limited to this particular subset

of neurons. It is our view that the potentiation of US responding

by prior exposure to a novel CS is not a coincidence unique to this

set of data. An identical pattern emerged recently in catFISH

analysis of CS-US convergence during conditioned taste aversion

(CTA) learning [33]. More Arc+ cells were seen in response to the

US when it followed a novel CS taste than when it occurred alone,

after a familiar taste or when it preceded a novel taste (backward

conditioning). The consistency of this pattern and its association

with both effective learning and convergently activated cells argues

for an important role for this potentiation in excitability.

Enhancement of neural response systems by recent exposure to

novel stimuli has been reported to occur in hippocampus, where

exposure to a novel context can enhance induction and

maintenance of long-term potentiation (LTP) as well as long-term

memory for an avoidance task [34,35]. Our evidence supports a

similar process in the amygdala during fear conditioning and taste

aversion learning.

In conclusion, the results from the present studies support the

view that the amygdala is a critical locus of fear conditioning. Our

Arc data not only complement earlier electrophysiological studies,

which showed sustained fear learning-associated increases in

neural activities and LTP [13–15], and cellular-molecular studies,

which revealed that Arc/Arg3.1 immediate early gene activation is

a crucial component of the molecular cascade underlying fear

conditioning [16–18,40], but also provide crucial visual evidence

that a population of BLA neurons receives convergent information

at the time of training and does so only when the CS-US

arrangement produces fear conditioning.

Methods

Subjects
Experimentally naı̈ve adult male Sprague Dawley rats (initially

weighing 250–275 g) were individually housed and maintained on

a reverse 12 h light/dark cycle (lights on at 7:00 PM) with ad

libitum access to food and water. All experiments were conducted

during the dark phase of the cycle and in accordance with

guidelines approved by the Institutional Animal Care and Use

Committee at the University of Washington.

Behavioral Procedures
Contextual fear conditioning used a modular operant test

chamber (27 cm width628 cm length630.5 cm height; Coul-

bourn Instruments, Whitehall, PA) located in an acoustic isolation

room. The grid floor was composed of 16 stainless steel bars

(4.5 mm diameter) spaced 17.5 mm center to center and wired to

a Coulbourn precision-regulated animal shocker. Floor grid and

base pan were washed thoroughly with tap water and completely

dried before conditioning and testing.

On conditioning day all animals were placed in an experimental

chamber (wiped with 5% ammonium hydroxide solution) where

they remained for 30 min after which they were returned to their

home cage. Control rats received chamber exposure alone; IS

(immediate shock) rats received footshock (2 mA, 5-sec) immedi-

ately upon being placed in the chamber; DS (delayed shock) rats

received footshock 25 min and 55 sec after introduction to the

chamber; and LI (latent inhibition–delayed shock) rats were

treated exactly like DS rats except that they were pre-exposed to

the chamber for 10 consecutive days (30 min each day) prior to

conditioning. Post-shock freezing was measured for 4 min. The

next day rats were placed back in the trained context for 8 min of

context testing. Freezing data were collected via a 24 cell infrared

activity monitor mounted on top of the chamber and connected to

the Coulbourn Instruments LabLinc Habitest Universal Linc

System [41,42].

Separate animals were used for catFISH analysis and were

conditioned as described above. Postshock freezing was measured

for 4 min after which animals were sacrificed by guillotine (30 min

after introduction into the context).

Fluorescent in situ hybridization (FISH)
Brains were rapidly extracted, fresh frozen, and stored at

280uC. Forebrain tissue was sectioned into 20 mm coronal slices

using a cryostat and mounted onto slides. Regions containing BLA

and the CA1, CA3 and dentate gyrus of the hippocampus

approximately –3.2 mm from bregma were selected for in situ

hybridization. Digoxigenin-labeled Arc riboprobes were generated

from a modified cDNA plasmid (provided by Paul Worley) and

flourescent in situ hybridization and analysis were carried out as

described elsewhere [19,20,33]. In brief, Arc signal was visualized

using the Cyanine 3 TSA system (Perkin Elmer); nuclei were

counterstained with Sytox Green (Invitrogen).

Confocal microscopy and catFISH analysis
One section corresponding to each of the above regions was

analyzed per rat (Figure S2). The compartmental analysis of Arc

staining was done blind using Metamorph computer software

following image capture on a Leica SL microscope (206objective

lens, 1-mm- thick optical sections) using GrHe/Ne and Argon

lasers. Z-series stacks were constructed and analyzed on the

MetaMorph 6.0 program as previously described [33]. Briefly,

neurons were scored as positive for cytoplasmic staining if a ‘halo’

of signal was found to be encircling at least 75% of the nucleus,

and were scored as positive for nuclear staining if robust foci with

high saturation was found within the confines of the nucleus.

Statistics
Analyses of behavioral data were performed using one-way

ANOVA followed by Tukey’s honestly significant difference

(HSD) post hoc test. For experiments with only two groups,

independent t-test analysis was used. Analysis of Arc positive

neurons was also carried out with one-way ANOVA (4 groups) or

independent samples t-test (2 groups) on SPSS (v. 15.0) software.

Supporting Information

Figure S1 Treatment with MK801 prior to conditioning reduces

post-shock freezing and abolishes learning. (A) Freezing behavior

during training. Both saline-treated and MK801-treated groups

reacted vigorously to footshock US presentation, but only saline

animals showed reliable postshock freezing (average freezing over

4 min post shock period indicated by grey-filled symbols,

P = .033). (B) When tested 24 hours after conditioning, saline-

treated animals showed significantly greater freezing to the context

than animals treated with MK801 (P = .011). (C) Animals used for

catFISH analysis showed similar patterns of postshock freezing as
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behaviorally test animals. Once again, saline-treated animals

showed significantly greater postshock freezing (grey-filled sym-

bols) compared to MK801-treated animals (P = .036).

Found at: doi:10.1371/journal.pone.0006156.s001 (5.28 MB TIF)

Figure S2 Representative images of brain sections analyzed.(A)

A schematic drawing of a coronal slice at 23.12 mm from bregma

(modified from Paxinos and Watson, 1997). (B) A representative

micrograph of a 20 mm slice containing sampled regions of BLA

and CA1, CA3, and DG subregions of dorsal hippocampus. All

whole neurons within the demarcated regions were scored for Arc

signal.

Found at: doi:10.1371/journal.pone.0006156.s002 (4.50 MB TIF)
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