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Abstract

An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this
variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated
the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated
topographic structure across spatial scales of 10–1000 m using high-resolution maps of LiDAR-derived mean canopy profile
height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the
hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels
draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and
increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the
variance in MCH had fractal similarity at scales of ,30–600 m, and was strongly associated with variation in elevation, with
peak correlations at scales of ,250 m. Whereas previous studies of topographic correlates of tropical forest structure
conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent.
Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most
strongly related to convexity measured at scales of 20–300 m, a topographic variable that is a good proxy for position with
respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological
networks and associated topographical variation serve as templates upon which vegetation is organized over specific
ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and
can guide upscaling and downscaling.
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Introduction

Hydrologic networks are important determinants of the spatial

organization of many ecosystems [1]. One prominent feature of

the network is its fractal nature, which is common to many other

complex systems including atmospheric turbulence, coastlines, tree

branches and protein structure. Water and nutrients flow along

the network, the network shapes topography over time, and the

connectivity and self-organization of the watershed structure

directly and indirectly affects vegetation. These influences have

long been recognized as central to ecosystem spatial patterns in

deserts, savannas, and riparian forests, where water availability has

unambiguous effects on plant growth, species distributions, and

resulting vegetation structure [2–4]. In mesic ecosystems such as

tropical forests, the influences of hydrological network and

associated topographic variation are more subtle – they do not

generally make the difference between vegetation and lack thereof,

or between highly distinct vegetation types. However, many

studies have shown that tropical forest structure and composition

varies between topographically defined habitats such as valleys,

slopes and ridges (Table 1). These topographical features differ

centrally in their position with respect to the hydrological network,

and thus in their exposure to hydrological processes such as

erosion, weathering, transport and sedimentation, and in resulting

influences on soil properties and soil nutrient availability [5–8].

The variability of forest structure with its habitat is often studied

with topography as a surrogate for environmental spatial

heterogeneity. Topographic features such as slope and curvatures

can serve as indirect measures of many hydrological processes [9]

and digital elevation models (DEM) can be used to infer drainage

channels [10]. It is important to note that topography varies over

several orders of magnitude, from centimeters (roughness) to

hundreds of kilometers (mountain ranges). This extremely wide

range of variation is also associated with a multitude of

mechanisms that affect different ecological processes in tropical

forests. For example, soil chemical properties vary across the

landscape in a predictable manner from ridge tops to mid-slopes to
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riparian valleys [6]. Topography affects the frequency and

intensity of many natural disturbances, including landslides,

floods, and windthrows [11,12]. Human land use and anthropo-

genic disturbance also vary systematically with topography in any

given area; for example, farmers often choose flat land and avoid

slopes and deep concavities to maximize yields, while leaving trees

along watercourses and other inaccessible areas [13], with clear

consequences for forest structure [14].

Although many studies have found that tropical forest structure

varies in relation to topography (Table 1), these studies share three

important shortcomings. First, most of these studies are highly

limited in the spatial scales at which they investigated topographic

effects, reflecting the dimensions at which the study was

conducted, often using plots designed for other purposes. Second,

virtually all previous studies assess topographic variables at a single

spatial grain, and most do not clarify what that spatial grain is.

This is critical because for fractal objects the same type of

structures, e.g. ridges, slopes and valley bottoms, reappear almost

identically (except for a scaling factor) over and over on a broad

range of observational scales. For example, a point on the fork in a

stream running down a slope could be located on a very local ridge

at 3-m scales, while being within a valley at 30-m scales, and on a

Figure 1. Lidar derived mean profile canopy height. An example of the differences in vertical structure of areas differing in mean canopy
height (MCH). A) LiDAR-derived mean canopy height (MCH) for a subset of the study area, polygons marked 1 and 2 delineate two patches of low and
high canopy height, respectively. B) Vertical structure of areas 1 and 2 in panel A: horizontal dashed lines show the mean MCH, solid lines depict the
median percentage of returns, and shaded areas show the 75th percentile.
doi:10.1371/journal.pone.0076296.g001

Figure 2. Study area. A) LiDAR-derived DEM and B) LiDAR-derived mean canopy height (MCH) for the study area (red polygon) based on LIDAR
data acquired in September 2009. Distances are in km, and heights in m. The large island to the left of the study area is Barro Colorado Island. Note
the complex topography of the study area compared to the rest of the region covered by the LiDAR.
doi:10.1371/journal.pone.0076296.g002

Hydrologic Controls on Tropical Forest Structure
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slope at 300-m scales. Similarly, the slope computed based on

variation in elevation over 3 m is different than the slope

computed over 30 m or over 300 m. Third, no previous study

in tropical forests has examined the relationship of forest structure

with a quantitative measure of landscape convexity – that is, of

whether an area is a local depression (valley, swamp) or peak

(hilltop, ridge). Yet, the spatial pattern associated with the

hydrological network would be expected to follow convexity

attributes, and indeed, many of the qualitative categories focus on

distinctions involving convexity. For example a map of the

concave-upward portions of a DEM can be considered to be an

approximation of the drainage network.

What is needed is a multiscale analysis of the relationship

between topography and tropical forest structure. Systems that

exhibit great variability in the size, shapes and spatial organization

of the patterns may be influenced by different processes or

Figure 3. An illustration of how wavelet analysis enables multiscale analyses of bivariate relationships, for a 56 ha watershed
extracted from the study area. The top row shows the original, 5-m resolution data for LiDAR-derived mean canopy height (MCH) and elevation,
along with a scatterplot showing their bivariate relationship, which is very weak. Wavelet analysis essentially decomposes the total spatial variation in
MCH and DEM (top row) into the sum of deviations at different spatial scales, and bivariate wavelet analyses investigates how scale-specific
deviations are correlated. Subsequent rows show the wavelet decomposition of MCH and DEM for three arbitrary scales: 20, 200, and 700 m.
Scatterplots among these transformed variables (last column) reveal that areas that are locally lower in elevation at scales of ,200 m tend to have
higher biomass (3rd row), while at smaller or larger scales the correlation is weaker and may even be in the opposite direction. For reference, the
drainage network (minimum drainage area 0.25 ha) is shown in black on the maps, and the ordinary linear regression lines in red on the scatterplots.
doi:10.1371/journal.pone.0076296.g003
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combinations of processes [15,16]. This presents a key challenge

for spatial analyses that needs to be addressed quantitatively to

permit comparison among studies and assimilation of the results

into models. Like topography, tropical forests exhibit large and

important spatial variation in structure and biomass at multiple

scales. At large scales of 10–1000 km, changes in climate and

geological substrate explain variation in old-growth forest type and

structure [17]. At intermediate scales of 100 m –10 km, forest

structure is strongly associated with variation in water availability,

soils, and disturbance [18]. And at local scales of 10–100 m, gap

dynamics leads to patchiness related to time since the last large

treefall [19].

A fundamental problem in ecology is how to separate variability

due to biotic interactions from variability that arises from

interaction with the environment. Crown arrangement, tree

clustering and gap phase dynamics contribute to create large

spatial variability even in a perfectly homogeneous habitat. If the

scales of endogenous and exogenous factors are sufficiently

separated, spectral decomposition (e.g. Fourier or wavelet

transforms) provides a useful tool to systematically analyze the

scale-dependent properties of these large spatial datasets, one that

is often used in studies of topography [20] and watershed

hydrology [21]. The amount of variability present at each scale

may reveal fractal similarity in vegetation [22], sometimes

attributed to self-organization of ecological systems [23]. However,

this fractal similarity could be the result of the association with a

self-organized environmental factor, such as the drainage network

[24].

Airborne LiDAR offers an excellent tool for investigating spatial

variation in tropical forest across different scales. Recent advances

in LiDAR (Light Detection and Ranging) techniques have made it

possible to monitor forest structure with unprecedented resolution

[19,25]. LiDAR-derived products such as mean canopy profile

height (MCH) are well correlated with carbon stocks [19,26–28].

Further, LiDAR not only provides data on the vertical profile of

vegetation (Figure 1) but also on ground elevation, enabling the

construction of high-resolution digital elevation models (DEM) for

extracting hydrological networks analysis of topographic features

at the same resolution as the vegetation data.

Here, we quantified the spatial structure of LiDAR-derived

MCH in a moist tropical forest in central Panama at multiple

scales, and we investigated the association of MCH to the

hydrological network extracted from DEM. The study area in

Central Panama comprised 4930 ha of mixed old-growth and old

secondary forest stands located on a relatively homogeneous

geologic formation, where a complex network of small streams

discharges into Gatun Lake. These characteristics made the area

well-suited for evaluating the influence of the hydrological network

and associated topographic features on a relatively large area

without confounding variation in lithology, forest type or climate.

Our analyses showed a strong association with channels that drain

at least 1 ha. This resulted in a scale-dependent correlation

between elevation and the vertical structure tropical forest

vegetation, with a peak at a characteristic scale of 250 m. This

interaction produced fractal similarity of the vegetation patches on

a broad range of scales (30–600 m), which we attribute to the self-

organization of the hydrological network.

Materials and Methods

Study site
The study area is located within Soberanı́a National Park in

Central Panama, east of the Barro Colorado Nature Monument. It

consists of a 49.3 km2 polygon of mixed old growth and old

secondary tropical forest (Figure 2). The climate is tropical moist

[29]. Annual precipitation averages approximately 2600 mm, with

a pronounced dry season between January and April (a mean of

about 3.5 months with ,100 mm mo21). Mean annual temper-

ature is 26uC and varies little throughout the year. The soil of the

eastern part of Soberanı́a is a relatively uniform basalt formation;

several alluvial sediments with high clay content emerge around

the lake (Figure S1).

LiDAR MCH and DEM
Airborne LiDAR data were acquired for this region in

September 2009 by the Carnegie Airborne Observatory (CAO)

Alpha Sensor package [30]. The CAO Alpha LiDAR was

operated at 2000 m above ground with 1.12-m spot spacing, 30-

degree field of view, beam divergence customized to 0.56 mrad,

and 50-kHz pulse repetition frequency, for which the aircraft

maintained a ground speed #95 knots. With these flying

parameters, CAO collected continuous laser coverage without

gaps between laser spots on the ground. In addition, all flights

were planned with 100% repeat coverage (50% overlap between

adjacent swaths) and therefore LiDAR pulse density averaged two

points per 1.12-m spot.

Canopy three-dimensional structure, as detected by LiDAR,

was analyzed by binning discrete LiDAR returns into volumetric

pixels (voxels) of 5 m spatial resolution and 1 m vertical resolution,

yielding histograms representing the vertical distribution of

vegetation in each 565 m spatial cell [27], as depicted in

Figure 1. These data were further reduced to MCH, which is

the volumetric vertical center of the canopy (as opposed to top-of-

canopy height), dashed lines in Figure 1. Areas differing in MCH

differ systematically in vertical distributions of vegetation (Figure 1).

There are small gaps (,1% total) in both the DEM and MCH

maps due to clouds. For the analyses involving a spatial Fourier

transform (which requires a continuous field), these gaps were

filled via interpolation. For all other analyses, these areas were

excluded.

Multiscale analyses
We used wavelet-based techniques to analyze the spatial

structure of MCH and elevation in the study region, and the

relationship between the two. These techniques are widely used to

study multi-scale processes, because wavelet theory is based on

scale-wise decomposition. In particular, wavelets have proven

effective in extracting statistical properties of a variety of long-

range dependence phenomena, including fractals and other scale-

invariant processes, in one or more dimensions [31].

Here we focus on the variance of a 2-D spatial process,

studied using wavelet decomposition (see appendix S1 for

details). To illustrate how this approach works, Figure 3 shows

maps of MCH and elevation for a 56 ha watershed extracted

from the study area, and their wavelet decompositions at three

arbitrary scales (20, 200, and 700 m). Essentially, wavelet

analysis decomposes the total variation into the sum of

deviations at different scales. Thus the map of wavelet

coefficients at the 700 m scale shows only the broader pattern

of deviations, while the map at the 20 m scale shows only fine-

grained variation deviating from broader patterns. The scatter

plots of the relationships between elevation and MCH, and their

scale-specific deviations as captured by the wavelet decomposi-

tion, show that at the 200 m scale, deviations in MCH and in

DEM are strongly negative correlated, while at smaller or larger

scales the correlation is less significant and can even have the

opposite sign. Because the relationships between the variables

differ with scale, analyses should be carried out systematically at
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all possible scales, from the smallest scale allowed by the

resolution of the remote sensing product to the maximum scale

enabled by the spatial extent of the study area (before edge

effects become dominant).

We first conducted univariate wavelet analyses for elevation and

MCH, examining the contributions of variation at different spatial

scales to total variation in each variable. Specifically, we calculated

the wavelet spectrum; that is, the wavelet variance as function of

scale s. A plot of the wavelet spectrum depicts the contribution to

the total spatial variability of structures or patterns with a typical

scale comparable to s. A peak in the spectrum means that patterns

of a characteristic scale are dominant. A scale-invariant process

exhibits no peaks in the wavelet spectrum; its wavelet variance is a

power function of scale (,sa), and it appears linearly increasing on

a log-log representation.

We examined whether elevation and MCH had anisotropic

(directional) patterns by performing spectral analyses with an

anisotropic Morlet wavelet. Examples of anisotropic patterns are

waves in the sea. The results were evaluated using circular plots of

the wavelet variance, with scale as the radial coordinate and angle

as the azimuthal coordinate [32]. If there is more variation in some

directions than others, this indicates the presence of anisotropy in

the spatial patterns (which may exist for all scales or for just a

narrow range of scales or none at all). The anisotropic analyses

were carried out on circular subsets of the studied area to avoid

edge effects.

To evaluate the bivariate relationship between elevation and

MCH at multiple scales, we calculated the wavelet co-spectrum

and wavelet coherence between them. The wavelet co-spectrum is

a measure of covariance among spatial processes at different

scales, while the wavelet coherence is a measure of correlation.

The wavelet coherence is analogous to an R2 value, and ranges

from 0 to 1. We calculated confidence intervals for the null

hypothesis of no correlation (H0: wch = 0) using Monte Carlo

methods. Specifically, we used the iterative amplitude adjusted

Fourier transform (IAAFT) to randomize one of the processes (in

our case MCH) in a way that preserves the same probability

density function as the original template and also preserves its

structure and in particular the second-order moments (the spectral

density or the autocorrelation function) [33,34]. For an example,

see figure S2.

Topographic and hydrological variables
The drainage network was extracted from the DEM using the

D8 algorithm [10,35] implemented in ArcGIS (ESRI, v10). We

qualitatively assessed the relationship of MCH to the drainage

network by visually inspecting maps that overlaid MCH and the

drainage network at different sub-basin scales. We quantified the

relationship of flow distance to the drainage network with wavelet

transformed MCH. Here too we took a multiscale approach:

channels were defined as those that drain a minimum area A and

we varied A from 25 m2 to 50,000 m2. We examined the Pearson

correlation between wavelet transformed MCH and distance to

the drainage network as a function of both MCH scale and

minimum area A (with minimum area A essentially a scale metric

for the hydrological network).

We computed slope, aspect, Laplacian convexity, and various

measures of curvature using linear and nonlinear combinations of

first and second order derivatives of the smoothed DEM (Table 2),

for smoothing at multiple scales [21]. Smoothing was performed

using Gaussian kernels for 61 different scales ranging log-evenly

between 2.5 and 1250 m. We smoothed at multiple scales

because the slope and other topographic variables take different

values depending on the degree of smoothing, which essentially

gives the scale at which the variables are calculated. This is

illustrated in Figure 4, which depicts maps of slope, convexity,

and MCH under smoothing at three different scales, for a 60 ha

watershed extracted from the study area. For no smoothing or

only small-scale smoothing, the topographic variables reflect very

local features at the resolution of the DEM, while for large scale

smoothing they reflect larger scale features. As shown in this

example, MCH may be related to topographic variables

calculated at some scales, but not others, and thus analyses

should be conducted based on smoothing at all possible scales.

Note that the wavelet transform of the DEM with a Mexican Hat

wavelet is identical (except for a normalization factor) to the

Table 2. Topographic variables computed, with their formulas.

Topographic variable Formula [58] Hydrological significance (adapted from Moore et al. 1991)

slope tan{1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
x zf 2

y

q
Overland and subsurface flow velocity and runoff rate

aspect
bpz tan{1 fy

fx

Solar irradiation

tangent curvature
kt~

f 2
x fyy{2fyfxfxyzf 2

y fxx

pq1=2

Erosion/deposition rate

contour curvature
kc~

f 2
x fyyz2fyfxfxyzf 2

y fxx

pq3=2

Converging/diverging flow, soil water content

mean curvature km~(ktzkc)=2 concavity/convexity

Laplacian convexity* +2h~fxxzfyy valley bottom (positive values) vs. ridge top (negative values)

fx~
L~hhs

Lx
, fy~

L~hhs

Ly
, fxx~

L2~hhs

Lx2
, fxy~

L2~hhs

LxLy
fyy~

L2~hhs

Ly2

~hhs~N(0,s)6h

p~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
x zf 2

y

q
, q~pz1

b~0 if fxw0, b~1 if fxv0 and fyw0, b~{1 if fxv0 and fyv0

* The Laplacian convexity obtained after smoothing the elevation map with a Gaussian kernel is identical to the wavelet transform of the DEM with a Mexican Hat
wavelet, except for a normalization factor [21].
doi:10.1371/journal.pone.0076296.t002
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Laplacian convexity obtained after smoothing the elevation map

with a Gaussian kernel [21]. We evaluated pairwise correlations

of untransformed MCH with each topographic variable at each

scale. Specifically, for the noncircular variables, we calculated

Pearson correlation coefficients; for the circular variables of slope

and aspect, we calculated linear-circular correlations [36]. We

repeated these correlations for wavelet transformed MCH for

wavelets at the scale for which the coherence of MCH and

elevation was maximized.

Results

Visual inspection of maps superimposing MCH and the

drainage networks of individual watersheds showed that tall trees

(high MCH) tend to occur along channels (Figure 5). This is more

immediately apparent in higher-resolution figures (the smaller

basins in Figure 5). The lower-resolution figures of larger basins

provide evidence that this behavior is general.

We quantified this visual interpretation by analyzing the

correlation of MCH with the flow distance to the drainage

network (Figure 6). Two scale dependences can be found in this

analysis. The first is the minimum flow accumulation area that

defines a channel. The second is related to the size of the

vegetation patchiness corresponding to the scale of the wavelet

transform. Correlations between wavelet transformed MCH and

the map of distance from closest channels for different accumu-

lation areas and scales were maximized for proximities to channels

that drain at least 1 ha of forest and are associated with variation

in MCH at scales of ,230 m.

Spectral analysis of the elevation and MCH data revealed that

both have self-similar patterns over a wide range of scales, with

some notable deviations. The wavelet spectrum of elevation

increased smoothly and approximately linearly on log-log scales,

with a change in slope around 200 m (Figure 7A). At small scales,

the logarithmic slope of the scaling was steep, with power law

exponent 4.5. At larger scales, the exponent is 2.4, which was

closer to the average values for continents of 2.09 [20]. The

wavelet spectrum of MCH also showed a clear linear scaling over

a wide range of distances, with a scaling exponent of 1.5 between

30 and 500 m (Figure 7B). At distances less than 30 m, the

spectrum increased more steeply.

The wavelet covariance showed that MCH and elevation co-

vary negatively for scales of 100–1000 m (Figure 5C). The

coherence analysis (a spectral analog of R2) revealed a broad

range of scales (30–700 m) with strong correlation with a peak of

,0.4 at approximately 250 m (Figure 7D), a value consistent with

Figure 4. An illustration of the effect of smoothing at different scales on the spatial patterns of slope, Laplacian convexity and MCH
(top), and on the correlation of MCH with slope and convexity, for a 58.6 ha watershed extracted from the study area. Smoothing
was done with a Gaussian smoothing filter of standard deviation 20, 40 and 80 m. The drainage network (minimum drainage area 0.25 ha) is shown in
black on the maps for reference. The correlation coefficient between MCH and slope or convexity at different combinations of smoothing scales is
shown in the bottom panels.
doi:10.1371/journal.pone.0076296.g004
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the analysis in Figure 6. This result was extremely robust, as is

clear from comparison with the 95% confidence level for the null

hypothesis of no correlation (dashed line in Figure 5D).

The anisotropic spectral analysis of the largest possible circular

subset of the study area (Figure 8A,B) revealed that the DEM has a

small asymmetry in the NE-SW axis, as indicated by the elliptical

shape of the contour lines (Figure 8C). This suggested that the

morphological structures are generally stretched and oriented

towards the direction of main drainage flow into Gatun Lake. In

contrast, the MCH did not show any evidence of anisotropy, as the

contour lines were approximately circular for all scales (Figure 8D).

Results were very similar for other circular subsets.

All the topographic variables were correlated with MCH at

some scales, with the Laplacian convexity showing the greatest

correlation (Figure 9). Laplacian convexity essentially captures

whether an area is low or high relative to the surroundings:

positive values are associated with depressions and valleys, and

negative values with peaks or ridges. The degree of correlation

varied strongly with the smoothing scale for every variable except

aspect. The strongest correlation with MCH was found for the

convexity calculated with a Gaussian filter of 20 m, corresponding

to a smoothing scale of ,100 m [21]. For this case, the Pearson

correlation was 0.3, meaning this variable alone explained 9% of

the total variance of MCH among 565 m pixels (top Figure 9),

that is the resolution of this LiDAR product. For small smoothing

scales below 10 m, slope was more highly correlated with MCH

than was Laplacian convexity. Note that the Laplacian convexity

is strongly associated with distance to drainage channels, with

Figure 5. Maps of drainage networks and LiDAR-derived MCH for a collection of watersheds in Soberanı́a National Park (Panama).
Drainage networks (minimum drainage area 0.25 ha) are delineated with black lines, and colors indicate MCH (in m). Dark blue areas are cloud
coverage.
doi:10.1371/journal.pone.0076296.g005

Figure 6. R2 between flow distance to channel as function of
minimum drainage area and wavelet transform MCH as
function of scale.
doi:10.1371/journal.pone.0076296.g006
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higher values indicating greater proximity to channels as shown in

the example in Figure 4. Qualitatively similar results are found

using the wavelet transformed MCH at 250 m scale (bottom

Figure 9), which corresponds to the peak of the coherence analysis

in Figure 7. The correlations are stronger in this case, peaking at

0.43, because only the patterns at this scale are considered, while

small scale (e.g. crown, gap-phase) and large scale variability are

filtered out.

Figure 7. Wavelet spectra of elevation (A) and LIDAR-derived mean canopy height (B) in the entire study area (delineated in
Figure 2). Tangent lines and their slopes are shown for reference. (C) Normalized wavelet cospectrum between MCH and elevation (solid line); the
area between the spectrum and the zero line (dashed line) is proportional to the total covariance. (D) Wavelet coherence between MCH and elevation
(solid line) as a function of scale, compared with the 95% confidence interval for the null hypothesis of no correlation computed with 1000 IAAFT
surrogates of the MCH map (dashed line).
doi:10.1371/journal.pone.0076296.g007

Figure 8. Analyses of directional patterns in the DEM (A) and MCH (B) maps, conducted using anisotropic wavelet analysis, for a
1250-ha circular subset of the study area (red). Panels C and D depict the wavelet variance of DEM and MCH, respectively, as a function of the
scale (radial coordinate) and the angle of orientation of the wavelet (azimuthal coordinate) (North = 0). The straight dashed line in panel A depicts the
direction of maximum variance of the DEM.
doi:10.1371/journal.pone.0076296.g008
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Discussion

Scale-dependence and self-similarity
The spatial distribution of vegetation reflects both exogenous

influences of habitat and endogenous factors such as dispersal

limitation and gap-phase dynamics, with different processes

contributing to patterns at different scales. Here, we demonstrated

the utility of spectral analyses, which decompose variation across

scales, for investigating spatial variation in mean canopy height,

and its relationship with the hydrological network and associated

topographic attributes. Our analyses showed that variation in

mean canopy height at scales of ,100–400 m is strongly related to

proximity to channels that drain a minimum of 1 ha of forest land,

and to topographical convexity calculated at these scales. Overall,

there was a scale dependent relationship between topography and

MCH with a peak at 250 m.

We found that the spatial variance of MCH has fractal

similarity over scales of 30–600 m, a new and important finding.

This fractal similarity can be explained by the association of MCH

variation at these scales with fractal environmental structure,

specifically the hydrological network. Previous studies of LIDAR

derived indices in tropical forests also found self-similar scaling

relationships, albeit at smaller scales, where they may not

necessarily be associated with topography [19,37].

The self-similarity in MCH provides a critical basis for

upscaling and downscaling. For many natural patterns, such as

the species-area curve, scale-invariance is present only for a limited

range of scales; the broader the range, the wider the spectrum of

possible applications. The fractal similarity of MCH in the range

30–600 m is potentially extremely useful for up-scaling or down-

scaling remote sensing products using forest inventory plots, as the

scales of remote sensing footprints and forest inventory plots are

often quite different [38]. For example, the application of non-

linear models at coarser scales [39] requires knowledge of sub-grid

variability [40]. Information on how the variance changes with

scales can also be used to optimize the size of ground-based plots

for remote sensing calibration products. And finally, knowledge of

how the variance changes with scale enables meaningful compar-

isons of studies carried out at different scales.

Hydrological network, topography and tropical forest
structure

Our results expand on previous findings of the influence of

topographic variation for tropical forest structure by identifying

the topographic variables and scales at which relationships are

strongest, and by clearly illustrating their link with the hydrological

network. Previous studies computed topographic variables at just

one scale, and often did not state what that scale was. Yet we

demonstrated that the relationship of tropical forest structure to

topographic variables depends strongly on the scale at which those

variables are computed. Approximately half of previous studies

used qualitative topographic categories rather than quantitative

topographic variables, limiting the potential to generalize from

such studies. Of the studies that did use quantitative variables, the

most common variable examined was slope, then elevation and

aspect, but not convexity, despite the fact that most of the

qualitative categories are centrally about convexity. We found that

convexity explained much more variation in MCH than did slope,

with convexity calculated with a 100 m smoothing proving the

single best predictor of MCH among all topographic variables.

Overall, we found a strong pattern of larger canopy height in

areas of positive convexity (valleys, depressions) close to channels

of the drainage network (Figures 5, 6). This is broadly consistent

with conventional wisdom among foresters, which states that in

drier areas forests are taller in valleys, while in wet habitats forests

are taller on ridges. However, an explicit connection to the

hydrological network, and the quantification of minimum

drainage area necessary to create this link, has never been made

in moist tropical forests. Previous studies conducted in the nearby

island of Barro Colorado, employing different methods, have

failed to detect this association. Chave et al. (2003) found lower

biomass in riparian areas and higher biomass on slopes within a 50

ha plot, while Mascaro et al. (2011a) found that mean canopy

height increased with the steepness of slopes across the island as a

whole. This highlights the utility of extensive remote sensing data

and multi-scale analyses in providing a new perspective on even

comparatively well-known tropical sites.

Identification of the scales at which topography exerts the

greatest influence on forest structure and of convexity as the

Figure 9. Top) Correlation coefficients between unsmoothed MCH and smoothed topographic variables (defined in Table 2), as a
function of the smoothing scale. For slope and aspect a linear-circular correlation is used [36]; for the other variables, Pearson’s correlation.
Bottom) same as above, but for wavelet transformed MCH at 250 m scale.
doi:10.1371/journal.pone.0076296.g009
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variable that best captures these influences constitutes an

important step towards a mechanistic understanding of these

patterns. Although water and/or nutrient availability appear the

most obvious explanation of these patterns because they are

directly influenced by hydrological processes [9], other mecha-

nisms cannot be ruled out. For example, convexity is also related

to natural disturbance rates, with hilltops more susceptible to

windthrow and landslides, the most frequent causes of large gap

formation in these type of forests [43,44]. Convexity is also

strongly related to anthropogenic land clearing in this area, as

trees tend to be left standing around watercourses and seasonal

channels (Figure S3). Our identification of convexity as the key

variable lays the groundwork for future studies testing these

alternative mechanisms through investigation of spatial variation

in tree demographic rates, water availability, nutrient availability,

and the history of human disturbance over the focal scales

identified here.

Conclusions and recommendations for future work
The relationship between tropical forest structure, topography

and the hydrological network is fundamentally scale-dependent,

and thus can only be properly understood with multi-scale

analyses. Our analyses provide the first clear evidence of the

scale-dependent linkage of the hydrological network and associ-

ated topographic attributes to patterns of vegetation structure in

closed-canopy tropical forests. Regardless of the mechanism, the

association of MCH with convexity, and of convexity with the

drainage channels, essentially means that the hydrological network

can be considered a template for the spatial organization of the

forest.

Future work should evaluate the generality of our results, and

aim to elucidate the mechanisms that underlie them. Studies

should specifically investigate how the association with hydrolog-

ical networks and topography varies as function of hydrological

zone, geological formation, climate and disturbance regimes, and

how spatial variance in MCH scales in these other forests. Our

study focused on a distinct region of the river system which is

called, following Schumn [45], the production zone. In the transfer zone

and in the deposition zone, these patterns are likely to differ or even

disappear. Additional spatial data on water availability, soil

fertility, disturbance frequency, land use history, tree demography,

and species composition, among others, could illuminate which

mechanisms are most important in determining the relationship

between MCH and the drainage network at different scales, and

potentially different sites. Disentangling the roles of different

factors is likely to be challenging because many factors covary

spatially; study design, and especially appropriate choice of scales,

is thus critical. Well-designed studies of this kind have the potential

to greatly improve our understanding of tropical forest structure,

and our ability to project the responses of tropical forests to

anthropogenic global change.

Supporting Information

Appendix S1 Multiscale analyses.

(DOCX)

Figure S1.

(DOCX)

Figure S2.

(DOCX)

Figure S3.

(DOCX)

Acknowledgments

We thank Gil Bohrer, John F. Weishampel, and an anonymous reviewer

for helpful comments on a previous version of this manuscript; Benjamin

Turner, Rolando Perez and Jefferson S. Hall for useful discussions; and

Carlos Jaramillo for providing the geological map.

Author Contributions

Conceived and designed the experiments: GA MD. Performed the

experiments: GA MD. Analyzed the data: MD. Contributed reagents/

materials/analysis tools: MD HML JM. Wrote the paper: MD HML.

References

1. Rodriguez-Iturbe I, Muneepeerakul R, Bertuzzo E, Levin SA, Rinaldo A (2009)

River networks as ecological corridors: A complex systems perspective for
integrating hydrologic, geomorphologic, and ecologic dynamics. Water Re-

sources 45: 1–22. doi:10.1029/2008WR007124.
2. Caylor KK, Scanlon TM, Rodriguez-Iturbe I (2004) Feasible optimality of

vegetation patterns in river basins. Geomorphology 31: 4–7. doi:10.1029/

2004GL020260.
3. Naiman RJ, Fetherston KL, Mckay SJ, Chen J (1998) Riparian Forests. River

Ecology and Management Lessons from the Pacific Coastal Ecoregion. New
York: Springer-Verlag. p. 713.

4. Dahlin KM, Asner GP, Field CB (2012) Environmental filtering and land-use
history drive patterns in biomass accumulation in a mediterranean-type

landscape. Ecological applications: a publication of the Ecological Society of

America 22: 104–118.
5. Becker P, Rabenold P, Idol J, Smith A (1988) Water potential gradients for gaps

and slopes in a Panamanian tropical moist forest’s dry season. Journal of
Tropical Ecology 4: 173–184.

6. Silver W, Scatena F, Johnson A, Siccama T (1994) Nutrient availability in a

montane wet tropical forest: spatial patterns and methodological considerations.
Plant and soil: 129–145.

7. Bhatt MP, McDowell WH (2007) Controls on major solutes within the drainage
network of a rapidly weathering tropical watershed. Water Resources Research

43: 1–9.
8. Vitousek P, Chadwick O, Matson P, Allison S, Derry L, et al. (2003) Erosion and

the Rejuvenation of Weathering-derived Nutrient Supply in an Old Tropical

Landscape. Ecosystems 6: 762–772.
9. Moore I, Grayson R, Ladson A (1991) Digital terrain modelling: a review of

hydrological, geomorphological, and biological applications. Hydrological
processes 5: 3–30.

10. O’Callaghan J, Mark D (1984) The extraction of drainage networks from digital

elevation data. Computer vision, graphics, and image 28: 323–344.

11. Lugo AE, Waide RB (1993) Catastrophic and background disturbance of

tropical ecosystems at the Luquillo Experimental Forest. Journal of Biosciences
18: 475–481.

12. Ferry B, Morneau F, Bontemps J, Blanc L, Feycon V (2009) Higher treefall rates
on slopes and waterlogged soils result in lower stand biomass and productivity in

a tropical rain forest. Journal of Ecology 98: 106–116.

13. Hall ACAS, Tian H, Qi Y, Pontius G, Cornell J (1995) Modelling spatial and
temporal patterns of tropical land use change. Journal of Biogepgraphy 22: 753–

757.
14. Chazdon R (2007) Rates of change in tree communities of secondary

Neotropical forests following major disturbances. Philos Trans R Soc
Lond B Biol Sci 362: 273–289.

15. Kershaw KA (1963) Pattern in vegetation and its causality. Ecology 44: 377–

388.
16. Levin SA (2000) The Problem of Pattern and Scale in Ecology: The Robert H.

MacArthur Award Lecture. Ecology 73: 1943–1967.
17. Laurance W, Fearnside P, Laurance S (1999) Relationship between soils and

Amazon forest biomass: a landscape-scale study. Forest Ecology and

Management 118: 127–138.
18. Toledo J de, Magnusson W (2012) Tree mode of death in Central Amazonia:

Effects of soil and topography on tree mortality associated with storm
disturbances. Forest Ecology and … 263: 253–261.

19. Kellner JR, Asner GP (2009) Convergent structural responses of tropical forests
to diverse disturbance regimes. Ecology letters 12: 887–897.

20. Gagnon J, Lovejoy S, Schertzer D (2006) Multifractal earth topography.

Nonlinear Processes in Geophysics 13: 541–570.
21. Lashermes B, Foufoula-Georgiou E, Dietrich WE (2007) Channel network

extraction from high resolution topography using wavelets. Geophysical
Research Letters 34: 1–6.

22. Li B (2000) Fractal geometry applications in description and analysis of patch

patterns and patch dynamics. Ecological Modelling 132: 33–50.

Hydrologic Controls on Tropical Forest Structure

PLOS ONE | www.plosone.org 12 October 2013 | Volume 8 | Issue 10 | e76296
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