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Abstract

A trust network is a social network in which edges represent the trust relationship between two nodes in the network. In a
trust network, a fundamental question is how to assess and compute the bias and prestige of the nodes, where the bias of a
node measures the trustworthiness of a node and the prestige of a node measures the importance of the node. The larger
bias of a node implies the lower trustworthiness of the node, and the larger prestige of a node implies the higher
importance of the node. In this paper, we define a vector-valued contractive function to characterize the bias vector which
results in a rich family of bias measurements, and we propose a framework of algorithms for computing the bias and
prestige of nodes in trust networks. Based on our framework, we develop four algorithms that can calculate the bias and
prestige of nodes effectively and robustly. The time and space complexities of all our algorithms are linear with respect to
the size of the graph, thus our algorithms are scalable to handle large datasets. We evaluate our algorithms using five real
datasets. The experimental results demonstrate the effectiveness, robustness, and scalability of our algorithms.
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Introduction

In recent years, trust social networks such as Advogato (www.

advogato.org), Kaitiaki (www.kaitiaki.org.nz), Epinions (www.

epinions.com), and Slashdot (www.slashdot.org) rapidly attract

more and more attention in both research and industry

communities. In trust networks, users express their trust to other

users by giving a trust score to another, and users are evaluated by

others based on their trust scores. There are two types of trust

networks, namely, unsigned and signed. In the unsigned trust

networks, such as Advogato and Kaitiaki, users can only express

their trust to other users by giving a non-negative trust score to

others. In the signed trust networks, such as Epinions and

Slashdot, users are able to express their trust or distrust to others

by giving a positive or negative trust score to others. There are

many applications in the trust networks, such as finding the trusted

nodes in a network [1], predicting the trust score of the nodes [2],

and the trust based recommendation systems [3,4]. It is worth

mentioning that the trust network studied here is unlike the

problem of trust management [5–8] which is extensively studied in

the literature. For example, Richardson et al. [9] proposed an

eigenvector based algorithm for trust management in semantic

web. Independent to Richardson’s work, Kamvar et al. [10]

presented a similar eigenvector based algorithm, namely Eigen-

trust, for trust management in P2P networks. Guha et al. [11]

studied the problem of propagation of trust and distrust in the

networks. Subsequently, Theodorakopoulos et al. [12] proposed a

trust evaluation metric from an algebra viewpoint. They used

semiring to express a trust model and then modeled the trust

evaluation problem as a path problem on a directed graph.

Andersen et al. [13] proposed an axiomatic approach for trust

measurements. Recently, Richters and Peixoto [14] studied the

trust propagation problem on social networks based on a metric of

transitivity. Most of these studies are based on an implicit trust

network, where the trust scores are estimated by some ad hoc

methods. However, in trust social networks, the trust scores are

explicitly given by the users.

In a signed/unsigned trust network, the final trustworthiness of

a user is determined by how users trust each other in a global

context, and is measured by bias. The bias of a user reflects the

extent up to which his/her opinions differ from others. If a user

has a zero bias, then his/her opinions are 100% unbiased and can

be 100% taken. Consequently, the user has high trustworthiness.

On the other hand, if a user has a large bias, then his/her opinions

cannot be 100% taken because his/her opinions are often different

from others. Therefore, the user has low trustworthiness. Another

important measure, the prestige of a user, reflects how he/she is

trusted by others (the importance). In this work, we study how to

assess and compute the bias and prestige of the users. The

challenges are: (1) how to define a reasonable bias measurement

that can capture the bias of the users’ opinions, (2) how to handle

the negative trust scores in signed trust networks, and (3) how to

design a robust algorithm that can prevent attack from some

adversarial users.

As pointed out in [1], the classic eigenvector based methods

[15], such as eigenvector centrality [16], HITS [17], and

PageRank [18–20], cannot be directly used to solve this problem.

The reason is because these methods cannot handle the negative

edges, which exist in signed networks [21]. More recently, many

PageRank and HITS variants, such as the PageTrust [22], the

signed spectral ranking [23], reputation-based ranking [24] and
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the PolarityRank [25,26] algorithms, have been extended to the

case of signed networks. All of these variants, however, cannot

compute the bias of the nodes. To the best of our knowledge, the

algorithm proposed by Mishra and Bhattacharya [1] is the only

algorithm that addresses to compute both prestige and bias of

nodes in trust social network. We refer to this algorithm as the MB

algorithm (or simply MB). MB is tailored for the signed trust

networks, and can also be used for the unsigned trust networks.

However, MB has major drawbacks. The trustworthiness of a user

cannot be trusted due to the fact that MB treats bias of a user by

relative differences between itself and others. For instance, if a user

gives all his/her friends a much higher trust score than the average

of others, and gives all his/her foes a much lower trust score than

the average of others, such differences cancel out, which leads to a

zero bias for the user. This cancelation happens in either a signed

or a unsigned trust network. Therefore, MB can be attacked by the

adversarial users. We will analyze it in the next section in detail.

In this paper, we propose new bias measurements to capture the

bias of the users’ opinions. First, we define a vector-valued

contractive function as a framework to represent the bias vector,

which implies a rich family of bias measurements and thereby

results in a rich family of algorithms. On the basis of our

framework, we develop four new bias measurements using

absolute differences instead of relative differences to deal with

bias, in order to avoid such a cancelation problem in MB. Based

on the bias of the nodes, the trustworthiness score of a node is

inversely proportional to the bias score of the node, and the

prestige of a node is the average trustworthiness-weighted trust

scores. In other words, if a node is with a large bias score, then the

trust scores given by this node will be assigned to small weights.

Our algorithms iteratively refine the bias and prestige scores of the

nodes. The final bias and prestige vector is obtained when the

algorithm converges. The major advantages of our algorithms are

as follows. First, the bias measurement of our new algorithms are

more reasonable, more effective, and more robust than the MB

algorithm. Second, similar to MB, our algorithms can also work on

signed trust networks. Third, the time and space complexity of all

our algorithms are linear with respect to (w.r.t.) the size of the

networks, thereby they are scalable to handle large trust networks.

Methods

We model a trust network as a directed weighted graph

G~(V ,E,W ) with n nodes and m edges, where V represents the

node set, E denotes the edge set, and W denotes the weights. In

graph G, a weight Wij signifies a trust score from node i to node j.

All trust scores are normalized in the range of ½0,1�. For simplicity,

in the following discussions, we focus on an unsigned trust network

assuming that all edge-weights are non-negative. Our approaches

can be readily generalized to signed trust networks, and we will

discuss it at the end of this section.

An example is shown in Figure 1. In Figure 1, node 5 gives a

trust score 0.1 to node 1 (W51~0:1), whereas two nodes, 2 and 3,

give a high trust score 0.8 to node 1 (W21~W31~0:8). And node

5 gives a trust score 0.9 to node 3 (W53~0:9), while two nodes, 2

and 4, give a low trust score to node 3 instead (W23~W43~0:2).

This observation shows that node 5’s opinions often differ from

those of others, thus indicates that node 5 is a biased node. On the

other hand, there are two nodes (2 and 3) giving a high trust score

0.8 to node 1 (W21~W31~0:8), which suggests that node 1 would

be a prestigious node. Additionally, in this example, node 3 gives 0

to node 2 (W32~0), which implies that node 3 does not trust node

2 at all.

Given a trust network G, the problem we study is how to

compute the bias and prestige of the nodes based on the trust

scores. As discussed, the eigenvector based methods are not

applicable, and the only existing solution is MB [1]. In the

following, we briefly review MB and discuss its major drawbacks.

In MB, each node has two scores: the bias and prestige score.

The bias and prestige scores of node i are denoted by bi and ri,

respectively. Formally, the bias of node i is defined by

bi~
1

2DOi D

X
j[Oi

(Wij{rj), ð1Þ

where Oi denotes the set of all outgoing neighbors of node i. The

idea behind is that a node will be assigned to a high bias score if it

often behaves differently from others. The prestige score of node i
(ri) is given by

ri~
1

DIi D

X
j[Ii

(Wji(1{maxf0,bj|sign(Wji)g)), ð2Þ

where Ii denotes the set of all incoming neighbors of node i, and

sign(Wji) denotes the sign of an edge from node j to node i, which

can be positive (trust) or negative (distrust).

The MB algorithm works in an iterative fashion, and the

corresponding iterative system is

rkz1
i ~

1

DIi D

X
j[Ii

(Wji(1{maxf0,bk
j |sign(Wji)g))

bkz1
j ~

1

2DOj D

X
i[Oj

(Wji{rkz1
i )

8>>>><
>>>>:

ð3Þ

There are two major drawbacks in MB. First, in Eq. (1), the

differences (Wij{rj ) for different outgoing neighbors j[Oi can be

canceled out, thus will result in unreasonable bias measures.

Reconsider the example (Figure 1), node 5 gives 0.1 to node 1,

while both node 2 and node 3 give 0.8 to node 1. With these three

edges (5?1, 2?1, and 3?1), the trust score given by node 5 is

significantly lower than those of others with a difference

0:1{0:8~{0:7. However, consider the other three edges 2?3,

4?3, and 5?3, we can find that the trust score given by node 5 is

significantly larger than those of the other two nodes (nodes 2 and

Figure 1. A trust network. A circle denotes a node, an arrow
represents a trust relationship between two nodes, and the associated
weight denotes the trust score.
doi:10.1371/journal.pone.0050843.g001
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4) with a difference 0.7. The positive and negative differences can

be canceled out by Eq. (1), and this will cause node 5 to be trusted

with a lower bias score. However, intuitively, node 5’s opinions

often differ from those of others, thereby it should be assigned to a

large bias score. Table 1 shows the bias scores by MB after each

iteration. We can clearly see that node 5 gets the minimal bias

scores (0.014), which contradicts to the intuition.

Second, as also pointed in [1], MB is easy to be attacked by the

adversarial nodes. For example, some nodes can maintain their

bias scores closely to 0 by giving high trust scores to the nodes with

low prestige scores and giving the low trust scores to the nodes with

high prestige scores (as node 5 in Figure 1). In [1], Mishra and

Bhattacharya present a statistical method for detecting such

adversarial nodes. But the statistical method is independent to MB,

thus it cannot reduce the influence of the adversarial nodes in MB.

In addition, the proof for the convergence of the MB presented in

[1] is not rigorous. In the present paper, we rigorously prove the

convergence of our framework using the Cauthy convergence

theorem [27].

Our New Approach
Here we propose a framework of algorithms for computing the

bias and prestige of the nodes in trust networks. In our framework,

every node i has two scores: the bias score (bi) and the prestige

score (ri). We use two vectors b and r to denote the bias vector and

prestige vector, respectively. Specifically, we define the bias of

node j by

bj~(f (r))j , ð4Þ

where r is the prestige vector of the nodes, f (r) : Rn?Rn is a vector-

valued contractive function, which is defined in Definition 0, and (f (r))j

denotes the j-th element of vector f (r). We restrict 0ƒf (r)ƒe,

where e[Rn and e~½1,1, � � � ,1�T .

Definition 1. For any x,y[Rn, the function f : Rn?Rn is a

vector-valued contractive function if the following condition holds.

Df (x){f (y)DƒlDDx{yDD?e ð5Þ

where l[½0,1), DD.DD? denotes the infinity norm.

Since l[½0,1), the vector-valued function f exhibits contractive

property w.r.t. the infinity norm of the vector, we refer to it as the

vector-valued contractive function. It is worth noting that the

vector-valued contractive function we define is a generalization of

the contraction mapping in the fixed point theory [28]. In [28], the

contraction mapping is defined on a 1-dimensional variable and

the domain of the contraction mapping is also a 1-dimensional

value. Our vector-valued contractive function is defined on an n-

dimensional vector and its domain is also an n-dimensional vector.

The contraction mapping is very useful for iterative function

systems [28]. Our vector-valued contractive function sheds light

on studying the iterative vector-valued function systems in trust

networks.

As can be seen in Eq. (4), the bias vector b is obtained by a

vector-valued contractive function defined on the prestige vector r.

The advantage of the definition of bias is that it makes our

framework general, which will result in a rich family of bias

measurements. Later, we will give four different bias measure-

ments and each of these measurements is shown to be a vector-

valued contractive function.

With the bias of the nodes, the trustworthiness of node j is given

by 1{bj , which is inversely proportional to the bias score of node

j. We compute the prestige score of node i by averaging the

trustworthiness-weighted trust scores given by the incoming

neighbors of node i. In particular, the prestige score ri for a node

i is given by

ri~
1

DIi D

X
j[Ii

Wji(1{(f (r))j), ð6Þ

where Ii is the set of all incoming neighbors of node i. Our

framwork iteratively refines the prestige vector and the bias vector

using the following iterative system:

rkz1
i ~

1

DIi D

X
j[Ii

Wji(1{bk
j )

bkz1
j ~(f (rkz1))j

8><
>:

ð7Þ

where rkz1
i denotes the prestige of node i in the (k+1)-th iteration

and bkz1
j denotes the bias of node j in the (k+1)-th iteration.

Initially, we set f (r0)~0, which implies 0ƒrk
ƒ1. The iterative

system defined in Eq. (7) converges into a unique fixed prestige

and bias vector in an exponential rate of convergence. The

detailed convergence analysis of the proposed approach can be

found in File S1.

Instances of f (r)
Here we first show that MB is a special instance of our

framework on unsigned trust networks. Then, based on our

framework, we present four new algorithms that can circumvent

the existing problems of MB.

To show that MB on the unsigned trust network is a special

instance of our framework, we show that fmb(r) is a vector-valued

contractive function. The fmb(r) is defined by

(fmb(r))j~maxf0,
1

2DOj D

X
i[Oj

(Wji{ri)g,

for j~1,2, � � � ,n. In particular, we have the following theorem. All

the proofs can be found in File S1.

Theorem 1. For any r[Rn, and rƒe, fmb is a vector-valued

contractive function with the decay constant l~1=2 and 0ƒfmbƒe.

As analysis in the previous section, MB yields unreasonable bias

measurement and it is easy to be attacked by the adversarial nodes.

In the following, we propose four new algorithms that can tackle

the existing problems in MB. Specifically, we give two classes of

vector-valued contractive functions: the L1 distance based vector-

valued contractive functions and the L2 distance based vector-

valued contractive functions. All functions can be served as

Table 1. Bias scores by the MB algorithm.

Iteration node 1 node 2 node 3 node 4 node 5

1 0.350 0.042 0.121 0.250 0.042

2 0.350 0.015 0.129 0.232 0.015

3 0.350 0.014 0.129 0.231 0.014

4 0.350 0.014 0.129 0.231 0.014

The table shows the bias scores by the MB algorithm in the trust network given
in Figure 1. The MB algorithm converges in 4 iterations. Note that node 5
achieves the lowest bias score.
doi:10.1371/journal.pone.0050843.t001
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(f (rkz1))j in Eq. (7). That is to say, all of these functions can be

used to measure the bias of the nodes.

L1 distance based contractive functions. We present

two vector-valued contractive functions based on the L1 distance

measure: f1(r) and f2(r). Specifically,

(f1(r))j~
l

DOj D

X
i[Oj

DWji{ri D, ð8Þ

for all j~1,2, � � � ,n. In the following theorem, we show that f1 is a

vector-valued contractive function.

Theorem 2. For any r[Rn, and rƒe, f1 is a vector-valued

contractive function with 0ƒf1ƒe.

Based on f1, the bias of node j is determined by the arithmetic

average of the differences between the trust scores given by node j

and the corresponding prestige scores of the outgoing neighbors of

node j. The rationale is that the nodes whose trust scores often

differ from those of other nodes will be assigned to high bias scores.

In f1, the difference is measured by the L1 distance, thus we refer

to this algorithm as the L1 average trustworthiness-weighted

algorithm (L1-AVG). The corresponding iterative system is given

by

rkz1
i ~

1

DIi D

X
j[Ii

Wji(1{(f1(rk))j)

(f1(rkz1))j~
l

DOj D

X
i[Oj

DWji{rkz1
i D:

8>>>><
>>>>:

ð9Þ

It is important to note that, unlike MB, L1-AVG uses the L1

distance to measure the differences, thus the differences between

the trust score and the corresponding prestige score cannot be

canceled out. It therefore can readily prevent attacks from the

adversarial nodes that give the nodes with high prestige low trust

scores and give the nodes with low prestige high trust scores.

Table 2 shows the bias scores of the nodes for the example in

Figure 1 by L1-AVG. For fair comparison with MB, we set l~0:5
in all of our algorithms in this experiment. We can clearly see that

node 5 achieves the highest bias score, which conforms with our

intuition. Also, we can observe that L1-AVG converges in 5

iterations, because the rate of convergence of our framework is

exponential.

The second L1-distance based vector-valued contractive func-

tion is defined by

(f2(r))j~l max
i[Oj

DWji{ri D, ð10Þ

for all j~1,2, � � � ,n. Below, we show that f2 is a vector-valued

contractive function.

Theorem 3. For any r[Rn, and rƒe, f2 is a vector-valued

contractive function with 0ƒf2ƒe.

In f2, since the bias of node j is determined by the maximal

difference between the trust scores given by node j and the

corresponding prestige score of the outgoing neighbors of node j,

we refer to this algorithm as the L1 maximal trustworthiness-

weighted algorithm (L1-MAX). The corresponding iterative

system is as follows.

rkz1
i ~

1

DIi D

X
j[Ii

Wji(1{(f2(rk))j)

(f2(rkz1))j~l max
i[Oj

DWji{rkz1
i D:

8>>><
>>>:

ð11Þ

With Eq. (10), we can see that L1-MAX punishes the biased nodes

more heavily than L1-AVG, as it takes the maximal difference to

measure the bias. In other words, in L1-MAX, the node that only

gives one unreasonable trust score will get high bias score. Like L1-

AVG, L1-MAX can also prevent attacks from the adversarial

nodes who give the nodes with high prestige low trust scores, and

give the nodes with low prestige high scores. Table 3 shows the

bias scores of the nodes for the example in Figure 1 by L1-MAX.

We can see that node 5 gets the highest bias score as desired. L1-

MAX converges in 5 iterations, because the rate of convergence of

our framework is exponential.

L2 distance based contractive functions. We propose

two contractive functions based on the square of L2 distance

measure. For convenience, we refer to these functions as L2

distance based contractive functions. Since the L2 distance based

algorithms are defined in a similar fashion as the L1 distance based

algorithms, we omit explanation unless necessary. The first L2

distance based contractive function is given by the following

equation.

(f3(r))j~
l

2DOj D

X
i[Oj

(Wji{ri)
2, ð12Þ

for all j~1,2, � � � ,n. We can also prove the f3 is a vector-valued

contractive function.

Theorem 4. For any r[Rn, and rƒe, f3(r) is a vector-valued

contractive function with 0ƒf3(r)ƒe.

Table 2. Bias scores by the L1-AVG algorithm.

Iteration node 1 node 2 node 3 node 4 node 5

1 0.115 0.200 0.292 0.111 0.207

2 0.005 0.130 0.137 0.060 0.220

3 0.019 0.117 0.098 0.054 0.233

4 0.018 0.113 0.089 0.054 0.237

5 0.018 0.113 0.089 0.054 0.237

The table shows the bias scores by the L1-AVG algorithm in the trust network
given in Figure 1. The L1-AVG algorithm converges in 5 iterations, and node 5
achieves the highest bias score.
doi:10.1371/journal.pone.0050843.t002

Table 3. Bias scores by the L1-MAX algorithm.

Iteration node 1 node 2 node 3 node 4 node 5

1 0.115 0.343 0.343 0.165 0.407

2 0.000 0.215 0.215 0.050 0.311

3 0.020 0.179 0.179 0.061 0.289

4 0.017 0.169 0.169 0.065 0.285

5 0.017 0.169 0.169 0.065 0.285

The table shows the bias scores by the L1-MAX algorithm in the trust network
given in Figure 1. The L1-MAX algorithm converges in 5 iterations, and node 5
achieves the highest bias score.
doi:10.1371/journal.pone.0050843.t003

Bias and Prestige Computation in Trust Networks
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Similarly, in f3, the bias of node j is determined by the

arithmetic average of the difference between the trust scores given

by node j and the corresponding prestige score of the outgoing

neighbors of node j. However, unlike f1 and f2, in f3, the difference

is measured by the square of L2 distance. Thus, we refer to this

algorithm as the L2 average trustworthiness-weighted algorithm

(L2-AVG). The corresponding iterative system is

rkz1
i ~

1

DIi D

X
j[Ii

Wji(1{(f3(rk))j)

(f3(rkz1))j~
l

2DOj D

X
i[Oj

(Wji{rkz1
i )2:

8>>>><
>>>>:

ð13Þ

The second L2 distance based vector-valued contractive

function is defined by

(f4(r))j~
l

2
max
i[Oj

(Wji{ri)
2, ð14Þ

for all j~1,2, � � � ,n. Likewise, we have the following theorem.

Theorem 5. For any r[Rn, and rƒe, f4(r) is a vector-valued

contractive function with 0ƒf4(r)ƒe.

The corresponding iterative system is

rkz1
i ~

1

DIi D

X
j[Ii

Wji(1{(f4(rk))j)

(f4(rkz1))j~
l

2
max
i[Oj

(Wji{rkz1
i )2:

8>>><
>>>:

ð15Þ

Similar to L1-MAX, we refer to this algorithm as the L2

maximal trustworthiness-weighted algorithm (L2-MAX).

We depict the prestige scores by different algorithms in Table 4.

We can observe that the rank of the prestige scores by our

algorithms is the same as the rank by AA (Arithmetic average)

algorithm in Figure 1, and also it is strongly correlated to MB.

Note that all of our algorithms give zero prestige score to node 2,

as node 2 obtains zero trust score from his/her incoming

neighbors. It is worth mentioning that the time and space

complexity of all the proposed algorithms are linear, implying that

all the algorithms are able to scale to large datasets. The detailed

complexity analysis are given in File S1.

Generalizing to signed trust networks
Our algorithms can be generalized to signed trust networks. In

signed trust networks, there exist two types of edges: the positive

edge and the negative edge. In other words, the weights of positive

(negative) edges are positive (negative). In practice, many trust

networks, such as Slashdot and Epinions, are signed trust

networks, where the negative edges signify distrust. Without loss

of generality, we assume that the weights of the edges have been

scaled into [21, 1]. Based on the convergence analysis given in

File S1, one can easily show that all the proposed algorithms

converge into a unique fixed point in the context of signed trust

networks. Moreover, the rate of convergence is exponential.

Notice that this result holds if the function f is a vector-valued

contractive function. In signed trust networks, it is easy to check

that the functions f1 and f2 are still the vector-valued contractive

functions, but the f3 and f4 are not. However, we can readily

modify them to the vector-valued contractive functions, which are

denoted by f �3 and f �4 respectively, by adjusting the decay constant.

Specifically, we have

(f �3 (r))j~
l

4DOj D

X
i[Oj

(Wji{ri)
2

(f �4 (r))j~
l

4
max
i[Oj

(Wji{ri)
2:

It is easy to verify that f �3 (r) and f �4 (r) are vector-valued

contractive functions in signed trust networks.

Results

We first briefly describe our experimental settings and then

report our findings.

Setup
We conduct our experiments on five real datasets. (1) Kaitiaki

dataset: We collect the Kaitiaki dataset from Trustlet (www.

trustlet.org). This dataset is a trust network dataset, where the trust

statements are weighted at four different levels (0.4, 0.6, 0.8, and

1.0). (2) Epinions dataset: We download it from Stanford network

analysis data collections (http://snap.stanford.edu). It is a signed

trust network dataset, where the users can trust or distrust the

other users. (3) Slashdot datasets: we collect three different datasets

from Stanford network analysis data collections. All of these three

datasets are signed trust networks, where the users can give trust or

distrust scores to the others. Table 5 summarizes the detailed

statistical information of the datasets. We set the decay constant

l~0:5 for a fair comparison with MB. For the decay constant of

the PageRank algorithm, we set it to 0.85, as it is widely used in

web search. All the experiments are conducted on a Windows

Server 2008 with 466-core Intel Xeon 2.66 Ghz CPU, and 8G

memory. All algorithms are implemented by MATLAB 2010a and

Visual C++ 6.0.

Comparison of bias score
Here we compare the bias scores by our algorithms with the bias

scores by MB. First, we use the variance of the trust scores given by

node i to measure the bias of the node i, as used in [1].

Specifically, we define the variance as follows:

Table 4. Prestige scores by different algorithms.

Algorithm node 1 node 2 node 3 node 4 node 5

AA 0.567 0.000 0.433 0.600 0.350

HITS 1.000 0.000 0.401 0.391 0.027

PageRank 0.224 0.030 0.305 0.141 0.300

MB 0.532 0.000 0.433 0.523 0.350

L1-AVG 0.502 0.000 0.352 0.541 0.336

L1-MAX 0.461 0.000 0.331 0.492 0.335

L2-AVG 0.558 0.000 0.416 0.594 0.349

L2-MAX 0.556 0.000 0.414 0.591 0.348

The table shows the prestige scores by different algorithms in the trust network
given in Figure 1.
doi:10.1371/journal.pone.0050843.t004
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Wij . Second, we rank the nodes by their

variance and use this rank as the ‘‘ground truth’’. Note that there

is no ground truth for the bias score of the nodes in any datasets.

We use the variance as the ground truth. The reason is twofold.

On one hand, the variance is an intuitive metric for measuring the

bias of the node, and the node having a larger variance implies

that the node has a larger bias score. On the other hand, the

variance has been used for analyzing the bias of the node in trust

networks [1]. Third, we rank the nodes by their bias scores

obtained by our algorithms and obtained by MB, respectively.

Specifically, for MB, we rank the nodes by the absolute value of

the bias scores (Dbi D in Eq. (1)). Finally, we compare our algorithms

with MB in terms of AUC (the area under the ROC curve) [29]

and Kendall Tau [30] metric, where the AUC metric is used to

evaluate the top-K rank (in our experiments, we consider the top-

5% nodes) and the Kendall Tau metric is employed to evaluate the

rank correlation between the rank by the proposed algorithms and

the ground truth. Additionally, we remark that, to measure the

bias, the variance is based on the average trust score (�rrj ), while our

algorithms are based on the iteratively refined prestige score. The

iteratively refined prestige score is better than the average trust

score to reflect the actual rank of a node, because the iteratively

refined prestige score takes into account the multi-hop neighbors’

trust scores. Therefore, in this sense, our proposals are better than

the variance to measure the bias of the nodes in trust social

networks.

Table 6 and Table 7 show the comparison of bias by our

algorithms and MB under AUC and Kendall Tau metric,

respectively. From Table 6, we can see that L1-AVG and L2-

AVG achieve the best performance. In signed trust networks, the

performance of our algorithms are significantly better than MB.

For example, L2-AVG boosts AUC over MB by 4.7%, 11%,

9.9%, and 9.7% in Epinions, Slashdot1, Slashdot2 and Slashdot3,

respectively. The results indicate that our algorithms are more

effective than MB for computing the bias of the nodes. This is

because the bias measurements of our algorithms are more

reasonable than the bias measurement of MB. Interestingly, L1-

AVG and L2-AVG achieve the same performance under the AUC

metric. In general, L1-AVG and L2-AVG outperform L1-MAX

and L2-MAX in our datasets. From Table 7, we can observe that

all the algorithms exhibit positive correlation to the ground truth.

L2-AVG achieves the best performance in Kaitiaki, Epinions,

Slashdot1, and Slashdot3 datasets, while in Slashdot2 dataset L1-

AVG achieves the best performance. It is important to note that all

of our algorithms significantly outperform MB in signed networks.

For instance, L2-AVG improves Kendall Tau over MB by 11.9%,

6.8%, 10.1%, 12.3%, and 13.9% in Kaitiaki, Epinions, Slashdot1,

Slashdot2 and Slashdot3, respectively. The results further confirm

that our algorithms are more effective than MB for computing the

bias of the node in trust networks.

Comparison of prestige score
This experiment is designed to compare the prestige scores by

our algorithms with those by MB. Similarly, there is no ground

truth in the datasets, thus we use the rank by the arithmetic

average (AA), HITS [18], and PageRank [17] algorithms as the

baselines. The reasons are as follows. First, AA, HITS and

PageRank algorithms are three widely used ranking algorithms

which have been successfully used for measuring the prestige (or

centrality) of users in social networks. Second, in singed trust

networks, many previous studies [1,23] have shown that rankings

by the HITS and PageRank algorithms and by their signed

variants exhibit a very high correlation. For example, in [23], the

authors reported that the ranking by the signed spectral ranking

algorithm highly correlates with the ranking by the PageRank

algorithm. In [1], the authors shown that the ranking by the MB

algorithm also highly correlates with the rankings by both HITS

and PageRank algorithms. Therefore, in this sense, the HITS and

PageRank algorithms can still act as good references for measuring

the prestige in signed trust networks.

Specifically, we compare the rank correlation between the rank

by our algorithms (here we rank the nodes according to their

prestige scores) and the rank by the baselines using Kendall Tau

metric. Here, AA ranks the nodes by the average trust scores

obtained from the incoming neighbors, and HITS ranks the nodes

by their authority scores. In signed trust networks, we remove the

signed edges for HITS and PageRank, as these algorithms cannot

work on signed trust networks directly. Similar evaluation method

has been used in [1]. Figure 2 and Figure 3 depict the comparison

of prestige score by our algorithms and MB on Kaitiaki and signed

trust networks, respectively.

From Figure 2, we can clearly see that our algorithms achieve

the best rank correlation to AA. By comparing the Kendall Tau

between different algorithms (our algorithms and MB) and HITS,

we find that L1-AVG achieves the best rank correlation. However,

by comparing the Kendall Tau between different algorithms and

PageRank, we clearly find that L1-MAX achieves the best rank

correlation. From Figure 3, we can also observe that our

algorithms achieve the best rank correlation to AA. By comparing

the rank correlation between different algorithms and HITS/

PageRank, we find that our algorithms are slightly better than MB

Table 5. Summary of the datasets.

Name Nodes Edges Ref.

Kaitiaki 64 178 website

Epinions 131,828 841,372 [21]

Slashdot1 77,350 516,575 [21]

Slashdot2 81,867 545,671 [21]

Slashdot3 82,140 549,202 [21]

Kaitiaki is a unsigned trust network dataset, while Epinions, Slashdot1,
Slashdot2, and Slashdot3 are signed trust network datasets.
doi:10.1371/journal.pone.0050843.t005

Table 6. Comparison of bias by our algorithms and MB
algorithm under AUC metric (top 5% nodes of the dataset).

Datasets L1-AVG L1-MAX L2-AVG L2-MAX MB

Kaitiaki 1.000 0.937 1.000 0.925 1.000

Epinions 0.994 0.982 0.994 0.982 0.949

Slashdot1 0.993 0.970 0.993 0.970 0.895

Slashdot2 0.992 0.975 0.992 0.975 0.903

Slashdot3 0.992 0.975 0.992 0.975 0.903

The AUC metric is used to measure the top 5% rank of bias by our algorithms
and MB algorithm. The larger AUC value implies the better performance.
doi:10.1371/journal.pone.0050843.t006
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on the signed trust network datasets. These results suggest that our

algorithms are more effective to measure the prestige of the nodes

than MB. Interestingly, all of our algorithms achieve the same

performance in signed trust networks.

Robustness testing
To evaluate the robustness of different algorithms, we consider

two different types of attacks which could be existent in trust social

networks. The first attack model is the dishonest voting attack where

the dishonest user randomly give high trust score to his/her out-

neighbors whose average trust score is low, and randomly give low

trust score to his/her outgoing neighbors whose average trust score

is high. The second attack model is the clique attack where a small

group of users form a clique and give the highest trust score to one

another so as to increase their prestige scores and decrease their

bias scores. The detailed evaluation method is as follows. First, we

add some noisy data into the original datasets. Specifically, we

randomly select some nodes as the spamming nodes, and then

modify the trust scores given by the spamming nodes. In the

dishonest voting attack model, we revise the trust score given by the

spamming nodes as follows. For each spamming node, we

randomly give high trust score to his/her out-neighbors whose

average trust score is low, and randomly give low trust score to

his/her outgoing neighbors whose average trust score is high. In

the clique attack model, we randomly and evenly partition the

spamming nodes into three different types of groups where the size

of the first, the second, and the third type of group are 3, 5, and 7

respectively. For instance, if we have selected 30 spamming nodes,

then we randomly divide these nodes into 6 groups (i.e., two

groups with size 3, two groups with size 5, two groups with size 7).

Then, in each group, the nodes give the highest trust score to one

another. For two nodes in the same group, if there already exists a

trust score, then we revise the trust score by the highest trust score.

We have also conducted experiments on other types of group (eg.

group with size 10), but the results (not shown) exhibit no

Table 7. Comparison of bias by our algorithms and MB
algorithm under Kendall Tau metric.

Datasets L1-AVG L1-MAX L2-AVG L2-MAX MB

Kaitiaki 0.728 0.713 0.812 0.709 0.726

Epinions 0.781 0.754 0.783 0.754 0.733

Slashdot1 0.811 0.776 0.812 0.776 0.734

Slashdot2 0.722 0.688 0.721 0.688 0.642

Slashdot3 0.820 0.787 0.821 0.787 0.721

The Kendall Tau metric is used to measure the rank of bias by our algorithms
and MB algorithm. The larger Kendall Tau value indicates the better
performance.
doi:10.1371/journal.pone.0050843.t007

Figure 2. Comparison of prestige by our algorithms and MB
algorithm in Kaitiaki dataset. Three methods (AA, HITS, PageRank)
are used as baselines for measuring the rank of prestige. The higher
Kendall Tau value exhibits higher rank correlation between different
algorithms and the baselines.
doi:10.1371/journal.pone.0050843.g002

Figure 3. Comparison of prestige by our algorithms and MB algorithm in signed trust networks.
doi:10.1371/journal.pone.0050843.g003
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significant difference. Second, we perform our algorithms and MB

on both original and noisy datasets, and then calculate the Kendall

Tau for each algorithm. Here the Kendall Tau is computed on

two ranks that are yielded by an algorithm on the original datasets

and the noisy datasets, respectively. Finally, we compare the

Kendall Tau among all algorithms. Intuitively, the larger Kendall

Tau the algorithm achieves, the more robust the algorithm is.

We test our algorithms and MB on both original and noisy

datasets with 5% to 20% spamming ratio. Figure 4 and Figure 5

show the robustness of the bias and the prestige of the algorithms

by Kendall Tau vs. spamming ratio on Epinions dataset,

respectively. Similar results can be obtained from other datasets.

First, let us analyze the results by different algorithms under the

dishonest voting attack. From Figure 4(a) and Figure 5(a), we can

clearly see that all of our algorithms are significantly more robust

than MB under the dishonest voting attack. For the bias, L2-MAX

achieves the best robustness, followed by the L1-MAX, L2-AVG,

L1-AVG, and then MB. For the prestige, all of our algorithms

achieve the same robustness, and are significantly more robust

than MB. These results confirm our analysis in the previous

section. Moreover, the gap of robustness between our algorithms

and MB increases as the spamming ratio increases, which suggests

that our algorithms are more effective than MB on the datasets

with high spamming ratio. In general, the robustness of the

algorithms decrease as the spamming ratio increases. Second, we

discuss the results by different algorithms under the clique attack.

As can be seen from Figure 4(b) and Figure 5(b), our algorithms

are slightly better than MB. However, unlike the previous results,

the robustness of MB is very close to those of our algorithms.

Moreover, we can see that the robustness of all the algorithms

under the clique attack are worse than the robustness of all the

algorithms under the dishonest voting attack. For example, in

Figure 4, if the spammer ratio is 0.05, the robustness of MB is

around 0.75 under the dishonest voting attack, while under the clique

attack the robustness of MB nearly decreases to 0.65. Similar

results can be observed for the proposed algorithms. These results

Figure 4. Robustness of bias by our algorithms and MB algorithm in Epinions dataset under (a) dishonest voting attack and (b) clique
attack models. The curves show the robustness of bias by our algorithms and MB algorithm at different spammer ratio. The larger Kendall Tau value
implies that the algorithm is more robust. The robustness decreases as the spammer ratio increases. Note that the robustness of our algorithms are
consistently better than the MB algorithm under both (a) dishonest voting attack and (b) clique attack models.
doi:10.1371/journal.pone.0050843.g004

Figure 5. Robustness of prestige by our algorithms and MB algorithm in Epinions dataset under (a) dishonest voting attack and (b)
clique attack models. The curves show the robustness of prestige by our algorithms and MB algorithm at different spammer ratio.
doi:10.1371/journal.pone.0050843.g005
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indicate that our algorithms and MB could suffer from the clique

attack. Therefore, designing new algorithms that can defend clique

attack will be an interesting future direction.

Scalability
We evaluate the scalability of our algorithms on the Epinions

dataset. Similar results can be obtained from other datasets. For

evaluating the scalability, we first generate three subgraphs in

terms of the following rule. First, we randomly select 25% nodes

and the corresponding edges of the original graph as the first

dataset, and then add another 25% nodes to generate the second

dataset, and then based on the second dataset, we add another

25% nodes to generate the third dataset. Then, we perform our

algorithms on this three datasets and the original dataset. Figure 6

shows our results. From Figure 6, we can clearly see that our

algorithms scales linearly w.r.t. the size of the graph. This result

conforms with our complexity analysis in the previous section.

Effect of parameter l
We discuss the effectiveness of parameter l in our algorithms on

Kaitiaki dataset. Similar results can be observed from other

datasets. Figure 7 shows the effectiveness of our algorithms w.r.t. l,

where the effectiveness is measured by the rank correlation

between our algorithms and the baselines using the Kendall Tau

metric. Specifically, Figure 7(a) depicts the bias correlation

between our algorithms and the variance based algorithm (Eq.

(16)) under various l, while Figure 7(b), (c), and (d) show the

prestige correlation between our algorithms and AA, HITS, and

PageRank under different l, respectively. From Figure 7(a), we

find that L2-MAX is quite robust w.r.t. l, while the performance

of L2-AVG decreases as l increases. In addition, we find that L1-

AVG and L1-MAX are slightly sensitive w.r.t. l, because the

differences between the maximal and minimal bias correlation of

these two algorithms do not exceed 0.1. For the prestige scores

(Figure 7(b), (c), and (d)), we can clearly see that L2-AVG and L2-

MAX are more robust w.r.t. l, whereas L1-AVG and L1-MAX

are sensitive w.r.t. l. For instance, consider the prestige correlation

with PageRank (Figure 7(d)), we can observe that the performance

of L1-AVG decreases as l increases. However, the performance of

L1-MAX increases as l increases when lƒ0:8, and otherwise it

decreases as l increases. To summarize, the L2 distance based

algorithms are more robust w.r.t. the parameter l than the L1

distance based algorithms.

Discussion

Bias and prestige are two essential features in trust networks,

therefore it is crucial to have an efficient and effective algorithm to

compute them. In this paper, we define a vector-valued

contractive function to characterize the bias vector for every node

Figure 6. Scalability of the proposed algorithms. The curves
show that the running time of our algorithms increases linearly as the
number of nodes increases.
doi:10.1371/journal.pone.0050843.g006

Figure 7. Effect of l. (a) The curves show the bias by our algorithms at different l. (b–d) The figures show the prestige (compared with different
baselines) by our algorithms at different l parameter values.
doi:10.1371/journal.pone.0050843.g007

Bias and Prestige Computation in Trust Networks

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e50843



in the trust network. Based on this, we propose a framework of

algorithms for computing the bias and prestige of nodes in trust

networks in an iterative way. The proposed framework allows us to

develop new bias measures which can circumvent the major

drawbacks in the existing algorithm. Moreover, our framework

can converges into a unique and fixed point with an exponential

rate. We believe that the proposed framework can be used to

measure and analyze the bias and prestige of nodes in trust

networks, which could be very useful for trust-based recommen-

dation systems and many other trust-based application domains.

There are several open questions that are deserved to further

investigation. First, all of our algorithms currently only work on

static trust networks. However, many real-world trust social

networks evolve over time, thereby it remains a challenging

problem to generalize our framework to time-evolving trust

networks. Recently, some proposals on incremental PageRank

algorithm have been proposed [31,32]. Similar ideas could be also

used to devise incremental counterparts of our algorithms. Second,

trust social network is a decentralized social system, where the

users can only interact with their immediate neighbors. In such

decentralized social systems, an interesting question is that

whether or not a user in trust social networks can estimate his/

her global prestige and bias scores by only using the local trust

scores. To answer this question, one potential solution is to extend

our framework to a decentralized one. The ideas from gossip-

based algorithms such as [33,34] could be used to solve this

problem. Finally, as shown in the experiments, the proposed

algorithms and MB suffer from the clique attack. Therefore,

devising robust algorithms that can defend such clique attacks

would be an interesting future direction.
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