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Abstract

Considering the recent experimental discovery of Green et al that present-day non-Africans have 1 to 4% of their nuclear
DNA of Neanderthal origin, we propose here a model which is able to quantify the genetic interbreeding between two
subpopulations with equal fitness, living in the same geographic region. The model consists of a solvable system of
deterministic ordinary differential equations containing as a stochastic ingredient a realization of the neutral Wright-Fisher
process. By simulating the stochastic part of the model we are able to apply it to the interbreeding ofthe African ancestors
of Eurasians and Middle Eastern Neanderthal subpopulations and estimate the only parameter of the model, which is the
number of individuals per generation exchanged between subpopulations. Our results indicate that the amount of
Neanderthal DNA in living non-Africans can be explained with maximum probability by the exchange of a single pair of
individuals between the subpopulations at each 77 generations, but larger exchange frequencies are also allowed with
sizeable probability. The results are compatible with a long coexistence time of 130,000 years, a total interbreeding

population of order 104 individuals, and with all living humans being descendants of Africans both for mitochondrial DNA
and Y chromosome.
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Introduction

The question of whether all of us, living humans, descend

exclusively from a recent (i.e. 100,000–200,000 years old)

anatomically modern African population which completely

replaced archaic populations in other continents, or if Africans

could have interbred with these local hominids has been the

subject of a long lasting and interesting debate. The first of these

possibilities, known as Out of Africa model, is based mainly on

genetic evidence [1] further supported by palaeontological [2] and

archaeological findings [3]. The latter, known as Multiregional

model, on the contrary, has been more supported by morpholog-

ical studies [4], but recently it has also been found consistent with

genetic data [5]. A third, intermediate possibility, known as

assimilation model [6], suggests that Africans may have interbred

with local archaic hominids to a limited extent.

The decision of which model correctly describes the origin of

Homo sapiens is obscured by the intricacies of the statistical methods

proposed for evaluating the models themselves. Examples of such

intricate methods, their conflicting conclusions and subsequent

debate are given in [5–7].

Until recently, the majority of the scientific community seemed

to favour the Out of Africa model, but things changed radically in

2010 with a paper by Green et al [8]. Among other important

achievements, this seminal paper provided the first direct evidence

of interbreeding of modern humans with archaic hominids,

Neanderthals in this case. By direct evidence we mean having

sequenced Neanderthal nuclear DNA and showing that this DNA

is more similar to nuclear DNA of living non-Africans than to

nuclear DNA of living Africans.

Based on their findings that all non-Africans have a similar

proportion of Neanderthal genes, and also on archaeological

evidence [9], Green et al suggested [8] that interbreeding between

anatomically modern Africans and Neanderthals might have

occurred in the Middle East before expansion of Africans into

Eurasia, at a time in which both subpopulations coexisted there.

According to Bar-Yosef [10], the Skhul and Kafzeh caves in Israel

have been occupied both by anatomically modern Africans and by

Neanderthals, changing hands between one group and the other

several times over a period of more than 130,000 years. Although

we do not know exactly when, where, how and for how long the

two groups interacted, it seems reasonable that some interaction

did occur in the Middle East and that it may have lasted for a long

time. This is the hypothesis we assume in this paper.

We will describe by a simple and realistic model the dynamics of

two subpopulations – African ancestors of Eurasians (AAE, for short)

and Middle Eastern Neanderthals (MEN) – interbreeding at a slow

rate. For simplicity sake, we will suppose that the total population

is fixed, with a prescribed stochastic mechanism for fluctuation in

subpopulation sizes, and that all individuals have the same fitness,

regardless of the subpopulation they belong to. With these

assumptions, the model will turn out to contain a single parameter

– the rate of exchange a of individuals between the AAE and

MEN subpopulations. We will find the probability density for this

parameter by requiring that the MEN will be extinguished and
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present day non-African humans have between 1 and 4% nuclear

DNA of Neanderthal origin, according to the data of Green et al

[8]. The result of having 1 to 4% of Neanderthal DNA in present

day non-Africans is attained with maximum probability for

amax&0:013, which amounts to one pair of individuals being

exchanged between the two subpopulations every 77 generations.

The mean value of a is amean&0:083, which corresponds to one

pair of individuals exchanged at each 12 generations. Moreover,

our results are compatible with all present day humans being

descendants of Africans both for mitochondrial DNA (mtDNA)

and Y chromosome, total population size of order 104 individuals,

and interaction between subpopulations lasting 130,000 years.

Our work should be compared with the results of a recent paper

[11] by Currat and Excoffier. Although the model used in [11] is

rather different of ours, both works agree in the conclusion that the

interbreeding between African anatomically modern humans and

Neanderthals must have been small in order that the experimen-

tally observed [8] introgression rate of 1 to 4% of Neanderthals

into non-Africans be produced. Whereas Currat and Excoffier

[11] state that the interbreeding success rate between humans and

Neanderthals must have been below 2%, we prefer thinking of a

small interbreeding rate between the two groups, perhaps due to

cultural differences. The two models produce different outcomes,

and in the Discussion section we propose experimental tests which

may discriminate between them.

We would like to point out that the present research is coherent

with our results [12–17] previous to the 2010 discovery [8]. In

those works, contrary to the mainstream interpretation of mtDNA

data at that time, we underlined the possibility of mating between

Neanderthals and Africans.

As there seems to be no sign of Denisovan [18] contribution to

the genes of most living Eurasians [19,20], including Europeans

and Han Chinese, we are justified in not considering in this paper

admixture of Africans with Denisovans. As more experimental

results may justify it, or not, extension of our results to

interbreeding also with Denisovans may be considered.

Analysis

The model
Consider a population of constant size equal to N individuals,

divided into two subpopulations labeled 1 and 2. Suppose also that

generations are non-overlapping, that the number of generations is

counted from past to future, and that reproduction is sexual and

individuals are diploid. Half of each subpopulation will be of male

individuals and the other half will consist of females. Subpopu-

lation 1 will be associated with the AAE and subpopulation 2 with

MEN.

We also suppose that the subpopulations had lived isolated from

each other for a long time before they met. We will start

generations count at the instant g~0 in which subppulations met.

Although similar enough to permit reproduction between individ-

uals belonging to different subpopulations, the isolation time is

supposed to be large enough so that in some loci alleles exclusive to

each subpopulation appeared. More exactly, we assume that,

besides a majority of alleles common to both subpopulations, there

exists also a large set of loci occupied by alleles which were

exclusive of subpopulation 1 or subpopulation 2 until instant g~0.

We will refer to these alleles respectively as type 1 and type 2.

Starting at g~0, subpopulations will share a common environ-

ment for a long period, some genetic mixing will occur, and type 1

and type 2 alleles will not anymore be exclusive of individuals in

those subpopulations.

Starting with the initial condition just stated, our model can be

fully simulated at the computer. At each generation, the model

consists of the following three stochastic steps:

1. Subpopulation size assignment

We assume that the total population size is constant and equal

to N. This is motivated by the fact that ecological factors

determine the number of individuals that may live in a given

region. Nevertheless, the sizes N1(g) and N2(g) of the two

subpopulations at generation g, constrained by

N1(g)zN2(g)~N, may vary. More exactly, we assume that

N1(gz1) and N2(gz1) are random variables modelled by the

following stochastic rule: any of the N individuals of generation

gz1 will independently belong to subpopulation 1 with proba-

bility N1(g)=N or to subpopulation 2 with probability N2(g)=N.

The above described stochastic process permitting fluctuation of

the subpopulation sizes is exactly the same as in the well-known

neutral Wright-Fisher model for two alleles at a single locus, see e.g.

pages 75–84 in [21] or pages 199–202 in [22], with the two alleles

traded here for the two subpopulations. The Wright-Fisher model,

in its original context, describes the random genetic drift

phenomenon. Due to finiteness of N, under such a model the

numbers N1(g) and N2(g) of alleles of either type in a fixed size

population fluctuate as generations pass. The values N1(g),
g~0,1,2 . . . are a realization of a Markov chain with 0 and N
as the only absorbing states. Thus either of the alleles, or returning

to our context, subpopulations, will become eventually extinct in a

finite number of generations with probability 1. From here on we

will refer to the process allowing fluctuation of subpopulation sizes

as the Wright-Fisher process.

The number of generations until extinction of one subpopula-

tion in the Wright-Fisher process is random, as well as which of the

two subpopulations becomes extinct. If x(0)~N1(0)=N is the

initial fraction of individuals of subpopulation 1, it may be shown

that subpopulation 1 will survive with probability x(0). The mean

number of generations until extinction is approximately given, for

large N , by {2N½x(0) ln x(0)z(1{x(0)) ln (1{x(0))� (see [21]).

As the mean number of generations for extinction of one

subpopulation scales with N , it will be useful to measure time

not in generation units, but in generations divided by N. From

here on, we will refer to t~g=N simply as the time related to

generation g.

At any time t~g=N, let x(t)~N1(g)=N be the fraction of the

total population at subpopulation 1. The set of all values x(t) will

be called a history of the population size.

2. Migrations

We assume that at each generation a number a of randomly

extracted individuals from subpopulation 1 migrates to subpop-

ulation 2 and vice-versa the same number of random individuals

from subpopulation 2 migrates to subpopulation 1. In other words,

a pairs of individuals per generation are exchanged, passing from

one subpopulation to the other.

As will be seen ahead, the typical values of a which we will

consider are much smaller than 1. In such cases, while simulating

the model in the computer, we will produce an event of migration

of one pair of individuals each 1=a generations, so that a may be

interpreted again as the number of pairs of exchanged individuals

per generation.

3. Sexual reproduction

Neanderthal DNA in Living Humans
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Remind that the sizes N1(gz1) and N2(gz1) of both

subpopulations are already stochastically determined. We proceed

by performing N1(gz1) independent random choices of males in

subpopulation 1 at generation g. These will be the fathers of the

individuals in subpopulation 1 at generation gz1. Analogously,

we perform independent random choices for the mothers of the

same individuals. The first half among individuals in subpopula-

tion 1 will be chosen to be males and the second half will be

females. Fathers and mothers of individuals in subpopulation 2

and sex assignment to them are performed analogously.

In this process, individuals which came to some subpopulation

at generation g as a result of an exchange process with the other

subpopulation will become members of the subpopulation

receiving them. In the sexual reproduction process the exchanged

individuals will contribute with their genes for generation gz1 just

like any other individual in that subpopulation. Their offspring, if

any, is considered as members of the host subpopulation of their

parents.

At any time t§0 any individual in the total population will be

characterized by his/her fractions of type 1 alleles. By our isolation

assumption, at g~0 all individuals of subpopulation 1 have

fraction equal to 1 of type 1 alleles and all individuals of

subpopulation 2 have fraction 0 of such alleles. At further

generations, the fraction of type 1 alleles in an individual is the

average of its parents’ fractions. We define then y1(t) as the mean

fraction of type 1 alleles in subpopulation 1 at time t and y2(t) as the mean

fraction of type 1 alleles in subpopulation 2 at time t. The mean here is due

to the fact that each individual in any subpopulation in general has

different allelic fractions, but y1(t) is calculated by averaging the

type 1 allelic fractions among all individuals in subpopulation 1,

and similarly y2(t) is obtained by averaging type 1 allelic fractions

among subpopulation 2 individuals.

The model, as formulated up to now, is fully stochastic and can

be simulated in the computer. Although simple, such a simulation

for a large population and for a large number of generations is

very expensive in terms of computer time. We have produced

some small computer simulations of the model for the sake of

comparison with better results, which we obtain as we now

describe.

It is possible to derive equations relating the mean allelic

fractions at generation gz1 with the mean allelic fractions at

generation g. In doing so we will make the assumption that the a
individuals of subpopulation 1 migrating to subpopulation 2 all

have an allelic fraction equal to y1(t). The analogous assumption

will be made for all the individuals of subpopulation 2 migrating to

subpopulation 1.

Of course the above assumption of exchanged individuals all

having the mean allelic fractions in their subpopulations is a very

strong one and it is not strictly true. Nonetheless, it is indeed a very

good approximation if a is much smaller than 1= log2 N. In fact, 1=a
is the mean number of generations between two consecutive

exchanges of individuals. As the typical number of generations for

genetic homogenization in a population of N individuals with

diploid reproduction and random mating is log2 N, see [23–26],

the condition that a is much smaller than 1= log2 N makes sure

that subpopulations 1 and 2 are both rather homogeneous at the

exchange times. Following nomenclature for a similar approxi-

mation common in Statistical Mechanics, the above will be

referred to as the mean field approximation.

In the mean field approximation, the mean allelic fraction

y1(tz1=N) will be equal to y1(t) plus the contribution of type 1

alleles from the immigrating individuals of subpopulation 2 and

minus the loss of type 1 alleles due to emigration. We remind that

these loss and gain terms are both proportional to a and inversely

proportional to the number Nx(t) of individuals in subpopulation

1. Similar considerations apply to y2(tz1=N). In symbols:

y1(tz
1

N
) ~ 1{

a

Nx(t)

� �
y1(t)z

a

Nx(t)
y2(t)

y2(tz
1

N
) ~

a

N(1{x(t))
y1(t)z 1{

a

N(1{x(t))

� �
y2(t)

8>>><
>>>:

: ð1Þ

The above equations, after taking the N?? limit, become a

system of linear ordinary differential equations (ODEs)

y1’(t) ~ {
a

x(t)
(y1(t){y2(t))

y2’(t) ~
a

1{x(t)
(y1(t){y2(t))

8><
>: : ð2Þ

The above equations describe deterministic gene flow between

two subpopulations with stochastically varying sizes, total popu-

lation size being constant. Although the interbreeding model is

fully stochastic, its description through Eqs. (2) maintains only

partially the stochastic character, as a consequence of the mean

field approximation. Below we will compare the outcome of Eqs.

(2) with simulations of the fully stochastic version of the model,

showing that the mean field approximation is indeed a good one.

We stress here that we think of x(t) as a Wright-Fisher path, i.e.

a a stochastic function obtained by realizing the Wright-Fisher

process, but (1) and (2) still hold if x(t) is any description of the

history of the size of subpopulation 1, be it stochastic or

deterministic. For example, in another work [27] we have

explored the possibility of individuals in subpopulation 1 being

fitter than individuals in subpopulation 2. As shown there, it is

possible to study this situation by using (1) and, in that case,

considering the history x(t) to be deterministic turns out to be a

good approximation.

Most of the results we will exhibit are based on performing a

large number of times only step 1 in our three-step description of

the model. For each Wright-Fisher path x(t) we may numerically

solve (2). As numerical solutions of (2) are much easier to compute

than the whole simulation of the stochastic migration and

reproduction steps, we will be able to obtain a much better

statistics than we would have obtained by simulating all the three

steps in the model.

The qualitative behaviour of solutions to the model’s
equations

By introducing the auxiliary functions z1(t)~y1(t){y2(t) and

z2(t)~y1(t)zy2(t) and taking into account the initial conditions

y1(0)~1, y2(0)~0, we may solve ODEs (2), obtaining

z1(t)~ exp {a

ðt

0

ds

x(s)(1{x(s))

� �
ð3Þ

and

z2(t)~1za

ðt

0

2x(s){1

x(s)(1{x(s))
z1(s)ds , ð4Þ

where z1(s) in (4) is given by (3). The same path could be followed

for the direct solution of the difference equations (1), but formulae

Neanderthal DNA in Living Humans
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corresponding to (3) and (4) become more complicated. More

importantly, the limit N?? will be appropriate for our further

analysis. Of course (3) and (4) may be trivially used to derive

explicit expressions for y1 and y2, but we think the result is clearer

in the form given by (3) and (4).

In general, x(t) is a complicated function obtained by realizing

the Wright-Fisher process. In the N?? limit, it is a solution of

the stochastic ODE

dx(t)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(t)(1{x(t))

p
dw(t) , ð5Þ

where w(t) is standard Brownian motion, i.e. E(dw(t))~0 and

E((dw(t))2)~dt. As a consequence, in general we cannot explicitly

compute the integrals in (3) and (4). Anyway, (3) and (4) will be

used to give a qualitative description of the solutions to (2). For

quantitative questions, integrals in (3) and (4) may be easily

numerically computed. Equivalently, (1) may be solved by

iteration.

As the integrand in the exponent of (3) is positive, this formula

shows that y1 is always larger than y2, but their difference steadily

decreases. Moreover, this information, when plugged into (2)

shows that in fact y1 decreases and y2 increases. The decay rate of

z1(t) is proportional to the exchange parameter a and inversely

proportional to the instant value of the product x(t)(1{x(t)).
These results mean that the larger a is, the quicker the approach of

y1 and y2 to their final values. Moreover, the approach tends to be

slowest when x(t) is close to 1=2 and quickest when either of the

two subpopulations is close to extinction.

Eq. (4) on the other hand shows that introgression of genes from

one subpopulation into the other is generally not symmetric. In

fact, z2(t){1~y2(t){(1{y1(t)) measures the difference between

the fraction of type 1 alleles in subpopulation 2 and type 2 alleles

in subpopulation 1. By (4), this difference decreases at times in

which x(t)v1=2 and increases when x(t)w1=2. Moreover, it

shows that gene flow asymmetries between subpopulations develop

more effectively at initial times, when z1(t) values are larger, and

when one of the subpopulations is close to extinction, if z1(t) is not

too small at that time. The final values of the allelic proportions y1

and y2, i.e. the values of these quantities at the time one of the

subpopulations is extinct, are thus highly sensitive to the history

x(t), specially its values at times smaller than 1=a. In particular, as

extinction times (in generations divided by N) are of order 1, and a
may be small, a large variability will arise in the final values for y1

and y2. Such a variability can be dealt with by simulating a large

sample of histories x(t), as we will do.

An important special case in which the integrals in (3) and (4)

can be exactly evaluated is when x(t) is a constant function, say

x(t)~c. In this case, we get

y1(t)~ (1{c)e
{ at

c(1{c) zc ð6Þ

and

y2(t)~c(1{e
{ at

c(1{c)) : ð7Þ

We see that the common value to which both y1 and y2 tend in an

exponential fashion is just the fixed proportion c of type 1

individuals in the population.

The importance of this special case is that it provides some

useful approximations. For example, if a is sufficiently large, then

we may consider x(t) approximately constant during the time of

order 1=a in which the most relevant gene flow between

populations will occur. We see that the final values of y1 and y2

will be close to the initial proportion x(0) regardless of the

behaviour of x(t) for larger times. Another example is when x(t)
oscillates for a large amount of time around its initial value, a

behaviour seen in many realizations of the Wright-Fisher process

x(t). Again, we see that in such a case the final values of y1 and y2

will be close to x(0).

Checking accuracy of the model and comparison with its
stochastic simulation

With the purpose of illustrating the qualitative behaviour of the

solutions of (2), we show in Fig. 1 plots of y1(t) and y2(t)
numerically obtained in the case of two deterministic histories x(t)
which illustrate typical situations occurring in the Wright-Fisher

process.

It can be seen that all qualitative features explained above are

present. It should also be noticed that the final values of y1(t) and

y2(t), i.e. their values at the time of extinction of one of the

subpopulations, do depend very much on the history x(t) and on

the value of a.

The final values of y1(t) and y2(t) are the most important

outputs of the model, because they can be compared with

experimental data. As stated above, these values are expected to

heavily depend on the particular realization of x(t) and on a.

Therefore, although the qualitative behaviour of y1(t) and y2(t) is

quite well-understood, it is necessary to numerically solve the

model in order to obtain quantitative information on their final

values.

In Fig. 2 we check the accuracy of the the approximations

leading to Eqs. (2). This is done first by simulating a single Wright-

Fisher path x(t), the first step in the model description. In order to

do that, we must choose a finite value for N. That choice is not so

relevant if it is large enough so that agreement between the

solutions of (1) and (2) is good. In all results shown we have taken

N~100, which produced a good agreement.

If we complete simulation of the model by performing the last

two steps in the model description, we will obtain what we call the

the simulated values of the allelic fractions y1(t) and y2(t). In

simulating the sexual reproduction and migration steps, we will

also keep track, for each male individual at each generation, of his

ancestor by paternal line in g~0. Analogously, for the female

individuals we will keep track of the maternal ancestors in g~0.

These paternal and maternal ancestors will be used later in

Figure 1. The role of histories x(t) and of the parameter a. For
two different histories x(t) and two different values of a we plot the
solutions of (1). In both plots, the black dotted curve represents x(t).
The left plot corresponds to a history in which subpopulation 2 is
rapidly extinct, while the right plot to a history in which extinction of
population 2 occurs after an initial period in which subpopulation sizes
oscillate. In both pictures we represent a situation with a~1 (full lines)
and another with a~0:1 (dashed lines). In each picture the upper (red)
lines correspond to y1(t) and the lower (blue) lines to y2(t). Notice that
in these examples the allelic fractions of the subpopulations become
nearly equal before extinction.
doi:10.1371/journal.pone.0047076.g001
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showing that our model is compatible with experimental data

showing that all living humans are descendants of a single African

man for their Y chromosome and of a single African woman for

their mtDNA.

On the other hand, we may use the same realization of x(t) used

in the complete simulations, plug it into Eqs. (2) and numerically

solve them. The outputs of this are what we call the theoretical values

of the allelic fractions y1(t) and y2(t).
The left graph in Fig. 2 shows the result of one complete

simulation of the model for a population. We obtain the simulated

values for y1(t) and y2(t) and in the same figure we compare them

with the theoretical values using the same Wright-Fisher path x(t).
It should be noted that, although not complete, agreement

between simulated and theoretical quantities is good. We remind

here that the simulated allelic fractions are subject to statistical

fluctuations due to the random processes of migration and sexual

reproduction.

Indeed, we believe that the randomness in the sexual

reproduction process accounts for the largest part of the difference

between theoretical and simulated values. In fact, as shown in [23–

25], with sexual reproduction the contribution of each single

individual to the gene pool some generations later is highly

variable.

On the other hand, if a is much less than 1= log2 N, randomness

in the process of migration,due to differences in allelic fractions

among individuals in the same subpopulation, is not so important,

since at the time of exchanges the individuals in each subpopu-

lation are already highly homogeneous from the point of view of

allelic fractions. We have directly checked homogeneity among

individuals in a subpopulation in the data used to produce Fig. 2.

We can safely say that results in Fig. 2 justify the soundness of the

mean field approximation.

It should also be noticed that agreement between theoretical

and simulated values is worse for y2 when subpopulation 2 is close

to extinction. In this case, in fact, given the small size of

subpopulation 2, even a small number of migrants and their

variable reproductive success induces large fluctuations in y2.

The right graph in Fig. 2 shows the average of the simulated

values y1(t) and y2(t) over 100 simulations with the same history.

Notice that the difference between theoretical and average

simulated values is accordingly smaller.

Although the agreement between theoretical and simulated

values is not complete, results shown in Fig. 2 suggest we can trade

simulated values by theoretical ones. In fact, only theoretical

values have been used in producing e.g. results shown in Fig. 3. In

order to produce the data in Fig. 3 we simulated about 140 million

Wright-Fisher paths. Such a huge data set could not have been

constructed if we had used the much slower simulated values

instead of the theoretical ones.

Estimating the exchange parameter
We know that Neanderthals were extinct and, according to [8],

before disappearing they interbred with the African ancestors of

Eurasians. Despite comparisons between nuclear DNA of Nean-

derthals and living humans having been limited in [8] to a sample

of only three European Neanderthals and five living humans, the

authors of that paper observed that all three Eurasians in their

sample are equally closer to the Neanderthals than the two

Africans. They estimate that Eurasian living humans possess 1 to

4% of their nuclear DNA derived from Neanderthals. Identifying

the AAE with subpopulation 1 in our model means that the paths

x(t) compatible with the experimental data in [8] are the ones in

which subpopulation 2 is extinct and the final value of y1 lies

between 0:96 and 0:99. We will refer in the following to the

interval between 0.96 and 0.99 as the experimental interval for the

final value of y1.

As we do not know the composition of the total population at

the time the two subpopulations met, we will take the initial

fraction x(0) of Africans as a random number. With this

hypothesis, after taking the N?? limit, the only parameter of

the model to be determined is the exchange rate a.

As can be seen in Fig. 1 the value of a largely influences the final

value of y1. Furthermore, in both Figs. 1 and 2 it can be seen that

with a~1 or a~0:1 the final values of y1 tend to be too small to

be compatible with the experimental interval. We stress that these

figures are based only on a few realizations of the history x(t) and

a single value x(0)~0:5. In order to produce estimates of a we

must produce a large number of histories x(t) with many values of

x(0) and for any of these simulated histories determine the final

value of y1 by recursively solving (1).

The inset in Fig. 3 is realized by producing 400,000 Wright-

Fisher paths x(t) with random x(0) uniformly distributed between

0 and 1. For all these histories we compute the final value of y1 by

solving (1) using the three values a~1, a~0:1 and a~0:01.

Therefore, for each of the three values of a we have about 200,000

data which allow inference of the probability density for the final

value of y1. The data plotted in the inset of Fig. 3 show that for

a~1 the probability that the final value of y1 lies in the

experimental interval is approximately equal to 8:1%. For a~0:1
the corresponding probability is approximately of 21:5% and for

a~0:01 it is approximately of 34:0%. In all three cases the density

of the final values of y1 is rather thick, meaning that there is a large

probability that the final value of y1 does not lie in the

experimental interval.

The above information shows that the experimental data are

better explained by values of a much smaller than 1. By the main

plot in Fig. 3 we see that the value of a which explains with largest

probability the experimental data is amax&0:013. In order to

produce that plot, we simulated a large number of Wright-Fisher

paths x(t) with random x(0) uniformly extracted between 0 and

0.8 and random values for a uniformly distributed between 0 and

2. From these data we selected the histories in which subpopu-

lation 2 was extinct and such that the final theoretical value of y1

lied in the experimental interval. In this way we can empirically

determine the probability that the final value of y1 lies in the

experimental interval as a function of a.

We also see that the probability density for a is rather

asymmetrical around amax, with values a§amax contributing with

large probability. This asymmetry is reflected in the fact that the

mean value is amean&0:083, more than 6 times larger than amax.

Figure 2. Comparison between theoretical and simulated
values for y1(t) and y2(t). For a single Wright-Fisher path x(t) plotted
in brown dots and for a~0:1 we compare the theoretical and simulated
values of y1(t) and y2(t). In both plots, the theoretical values are shown
in full lines. The upper (blue) line corresponds to y1(t) and the lower
(red) line corresponds to y2(t).The corresponding simulated values are
shown respectively as blue and red dots. The left graph shows the
simulated values obtained by a single simulation, whereas the right
graph shows the averages of 100 simulations.
doi:10.1371/journal.pone.0047076.g002
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A technical detail in producing Fig. 3 is that the random values

for x(0) are chosen with uniform distribution in the interval

0ƒx(0)ƒ0:8, avoiding values between 0.8 and 1, either close to

or inside the experimental interval. Such a choice is related to the

assumption of slow rather than rapid interbreeding between

Africans and Neanderthals and we now explain why we did so.

First we observe that if x(0) is in the experimental interval, then

the final values of y1 and y2 will necessarily also lie in the

experimental interval provided that a is large enough. This can be

proved by Eqs. (6) and (7) and the remark following them.

The free mating situation, in which subpopulations interact as if

there were no differences among their members, is a particular

case of this large a regime. Free mating, in the infinite population

limit, is in fact `̀described" by (1) with a~?. In this case the

solution to the equations is straightforward: both y1(t) and y2(t)
become instantaneously equal to x(0).

The conclusion is that if x(0) lies in the experimental interval,

then the model would fail to predict any upper bound to a, as both

quick mating or free mating situations are allowed. Also, we do not

believe that either of these situations were likely to have occurred

in reality, since distinct subpopulations coexisted for thousands of

years. Therefore, the experimental interval has to be excluded in

the choice of x(0).

If we take instead values of x(0) outside the experimental

interval, but still close to its boundaries, simulations show that both

amean and amax take very large values, such values tending to

infinity as x(0) gets closer to the experimental interval. This is

illustrated in the right plot in Fig. 4. With x(0)~0:8 typical values

of a become comparable to 1= log2 N (either with the value

N~100 we used for producing that figure and also with N of the

order of tens of thousands as it could have been in the real events

in Middle East) or larger. As already commented, for such large

values of a, (1) or (2) do not describe accurately the interbreeding

process. The reason is that the derivation of Eqs. (1) relies on the

mean field approximation, which fails when a becomes compa-

rable to 1= log2 N.

The right plot in Fig. 4 shows that if we had chosen a value

smaller than 0.8 for the right boundary of the same interval, the

values of amax and amean would have decreased. If we had chosen

instead a value larger than 0.8, we would incur in too many events

with large values of a, thus threatening validity of Eqs. (1). The

choice of the interval 0ƒx(0)ƒ0:8, although arbitrary, seems a

good compromise between maximality of the interval and

soundness of the mean field approximation.

Mitochondrial DNA and Y chromosome
Mitochondrial DNA and Y chromosome are both inherited in a

haploid way. The former is inherited by maternal line and the

latter is exclusive to male individuals and, thus, inherited by

paternal line. Furthermore mtDNA is not subject to recombina-

tion and recombination seems to be negligible for the Y

chromosome. It is also believed that large portions of both are

selectively neutral. These facts allow an easier mathematical

treatment of their statistical properties. From the experimental

point of view, mtDNA [1] and Y chromosomes [28] have been

sequenced in large samples of living humans. The small variation

of both among living humans is compatible with all humans being

descendants of a single woman for mtDNA and all men being

descendants of a single man for Y chromosome. Further analysis

has shown that both the common ancestor for mtDNA and the

common ancestor for Y chromosome are probably of African

origin and have lived about 100–200 thousand years ago. These

facts have been interpreted as proofs of the Out of Africa model.

More recently [29], the whole mtDNA of a few Neanderthal

fossils became available. The average number of pairwise

differences in mtDNA between a Neanderthal and a living human

is significantly larger than the average number of pairwise

differences in mtDNA among living humans. This has been

Figure 3. The probability density for a. We show here the probability density that the final value of y1 is in the experimental interval 0.96–0.99 as
a function of a. The plot was built by obtaining one million ‘‘successful’’ pairs (x(t),a) such that subpopulation 2 is extinct and the final value of y1 –
obtained by solving (1) – lies in the experimental interval. These pairs were obtained out of a total of around 140 million simulated Wright-Fisher
paths x(t) with random x(0) uniformly distributed between 0 and 0.8 and a uniformly distributed between 0 and 2. For the successful pairs we then
computed the fraction associated to any given a. In the inset we plot the probability density for the final values of y1 for three different values of a.
The densities are empirically determined by simulating 400,000 Wright-Fisher paths x(t) with random x(0) uniformly distributed between 0 and 1 and
selecting the histories in which subpopulation 2 is extinct. The empty dots (blue) are data for a~1, the full dots (purple) are data for a~0:1 and the
full curve (black) are for a~0:01.
doi:10.1371/journal.pone.0047076.g003
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considered as a further confirmation of the claims that Neander-

thals belong to a separate species, see e.g. [30], and, as a

consequence, also for the Out of Africa model, at least with regard

to Neanderthal substitution by modern humans.

Both authors of this paper have separately claimed that the

above evidences favouring the Out of Africa model are in fact

compatible with anatomically modern Africans and Neanderthals

being part of a single interbreeding population at the times they

coexisted. In [12], using Kingman’s coalescence, it was shown that

the probability distribution of genealogical distances in a

population of fixed size and haploid reproduction is random even

in the limit when the population size is infinite. The random

distribution typically allows large genealogical distances among

subpopulations. In [13] another important fact was statistically

described: in a population of fixed size and haploid reproduction

one of the two main subpopulations will become extinct at random

times with exponential distribution. Sudden drops in the average

genealogical distances among individuals happen at the times of

such extinctions. Finally, in [14], it was shown that mtDNA may

be completely replaced in a population by the mtDNA of another

neighbour population, whereas some finite fraction of its nuclear

DNA persists.

These facts imply that the large genealogical distances between

living humans and Neanderthals, as seen in mtDNA, are not

uncommon in an interbreeding population. On the contrary, they

turn out to be very likely if the correct statistics is used.

Furthermore, typical distances between individuals in the popu-

lation formed by Neanderthals and anatomically modern Africans

may have been much larger at the time of Neanderthals’

extinction than they are nowadays. They also imply that extinction

of Neanderthals’ mtDNA is compatible with the survival of their

nuclear DNA.

Exactly the same reasoning can be applied to the mitochondrial

and nuclear DNAs of the fossil bones found in Siberia [18,31],

later described as the new population of Denisovans. The fact that

Denisovans differ significantly both from Neanderthals and living

humans in their mtDNA [31] does not imply that they could not

interbreed with either of them. Indeed, nuclear DNA proved [18]

that they have interbred at least with some anatomically modern

populations.

In [15,16] the question of survival of mtDNA and Y

chromosome lineages in a population subject to exponential

stochastic growth (supercritical Galton-Watson branching process)

was examined. It was shown that exponential growth is compatible

with the survival of a single mtDNA or Y chromosome lineage

only if the growth rate is in a narrow supercritical interval. Thus,

even if Neanderthals and anatomically modern Africans belonged

to the same interbreeding population and even if this population

was allowed to grow exponentially with a small rate, the more

probable outcome would still be all humans being descendants

either of a single woman (mtDNA) or a single man (Y

chromosome).

In [17], the number of generations between successive

branching events in the Galton-Watson process was computed.

It was found that in the slightly supercritical regime, in which the

survival of a single lineage is expected, genealogical trees typically

have very long branches of the size of the whole tree along with

shorter branches of all sizes. Thus, trees are qualitatively similar to

those of the coalescent model and, as a consequence, the

phenomenon of sudden drops in genealogical distances, described

in [13], is also present in the slightly supercritical regime of a

Galton-Watson population model.

As explained before, instead of simulating only Wright-Fisher

paths (step 1 in the model description), as we did in the results of

Figs. 3 and 4, we may simulate also the whole process of

reproduction and migration (steps 2 and 3). We ran several

simulations of the three-step process, taking populations of

N~100 individuals and random values of a uniformly distributed

between 0.01 and 0.2 and random x(0) constrained to be smaller

than 0.8. Each simulation was run for a number of generations

large enough until all male individuals had the same paternal

ancestor at generation g~0 and all female individuals had the

same maternal ancestor at generation g~0. We selected those

simulations in which subpopulation 1 survived and y1 lied in the

experimental interval. Out of 96 simulations satisfying the above

criteria, only in 7 of them the paternal ancestor of all males and

the maternal ancestor of all females were not both of individuals

belonging to subpopulation 1 at g~0. Therefore, according to our

interbreeding model, the conditional probability of an African

origin for both mtDNA and Y chromosome can be empirically

estimated to be of order 0:93. Interbreeding did occur and it shows

up in nuclear DNA, but it is perfectly compatible with both

mtDNA and Y chromosome for all living humans being of African

origin.

Figure 4. Correlations between x(0) and extinction time and between x(0) and a. We have produced a large set of Wright-Fisher paths
with random a and random x(0) subject to x(0)ƒ0:8. From this set we selected a sample of the 790 histories in which subpopulation 2 was extinct
and such that the final value of y1 lied in the experimental interval. Both plots in this figure refer to this sample. In the left we show the correlation
between x(0) and the time (in generations divided by N) for Neanderthal extinction. The mean extinction time in the sample is 0.58. In the right we
plot the correlation between x(0) and a. Notice that the number of histories with y1 in the experimental interval increases with x(0), and that larger
values of a are correlated with large values of x(0).
doi:10.1371/journal.pone.0047076.g004
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Sizes of interbreeding subpopulations and interbreeding
time

Bar-Yosef [10] compares occupation of the Middle East by

Neanderthals and Africans with a long football game. The caves of

Skuhl and Kafzeh in Israel were alternatingly occupied by

anatomically modern Africans and Neanderthals several times

over a period of more than 130,000 years. Although the model, as

described by Eqs. (2), becomes independent of the total population

N , we may obtain some hints on the size of N if we accept the

constraint that at least for 130,000 years Neanderthals had not

been extinct in the Middle East.

By taking random values for x(0) between 0 and 0.8 and a
between 0 and 2 we obtained a sample of 790 Wright-Fisher paths

such that the MEN subpopulation was extinct and the theoretical

final value of y1 lied in the experimental interval. For each of these

histories we recorded the time (in generations divided by N) for

MEN’s extinction and we found out that the mean extinction time

in the sample was 0.58. If we take this mean value as the typical

value, suppose that one generation is 20 years and equate it to

130,000 years, we get N&11,200 individuals. The whole distri-

bution of extinction times in the sample is shown in the left part in

Fig. 4.

In the right part of Fig. 4 we plotted the same sample of events

in the plane x(0){a. We see that smaller values of x(0) are

correlated with smaller values of a and also that the events such

that y1 lies in the experimental interval are concentrated around

the largest values of x(0). The mean value of x(0) for the whole

sample is 0.64. This shows that the small proportion of

Neanderthal alleles in living Eurasians, even supposing equal

fitnesses for AAE and MEN, does not mean that MEN were much

less than AAE in the interbreeding process among these

subpopulations.

Asymmetry of introgression
Our model assumes, for simplicity sake, symmetry in the

number of individuals migrating from one subpopulation to the

other at each generation. Of course, this does not imply symmetry

in the gene introgression of one subpopulation into the other. The

reason is that, neutrality assumed, a single individual may change

radically the gene pool of a small subpopulation, whereas a single

individual in a large subpopulation will probably not alter too

much the gene pool of that subpopulation.

This effect is quantified in (4) and explained just after this

equation. Moreover, it is clearly visible in Fig. 2. A consequence is

that introgression of African alleles into MEN, measured by the

final value of y2, should be large in the histories x(t) such that

MEN are extinct. This is confirmed in Fig. 5, in which we plot the

probability density distribution of the final value of y2 for the same

sample of 790 events used in Fig. 4.

On the other hand, Green et al [8] do not find any evidence of

human introgression into Neanderthals. This apparent contradic-

tion can be explained if we suppose that only a part of the total

Neanderthal population took part in the interbreeding process in

Middle East, the other part of the population remaining in

Europe. As the few Neanderthal specimens which had their DNA

considered in [8] were all excavated in European sites, it is possible

that they had never had contact with Africans.

Discussion

In the framework of the model proposed in this article we could

infer that the 1 to 4% fraction [8] of Neanderthal DNA in present

day non-Africans can be explained with maximum probability by

assuming that the AAE and MEN subpopulations exchanged only

1 pair of individuals in about 77 generations. The mean value of

the exchange parameter in the model corresponds to a much

larger frequency of 1 pair of individuals exchanged in about 12

generations.

We also estimated the mean number of generations for

Neanderthal extinction in the Middle East to be approximately

0:58N, where N stands for the total interbreeding population.

Together with the fact that Neanderthals and Africans seem to

have coexisted in the Middle East for at least 130,000 years, this

allows us to estimate N to be of order 104 individuals.

Moreover, our model is compatible with the lack of introgres-

sion of Neanderthals into mtDNA and Y chromosome of living

humans. We estimated in only 7% the probability that humans

could have either mtDNA or Y chromosome of a Neanderthal

origin.

Neanderthals are implicitly considered in this work as a group

within the Homo sapiens species and we renounce the strict Out of

Africa model for the origin of our species, in which anatomically

modern Africans would have replaced without gene flow other

hominids in Eurasia. In particular, our model is neutral in the

sense that we assign the same fitness to Neanderthals and Africans.

Our results show that neither strong sexual isolation between

Africans and Neanderthals, or else some kind of Neanderthal

cognitive or reproductive inferiority, are necessary to explain both

their extinction and the small fraction of their DNA in most living

humans. In fact, within the assumptions of the model, if two

equally fit subpopulations coexist in the same territory for a

sufficiently long time, only one of them survives. The fact that

Neanderthals were the extinct subpopulation is then a random

event.

Although we do not intend to back up any kind of superiority

for Neanderthals, our neutrality hypothesis is at least supported by

recent results [32,33] by J. Zilhão et al, which claim that

Neanderthals in Europe already made use of symbolic thinking

before Africans arrived there.

In another work [27] one of us studied a similar model for

interbreeding of Neanderthals and Africans in the Middle East,

but trading the neutrality assumption for consideration of various

values for the fitness difference of Africans over Neanderthals. The

analysis is based still in Eqs. (1), but some technical differences

arise. One of the main conclusions is that even with fitness

Figure 5. Introgression of African DNA into MEN. We use the
same sample of 790 histories used in Fig. 4 for obtaining the probability
density for the final value of y2 conditioned to MEN extinction and 1 to
4% Neanderthal DNA in AAE. The mean final value of y2 in the sample is
0.33.
doi:10.1371/journal.pone.0047076.g005
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differences as small as 1%, Neanderthals’ extinction comes up in

too short a time. The neutral model of this paper looks thus more

suitable for explaining a long period of coexistence of Africans and

Neanderthals in the Middle East.

In building the model presented here, one of the strongest

concerns of the authors was simplicity. As a consequence of this

concern, our model contains a single parameter to be estimated,

Eqs. (2) are exactly solvable, and qualitative properties of their

solutions (3) and (4) are well understood. Computer simulation was

only moderately employed. The use of the Wright-Fisher process

as a model for extinction under neutrality of one subpopulation

seemed to us more natural than if we had assumed some arbitrary

population model with other parameters.

After a first version of this work had been published on line at

arxiv.org and reviewed by New Scientist [34] on April 2011,

Currat and Excoffier published their paper [11] dealing with the

admixture of Neanderthals and humans. Besides several other

differences between our works, both in methods and in assump-

tions, we stress here that the model by Currat and Excoffier is

more detailed, more complicated and with many more parame-

ters. As a consequence, their results can only be obtained - with

less intuitive understanding - by heavy computer simulation.

Despite that, both works agree in the conclusion that the number

of successful interbreeding events leading to the 1 to 4%

introgression of Neanderthals into Eurasians should be small.

Whereas we think of neutrality and no biological barriers, with

social barriers preventing free mating, they consider a model of

African range expansion, free mating with Neanderthals, but

strong reproductive isolation between the ‘‘̀two species’’, probably

due to avoidance of interspecific matings, a low fitness of hybrids,

or both. They consider several scenarios for the location of

Neanderthals during interbreeding, including the possibility of

interbreeding restricted to the Middle East, as we did. Nonethe-

less, the scenario they consider the more probable is the one in

which Neanderthals were scattered through a large geographical

area including Middle East, Europe and Central Asia. In

particular, in the more probable scenario, their model forecasts

interbreeding hotspots also in Europe and Central Asia, very far

from the Middle East.

We identify two important differences between our assumptions

and those of Currat and Excoffier, which could possibly be

resolved by future experimental tests. The first difference is that

although both models predict asymmetric introgression among

interbreeding subpopulations, ours predicts larger introgression of

Africans among Middle Eastern Neanderthals. Theirs, on the

contrary, predicts smaller introgression of Africans into any

Neanderthals. Their prediction is in agreement with the results

of Green et al [8] which saw no introgression of Africans into

European Neanderthals.

Our prediction also agrees with this fact, if we suppose that a

fraction of the Neanderthal population never left Europe and did

not participate in the postulated Middle Eastern interbreeding.

The descendants of these European Neanderthals did not

interbreed later with Africans when they came into Europe, or

this interbreeding was very small, possibly due to small population

densities of the Neanderthals when they were close to definitive

extinction. DNA sequencing of late Middle Eastern Neanderthal

fossils and comparison with European Neanderthals would be a

good test for helping discriminate between the two models.

The second difference is that our model is simpler in that it does

not take into account the spatial distribution of the subpopulations.

Along with [8] we suggest that interbreeding occurred only in the

Middle East. On the other hand, Currat and Excoffier find it more

probable that interbreeding occurred in a large region including

Europe and Central Asia. Although we have not addressed the

question of whether introgression of Neanderthal alleles was the

same for all loci or not, it is conceivable that in our model roughly

the same Neanderthal alleles will be present among all Eurasians.

On the contrary, Currat and Excoffier suggest that different

Neanderthal alleles may be present among living Asians and

Europeans. In this case, an experimental test with living humans

might resolve the controversy.

Current knowledge about Denisovans’ morphology and life style

is much less than what we know about Neanderthals. In particular

we do not know whether Denisovans lived only in Siberia, where

up to now the only known fossils have been found, or elsewhere.

Where and when this people made contact with the African

ancestors of present day Melanesians and Australians is still a

conjecture [19]. Nevertheless, if such a contact occurred for a

sufficiently long time in a small geographical region, then the

present model can be straightforwardly applied.

As we now know of our Neanderthal and Denisovan

inheritances, it is time to ask whether they were the only hominids

that Africans mated. We believe that the future may still uncover

lots of surprises when Denisovans will be better studied and

nuclear DNA of many more Neanderthal and other hominid

fossils will become available. In particular, we expect that in a near

future experimental tests and archaeological or palaeontological

discoveries may discriminate where, when and for how long

Africans interbred with Neanderthals and other hominids, and

prepare the way for finer theories.
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