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Abstract

Background: The uncertainty surrounding dietary requirements for selenium (Se) is partly due to limitations in biomarkers
of Se status that are related to health outcomes. In this study we determined the effect of different doses and forms of Se on
gene expression of selenoprotein S (SEPS1), selenoprotein W (SEPW1) and selenoprotein R (SEPR), and responses to an
immune function challenge, influenza vaccine, were measured in order to identify functional markers of Se status.

Methods and Findings: A 12 week human dietary intervention study was undertaken in 119 volunteers who received
placebo, 50, 100 or 200 mg/day Se-enriched yeast (Se-yeast) or meals containing unenriched or Se-enriched onions (50 mg/
day). Gene expression was quantified in RNA samples extracted from human peripheral blood mononuclear cells (PBMC’s)
using quantitative RT-PCR. There was a significant increase in SEPW1 mRNA in the Se-enriched onion group (50 mg/day)
compared with the unenriched onion group. SEPR and SEPW1 did not change significantly over the duration of the
supplementation period in the control or Se-yeast groups, except at week 10 when SEPW1 mRNA levels were significantly
lower in the 200 mg/day Se-yeast group compared to the placebo group. Levels of SEPS1 mRNA increased significantly 7
days after the influenza vaccine challenge, the magnitude of the increase in SEPS1 gene expression was dose-dependent,
with a significantly greater response with higher Se supplementation.

Conclusions: This novel finding provides preliminary evidence for a role of SEPS1 in the immune response, and further
supports the relationship between Se status and immune function.

Trial Registration: ClinicalTrials.gov NCT00279812

Citation: Goldson AJ, Fairweather-Tait SJ, Armah CN, Bao Y, Broadley MR, et al. (2011) Effects of Selenium Supplementation on Selenoprotein Gene Expression
and Response to Influenza Vaccine Challenge: A Randomised Controlled Trial. PLoS ONE 6(3): e14771. doi:10.1371/journal.pone.0014771

Editor: Aric Gregson, University of California Los Angeles, United States of America

Received May 21, 2010; Accepted February 8, 2011; Published March 21, 2011

Copyright: � 2011 Goldson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was funded by the UK Food Standards Agency (grant NO5059), the Institute of Food Research and the University of East Anglia. The Se-yeast
supplements and placebo tablets were donated by Pharma Nord, Denmark, and the influenza vaccines were supplied by Masta Ltd, U.K. and Solvay, Netherlands.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: R.hurst1@uea.ac.uk

Introduction

Selenium (Se) is involved in a wide variety of functions in the

human body [1] and has been reported to reduce the incidence

and mortality risk of prostate, colon and lung cancer [2-6]. Se also

has an important role in the function of the immune system [7] as

it has been demonstrated to be improved in Se-deficient

populations given Se supplements [7,8]. In several European

populations Se intakes are below recommended intakes [9] and

therefore there is a need to evaluate the consequences of sub-

optimal status to enable public health policies to be developed

[10].

Long-term status may be assessed from erythrocyte, hair or

toenail Se content. However, such measures have no universally

accepted reference ranges due to large geographical variations in

Se intake [10]. Plasma Se is commonly used as a short-term

measure of status but different forms of dietary Se result in

different responses in plasma Se concentration [11] and the Se

present in the circulation may not be available for incorporation

into functional proteins [12]; organic forms such as selenomethi-

onine may be readily incorporated into plasma albumin or

erythrocyte haemoglobin whereas inorganic forms may not [13].

Measurement of the expression of individual selenoproteins may

therefore provide a more appropriate measure of Se status [14].

The human selenoproteome is comprised of 25 selenoproteins [15]

and it is therefore likely that the combination of a number of key

selenoproteins will determine Se status [10,16].

At present, recommendations for Se intake are based on

maximising plasma glutathione peroxidase (GPx3) levels [17] but

there is considerable debate as to the appropriateness of this

endpoint [10]. Red blood cell glutathione peroxidase (GPx1) has

proved useful for identifying individuals/populations with low Se
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status, but as with plasma GPx3, the enzyme activity plateau is

reached relatively quickly as Se intake is increased [12].

Glutathione peroxidase 4 (GPx4) has also been proposed as a

possible functional marker of Se status [18], but there is significant

heterogeneity in the data from published studies to date [19] and

the activity reaches a plateau at a relatively low Se intake, similar

to GPx1. Selenoprotein P is the main Se-containing protein in

human plasma, and is a reliable biomarker for Se-deficient

populations, with a higher plateau level than some of the

glutathione peroxidases [20]. Other less well studied selenopro-

teins, such as selenoprotein W (SePW1), selenoprotein S (SePS1)

and selenoprotein R (SePR), are potential candidates as novel

biomarkers. SePW1 and SePR are reported to exhibit antioxidant

activity [21,22]; in vitro over-expression of SePW1 in H1299 cells

resulted in reduced susceptibility to oxidative challenge by

hydrogen peroxide [21], and SePR catalyses thioredoxin-depen-

dent methionine-R- sulfoxide reduction [22]. SePS1 has been

identified as a protein associated with the endoplasmic reticulum

which maintains lumen homeostasis by removal of misfolded

proteins to the cytosol for polyubiquitination and proteasomal

degradation [23].

The aims of this study were to measure the expression of

SEPS1, SEPR and SEPW1 after supplementation with different

forms and doses of Se, and the changes in response to influenza

vaccine (as an immune function challenge). The expression levels

were quantified and compared with ‘classical’ biomarkers of Se

status. This is the first report of novel analysis of key Se-responsive

genes in response to supplements of Se-enriched yeast (Se-yeast)

and Se-enriched onions, and the effect of an immune function

challenge using influenza vaccine.

Methods

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Protocol S1.

Subjects and study design
A dietary intervention was undertaken, using a parallel design,

in adults with suboptimal Se status, defined by low plasma Se

concentration (,110 ng/ml). This study was part of a randomised,

double-blind, placebo-controlled trial from which the results for

the use of plasma selenoprotein P as a biomarker have previously

been published [24]. Recruitment ran from May until the

following February in 2005, 2006 and 2007. This was related to

the timing of the influenza vaccine administration. For ethical and

vaccine availability reasons the vaccine had to be administered

only during September to April; volunteers were therefore

recruited in May and began the study from July onwards to

coincide with the vaccination period. Recruitment stopped at the

beginning of February each year so that volunteers completed the

study before the end of April. A pre-study health screen was

undertaken to assess basic blood chemistry and Se status in each

potential volunteer; the full list of exclusion criteria are given in

Hurst et al [24]. A total of 119 free-living, non-smoking men and

women, aged 50–64 y, completed the study (Figure S1). Each

subject was randomly assigned to one of six groups and given

tablets containing either 50 (n = 18), 100 (n = 21) or 200 (n = 23) mg

Se/day Se-yeast, meals made with Se-enriched onions containing

50 mg Se/day (n = 18) or unenriched onions (n = 17), or placebo

tablets (n = 20) for a period of 12 weeks. For the allocation of

volunteers, a computerised random number generator was used

(URL: http://www.randomizer.org/form.htm). The tablets were

provided using a double blind design, as were the 2 onion groups.

The double blind coding was not revealed until the completion of

the final data analysis. Volunteer compliance to the interventions

(for both the tablets and onion meal groups) was monitored by self-

administered tick sheets and in addition, for the supplement

groups by counting the number of tablets returned at the 6 and 12

week time points. At week 10 the participants were vaccinated

intra-muscularly with a trivalent influenza vaccine, developed

from World Health Organisation guidelines. Blood samples

(65 ml) were drawn from an antecubital vein in each volunteer’s

forearm at week 0, 6 and 10 for pre-vaccination samples and at

week 11 and 12 for post-vaccination samples.

Platelet isolation and preparation of enzyme extracts
Platelets were isolated by centrifugation [18] from 8 ml whole

blood collected in citrate coated polypropylene tubes (Sarstedt,

Germany, http://www.sarstedt.com) and were subsequently

frozen in 0.32 M sucrose solution, with controlled temperature

gradient freezing to 280uC. When required for batch analysis of

GPx1 and GPx4 activity, enzyme extracts were prepared using ice-

cold protein extraction cell lysis buffer (100 mM Tris-HCl solution

pH 7.4, 1 mM dithiothreitol DTT, 0.1% Triton X100 and

protease inhibitor) and probe sonication with a sonicator (Status

70, MS 72, Bandelin, Germany, http://www.bandelin.com).

Samples were maintained below 4uC during sonication, and then

centrifuged at 12000g at 4uC for 10 min, the supernatants were

stored on ice and GPx1 activity was quantified within 4 hours.

Total protein concentrations were determined using the method of

Bradford [25] with HSA as a standard.

Red blood cell isolation and preparation of enzyme
extracts

Approximately 10 ml of whole blood was collected in a BD

VacutainerTM EDTA tube (BD Medical, Cowley, UK, http://

www.bd.com/). After centrifugation for 10 min at 15006g, 20uC
the plasma layer and buffy coat were removed and the remaining

erythrocytes washed twice with ice-cold PBS. Erythrocytes were

diluted with one volume of ice-cold PBS and stored at 280uC.

Enzyme extracts were prepared in batches from frozen erythrocyte

samples, were stored on ice and used within 4 hours for the

determination of Se dependent GPx1 activity. Haemoglobin (Hb)

was quantified in the erythrocyte enzyme extracts using the

method described by Drabkin [26].

Se-dependent GPx1 activity in red blood cells and total
GPx1 activity in platelets

Glutathione peroxidase 1 activities in erythrocyte and platelet

samples were quantified using a spectrophotometric method [27].

The assay reaction mixture contained 100 mM Tris-HCl pH 7.4,

3 mM glutathione, 0.25 mM NADPH, 1U glutathione reductase

and triton X100 (0.1%). A high-throughput 96-well enzyme assay

[28] was used to analyse samples and controls in triplicate, with

tert-butyl-hydroperoxide or cumene hydroperoxide as the sub-

strates for Se-dependent GPx1 activity or total GPx1 activity

respectively [29]. The rate of decrease in absorbance at 340 nm

was monitored at 37uC for 15 min with measurements taken every

10 seconds. The GPx1 activity was calculated from the initial rates

of reaction as described by Paglia and Valentine [27]. One unit (U)

of glutathione peroxidase activity is defined as 1 mmol of NADPH

oxidised per minute.

GPx4 activity in platelets
Preparation of the reaction substrate 1-palmitoyl-2-(13-hydro-

peroxy-cis-9, trans-11-octadecadienoyl)-l-3-phosphatidylcholine
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(PLPC-OOH) was as described by Bao et al [30]. The assay

reaction mixture included 0.1 M Tris-HCl (pH 7.4), 2 mM

EDTA, 1 mM sodium azide (NaN3), 0.12% Triton X-100, 3 mM

glutathione and an appropriate amount of platelet sample in 500

ml. The mixture was incubated at 37uC for about 3 min and the

reaction was started by the addition PLPC-OOH to produce a

final concentration of 25 mM. The reaction was stopped by adding

ice cold acetonitrile and then centrifuged at 12,000g at 4uC for

3 min to prepare for HPLC analysis. Separation of the product

(PLPC-OH) from the substrate (PLPC-OOH) was carried out

using a Gemini 5 m C18 110A column (25064.6 mm) (Phenom-

enex, Macclesfield, UK, http://www.phenomenex.com) at 30uC.

The mobile phase was a mixture of acetonitrile-methanol-water

(50:49.5:0.5, v/v/v) containing 10 mM choline chloride. The flow

rate was 0.5 ml/min and the UV detector wavelength was set at

232 nm. GPx 4 activity was calculated from the PLPC-OOH and

PLPC-OH peaks as described [30] and expressed per mg total

protein.

Plasma Se
Approximately 10 ml whole blood was collected in sodium

heparin trace element free tubes (BD Medical, Cowley, UK). After

centrifugation for 10 minutes at 1500g, 20uC the plasma was

removed and stored at 280uC in trace element free tubes (BD

Medical, Cowley, UK, http://www.bd.com/). All samples were

analysed in duplicate in batches and a reference serum sample

(Seronorm, Norway, http://www.sero.no/) was analysed and used

as a quality control check on each batch. Rhodium was added as

an internal standard and Se concentrations were determined using

a 7500ce inductively coupled plasma mass spectrometer (Agilent

Technologies, Santa Clara, USA, http://www.agilent.com/) fitted

with a dynamic reaction cell operating in the hydrogen mode. Se

was determined by monitoring at m/z 76, 77 and 78 for Se and

m/z 103 for the rhodium internal standard against Se standards of

0, 0.5, 1.0, 2.0, 5.0 and 10.0 ng/ml.

Peripheral blood mononuclear cell (PBMC) isolation and
preparation of total RNA for quantitative real time RT-PCR

Approximately 8 ml of whole blood was collected in a BD

VacutainerTM CPTTM tube (BD Medical, Cowley, UK, http://

www.bd.com/). Blood samples were processed within 30 min and

PBMC’s isolated according to the manufacturer’s instructions

[31]. Isolated PBMC’s were lysed and homogenised using a

Qiashredder column and total RNA was then isolated using

RNeasy mini kit according to manufacturer’s instructions (Qiagen,

Crawley, UK, http://www.qiagen.com). RNA was eluted from

the binding column using 50 ml of RNase-free water. Ribonuclease

inhibitor (Promega, Madison, USA, http://www.promega.com)

was added immediately (20 U/preparation) and samples were

stored at 280uC. Total RNA yield was determined using a

NanoDrop ND-1000 spectrophotometer (Thermo Fischer Scien-

tific, Breda, Netherlands, http://www.thermofisher.com) and

purity assessed by the ratio of absorbance at 260 and 280 nm.

Gene expression (SEPS1, SEPR, SEPW1) using quantitative
real time RT-PCR

Determination of mRNA levels was performed by quantitative

real-time reverse transcription-PCR (RT-PCR) using ABI Prism

7300 Sequence Detection System (Applied Biosystems, Warring-

ton,UK, http://www.appliedbiosystems.com). Primers and fluoro-

genic probes (59 FAM- 39 TAMRA) were designed across exon-

exon boundaries using Primer Express Software (Operon,

Cologne, Germany, http://www.operon.com/) (Table 1). Oligo-

mer specificity was checked using NCBI BLAST (http://blast.

ncbi.nlm.nih.gov/Blast.cgi) searches to confirm no sequence

homologies with unrelated targets. Amplification products for

each primer and probe set were run on 10% TBE Novex gels

(Invitrogen, Paisley, UK, http://www.invitrogen.com) to verify

the sizes of the resulting amplicons. RT-PCR reactions were

performed in 96 well plates using TaqMan one-step RT-PCR

master mix reagent kit (Applied Biosystems, Warrington,UK,

http://www.appliedbiosystems.com) in a total volume of 25 ml/

well consisting of 100–200 nM probe, 200–400 nM forward and

reverse primers and 10 ng RNA. TaqMan RT-PCR conditions

were as follows: 48uC for 30 min, 95uC for 10 min then 40 cycles

of 95uC for 15 s and 60uC for 1 min. Gene expression was

quantified using the relative standard curve method [32]. A master

stock of total RNA was extracted from the pooled blood of 3

individuals. Standard curves using the master RNA stock were

included on every plate, each time using triplicate replicates for

each amount. The range of the standard curve encompassed the

observed range of sample values. b-glucuronidase (GUSB) was

measured as a reference gene [33,34] (Table 1).

Ethics
Governance and ethical approvals for this study were obtained

from the Institute of Food Research Governance Committee, the

East Norfolk and Waveney Research Governance Committee and

the Norwich Local Ethics Committee (Text S1). Written informed

consent was obtained from each participant.

Statistics
The primary endpoints of the study were changes in gene

expression of SEPS1, SEPW1 and SEPR in response to dietary Se

supplementation comparing baseline values with those at weeks 6,

10, 11 and 12. The secondary endpoints were changes in SEPS1,

SEPW1 and SEPR between vaccine administration at week 10 to

weeks one and two post-vaccination (weeks 11 and 12). Statistical

analyses were performed using the R data analysis software [35].

Standard ANOVA models and mixed-effects models were employed

to analyse these data. The main effects tested in the models were

supplementation group and time; interactions of these terms were

Table 1. Primer and probe sequences used for real-time
reverse transcription PCR reactions.

Gene
Accesssion
No. Sequence (59-39)

SEPW1 Forward primer AGGCCACCGGGTTCTTTG

NM_003009 Reverse primer CGTAGCCATCGCCTTTCTTC

Probe FAM-AGAGTGAATCAACTTCCCGGCTACCATCA-TAMRA

SEPS1 Forward primer AGCCCCAGGAGGAAGACAGT

NM_018445 Reverse primer TCCCCGCAAAGGCTTTCT

Probe FAM-ACTTCATCTGTCCTGAAACGGAAATCGGA-TAMRA

SEPR Forward primer GCGTCCGGAGCACAATAGAT

NM_016332 Reverse primer TGGCCCAACCCATTGC

Probe FAM-CACAGGACACCTTCAAGGCTTCA-TAMRA

GUS Forward primer TTGGCAGTGCCCATTCCT

NM_000181 Reverse primer GTAGCCCCCCTCATGCTCTAG

Probe FAM-CCCATTCACCCACACGATGGCA-TAMRA

doi:10.1371/journal.pone.0014771.t001
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also tested. For all models, diagnostics were checked to determine if

data transformations, outlier omissions, or alternative non-paramet-

ric models were required. All results from the models were

considered significant if P,0.05. When a factor in an ANOVA

was significant, a Tukey’s honest significant difference post-hoc test

was applied. When a factor in the mixed-effects models showed a

significant effect, contrasts between levels in the factor were used to

estimate whether the pairwise differences were significant. Adjust-

ments for multiple testing were made for all post-hoc tests.

Results

Blood analysis
Red cell count, white cell count, Hb, haematocrit, mean cell Hb

and platelet count did not significantly change over the duration of

the intervention. The mean red blood cell count was

4.660.4861012/ L and ranged from 1.06 to 6.0761012/ L,

White blood cell counts were 5.361.36109/ L and ranged from

2.5–10.6), Hb (mean: 14.061.1 g/dL, range: 11.7–19.7), haema-

tocrit (mean: 4163% range: 34–51%), mean cell Hb

(mean:30.662.5 pg range:12.1–58.7) and platelet count

(mean:2546566109/ L range: 138–463).

Effect of Se supplementation on Se-dependent GPx1
activity in red blood cells and total GPx1 activity in
platelets

Se-dependent GPx1 activity was quantified in erythrocyte

samples at week 0 and 12, the mean activities are displayed in

Table 2. A significant effect of time was identified by ANOVA

analysis for the erythrocyte GPx1 activity in the Se-yeast groups.

Post-hoc analysis revealed a significantly greater erythrocyte GPx1

activity at week 12 compared to baseline week 0 (P,0.001).

However, there were no significant effects of Se-yeast dose or Se-

enriched onions on erythrocyte GPx1 activity compared to the

placebo and unenriched onion groups respectively. There were

also no significant differences in total GPx1 activity in platelets in

the Se supplemented groups compared with the control groups.

Over the duration of the intervention, time was found to have a

significant effect on platelet total GPx1 activity. Post-hoc analysis

showed this to be due to an increase in activity in only the 100 mg/

day Se-yeast group at week 12 compared with baseline, week 0

(P,0.001). There were no significant effects of the influenza

vaccine on platelet total GPx1 activity, week 10 compared with

week 12 data, for any of the groups.

Effect of Se supplementation on GPx4 activity in platelets
The effects of the intervention on GPx4 activity are shown in

Table 2. No significant differences were observed when comparing

the Se-yeast groups with placebo group with respect to GPx4

activity. Overall, the Se-enriched onion group had lower GPx4

activity compared with the control unenriched onion group, which

was largely attributed to the significantly lower (P,0.005) GPx4

activity at week 10 in the Se-enriched onion group than that of the

unenriched onion group. It should be noted that some data are

missing for samples where the activity of the enzyme extract in the

platelet sample was less than the control enzyme extraction buffer

which resulted in fewer data points in each of the groups (placebo

n = 11; 50 mg/day Se-yeast n = 12; 100 mg/day Se-yeast n = 14;

200 mg/day Se-yeast n = 19; control unenriched onion n = 14; 50

mg/day Se-enriched onion n = 9). A significant effect of time on

GPx4 activity was identified using ANOVA and post-hoc analysis

showed a statistically significant (P,0.05) increase in platelet GPx4

activity at week 12 compared with week 0 only for the group that

received 100 mg/day Se-yeast (Table 2). There were no significant

effects of the influenza vaccine on platelet GPx4 activity, week 10

compared with week 12 data, for any of the groups.

Table 2. Se-dependent glutathione peroxidase 1 activity in erythrocytes, total glutathione peroxidase 1 and Se-dependent
glutathione peroxidase 4 activities in platelets: mean values at 0, 6, 10 and 12 weeks of supplementation and comparison of
Se-yeast and Se-enriched onion meals with the placebo and unenriched onion groups respectively1.

Se-dependent
glutathione peroxidase
1 activity in
erythrocytes (mmol/min
per g Hb)

Total glutathione peroxidase 1 activity in platelets
(mmol/ min per mg protein)

Se-dependent glutathione peroxidase 4 activity
in platelets (mmol/min per mg protein)2

Time (weeks) 0 12 0 6 10 12 0 6 10 12

Placebo (n = 20) 44.2612.1
(34.4–82.9)

47.8611.3
(32.8–75.7)

0.2860.08
(0.13–.39)

0.2960.11
(0.15–0.53)

0.2660.09
(0.11–0.41)

0.2960.07
(0.09–0.40)

8.665.0
(3.0–19.1)

11.168.4
(2.5–31.9)

9.164.6
(4.1–18.0)

9.466.4
(2.9–15.1)

50 mg/day
Se-yeast (n = 18)

49.6610.3
(34.4–65.2)

53.0613.7
(35.0–78.9)

0.2960.13
(0.16–0.44)

0.3260.16
(0.15–0.64)

0.2960.13
(0.15–0.49)

0.3460.16
(0.12–0.72)

9.166.5
(2.5–24.1)

11.367.0
(3.3–29.2)

12.366.5
(5.3–23.1)

10.666.5
(2.5–24.0)

100 mg/day
Se-yeast (n = 21)

46.3611.7
(26.6–74.1)

48.4614.1
(24.5–82.2)

0.2560.13
(0.10–0.52)

0.2860.12
(0.14–0.59)

0.2760.14
(0.14–0.57)

0.3460.15**
(0.23–0.68)

8.463.9
(2.7–15.6)

12.069.4
(2.6–36.8)

10.965.8
(3.4–18.7)

11.867.1*
(5.0–26.6)

200 mg/day
Se-yeast (n = 23)

47.9615.2
(27.1–76.1)

49.8616.2
(28.4–83.2)

0.2660.08
(0.11–0.40)

0.2960.11
(0.16–0.58)

0.2960.10
(0.17–0.50)

0.2960.09
(0.17–0.51)

10.866.8
(2.5–19.1)

11.566.2
(0.4–22.0)

12.467.6
(3.4–30.7)

12.867.6
(2.5–28.9)

Unenriched
onions (n = 17)

42.6610.9
(19.7–63.7)

43.0611.5
(19.9–64.7)

0.3160.10
(0.12–0.50)

0.3160.11
(0.13–0.49)

0.3160.09
(0.15–0.48)

0.3560.15
(0.18–0.67)

10.565.7
(3.6–23.2)

13.069.6
(6.0–44.5)

11.864.0
(6.6–20.2)

11.065.0
(1.4–19.1)

Se-enriched
onions 50 mg/day
(n = 18)

49.4616.5
(24.0–87.3)

55.6621.6
(24.3–106.4)

0.3360.12
(0.18–0.54)

0.3560.14
(0.16–0.59)

0.3360.12
(0.09–0.50)

0.3560.13
(0.15–0.67)

5.463.9
(0.4–13.1)

7.667.7
(0.8–26.4)

6.565.1#

(0.7–17.0)
7.066.7
(1.6–23.7)

1All values are means 6 SDs; ranges in parentheses. Se-dependent activities in erythrocyte samples were determined using tert-butyl hydroperoxide as the substrate in
the enzyme assay. Total GPx activities in platelet samples were determined using cumene hydroperoxide as the substrate in the enzyme assay [27,29].
2numbers (n) for the GPx4 data are as detailed in the text; placebo (n = 11), 50, 100 and 200 mg/day (n = 12, 14 and 19 respectively), unenriched (n = 14) and Se-enriched
(n = 9) due to undetectable GPx4 activity in the platelet enzyme extract compared with the control enzyme extraction buffer. * P,0.05 for the comparison of Time = 12
to Time = 0; ** P,0.005 for the comparison of Time = 12 to Time = 0; # P,0.005 for the comparison with unenriched onion.
doi:10.1371/journal.pone.0014771.t002
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Plasma Se
Plasma Se concentration increased significantly in the Se-yeast

groups compared to the placebo group up to week 10 as reported

previously [24]. Previously unreported data (plasma Se concen-

tration 1 and 2 weeks following influenza vaccination) show no

significant change in any of the groups (Figure 1) which indicates

that the volunteers had reached steady state Se status by week 10

and that the administration of influenza vaccine had no significant

effect on plasma Se concentration.

SEPW1, SEPR and SEPS1 gene expression in response to
Se supplementation and effect of influenza vaccine
challenge

A significant treatment effect of Se-enriched yeast on PBMC

SEPW1 mRNA level was identified at week 10. The SEPW1

mRNA levels were 25% lower in the 200 mg/day Se-yeast group

compared with the placebo group at this time point (p = 0.007)

(Figure 2). The SEPW1 mRNA level of the placebo group and the

lower dose Se-yeast groups (50 or 100 mg/day) did not change

significantly at weeks 6, 10, 11 or 12. The reduction at week 10 in

SEPW1 mRNA levels was negatively correlated with plasma Se

concentration (P = 0.022); a negative trend was also observed at

the majority of the sampling points of the intervention period

(Figure 2). No significant differences were found in the levels of

SEPR mRNA when comparing the Se-yeast to placebo groups at

each sampling point or between supplement groups over the

course of the intervention (Figure 2). Inter-individual variation was

40% greater for this marker than for SEPS1 or SEPW1.

SEPS1 was significantly up-regulated 7 days after the influenza

vaccine challenge at week 10 (P = 0.003) (Figure 3). At Week 11

SEPS1 mRNA levels demonstrated a positive Se dose-dependent

correlation (P = 0.009). The SEPS1 mRNA levels in the 200 mg Se-

yeast group were on average 16% higher than those of the placebo

or 50 mg Se-yeast group and 10% greater than the 100 mg Se-yeast

group (Figure 2). A significant effect of time on SEPS1 mRNA

level was identified using ANOVA. Post-hoc testing found that

SEPS1 mRNA increased (P = 0.007) one week after the influenza

vaccine (week 11) compared to pre-vaccination (week 10) in the

100 mg/day Se-yeast group and there was a similar increase in the

200 mg/day Se-yeast group, which was of borderline significance

(P = 0.055). SEPS1 mRNA did not change in the placebo group

and the 50 mg/day Se-yeast group at week 11 compared to week

10. Two weeks after the influenza vaccination (week 12) SEPS1

mRNA fell to levels comparable with those at week 10 (pre-

vaccination).

When the gene expression profiles of SEPS1, SEPW1 and

SEPR in the PBMC samples from volunteers in the Se-enriched

onion group are compared with the unenriched onion group, there

was a consistent trend with mean mRNA levels of SEPW1, SEPS1

and SEPR being higher in the Se-enriched onion group (Figure 4).

There was a significant treatment effect on SEPW1 mRNA, with

higher levels in the Se-enriched onion group (P = 0.012) compared

to the unenriched onion group. There was also an increase in

SEPS1 mRNA levels in the Se-enriched onion group compared

with the unenriched onion group, but this was only borderline

significant (P = 0.059). SEPS1 mRNA levels were significantly

influenced by time (P = 0.009) which was largely due to the

increase in expression at week 11, one week post-vaccination.

Differences in gene expression of SEPR when comparing the Se-

enriched onion group with the unenriched onion group showed a

similar pattern of expression to that of SEPS1 but the changes in

SEPR over time and comparing treatments were not significant

due to the relatively small average fold change in expression

between the groups and also due to large inter-individual variation

in gene expression/mRNA level.

The main finding of this study was the up-regulation of SEPS1

mRNA in response to influenza vaccine, with a dose-dependent

relationship between the magnitude of increase in SEPS1 gene

expression and the level of Se supplementation.

Discussion

The ranges in GPx1 and GPx4 activities in erythrocytes and

platelets in this study were similar to values observed in another

UK cohort [18]. It has been reported that platelet GPx1 and GPx4

activities reflect Se status more accurately than other blood Se

biomarkers [18,36-38], however, the response of GPx1 activity

reaches a plateau at approx 80–100 ng/ml plasma Se [10,12,36]

and so the use of platelet GPx activity as a biomarker of status is

restricted to Se- deficient populations. No significant differences in

the Se-dependent GPx1 activity in platelets in this cohort were

reported previously [24]. In this study total GPx1 activity in

platelets (short-term marker of status) was analysed using a

different substrate (cumene hydroperoxide) for the enzyme activity

quantification [29], compared to the data previously published

[24], plus analysis of erythrocyte GPx1 as a long-term marker of

Se status [10] was completed. Platelet Se-dependent GPx4 activity

was also quantified to ascertain whether a further array of relevant

antioxidant enzyme activities in blood cells would reflect Se status

in this study population. Although there were significant changes

in platelet total GPx1 and Se-dependent GPx4 activities in platelet

samples from the 100 mg/day Se-yeast group at week 12 compared

to baseline, none of the four Se supplemented groups showed

significant increases in total GPx activity over the duration of the

intervention compared to the placebo group, most probably

because the majority of volunteers had habitual Se intakes

associated with maximal GPx activity (the plasma Se concentra-

Figure 1. Plasma Se concentration over the 12 week interven-
tion period for all groups. Values are means 6 SEM. % Placebo
(n = 20); & 50 mg/day Se-yeast (n = 17); ¤ 100 mg/day Se-yeast (n = 21);
6200 mg/day Se-yeast (n = 23); # Unenriched onions (n = 16); N 50 mg/
day Se-enriched onion meals (n = 18). m denotes influenza vaccine
challenge administered at week 10 of the study. Plasma Se
concentration data displayed for weeks 11 and 12, one and two weeks
post-vaccination, are novel data. To display the effect of Se
supplementation over the duration of the intervention period and to
illustrate the plasma Se concentration before and after vaccination, data
from time points baseline, week 6 and 10 are reproduced with
permission of Hurst et al. 2010 [24].
doi:10.1371/journal.pone.0014771.g001
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tion at baseline was 95.761.5 ng/ml). Total GPx1 activity in

platelets and Se-dependent GPx1 activity in erythrocytes were not

sensitive biomarkers of Se status within the range of this

intervention study. This was also the case with GPx4, as GPx4

activity may plateau over a similar range. Furthermore, the small

but not significant increases in GPx4 over time, when compared to

baseline week 0, (observed in the 50 and 200 mg/day Se-yeast and

Se-enriched onion groups), may be related to the form of Se used

in this intervention as sodium selenite supplements of 100 mg /day

resulted in a significant increase in GPx4 activity in lymphocytes in

another UK cohort [8].

Between 10–30% of Se in plasma is found in GPx [13,39] and

approximately 25–50% in selenoprotein P [13,39,40]. There is

also a proportion of Se bound to albumin [13,39], and ‘unknown’

selenoproteins and small Se metabolites account for the remaining

plasma Se [13]. Total plasma Se and selenoprotein P concentra-

tions are good markers of Se status [19,24], but plasma Se does not

reflect the intake of all forms of Se [24]. The results presented in

this paper show that the steady-state plasma Se concentrations

achieved in the different intervention groups were not significantly

changed by influenza vaccine administration.

Molecular assays are increasingly used to assess disease and

health status and may be useful for the evaluation of nutritional

status [41,42]. A number of studies using animal models have

successfully used molecular markers to identify significant

differences between groups deprived of dietary Se and those with

adequate Se diets [43-46]. A comparison of tissue mRNA levels in

Se-deficient compared to Se-replete rats reported reductions of

both thioredoxin reductase and SEPW1 mRNA by up to 70% in

Se deficiency [45,46]. The in vitro expression of SEPW1 mRNA in

human colon cells increased by 3.7 fold in cells cultured in media

Figure 3. SEPS1 mRNA level in PMBCs measured over the
intervention period, each time point showing the mean of all
the yeast supplement groups (placebo, 50, 100 and 200 mg/
day). GUSB was used as reference gene for normalisation. Data are
presented as mean 6 SEM (n = 65 to 71 per time point) relative to
baseline, week 0 expression.
doi:10.1371/journal.pone.0014771.g003

Figure 2. mRNA level in PBMCs measured over the duration of
intervention period for (A) SEPW1, (B) SEPS1, (C) SEPR in the
placebo and Se-yeast groups. Values are means 6 SEM relative to
baseline, week 0 expression. GUSB was used as reference gene for
normalisation. White bars = placebo group (n = 14 to 20); light grey
bars = 50 mg/day Se-yeast (n = 11 to 15); mid grey bars = 100 mg/day
Se-yeast (n = 10 to 19); black bars = 200 mg/day Se-yeast (n = 14 to 18).
The variation in sample number (n) between time points for each
treatment is due to insufficient RNA at some sampling time points and

missing time course sample data for some of the target genes. For the
SEPS1 gene expression data set: placebo group n = 20 at all time points;
50 mg/day group n = 14 at wks 0, 6 and 12 (n = 13 at wks 10, 11); 100 mg/
day group n = 19 at wks 0, 6, 10 (n = 18 at wks 11, 12); 200 mg/day group
n = 18 at wks 0, 6, 12 (n = 17 wk 10, n = 15 wk 11). Data were analysed
using mixed-effects models and statistically significant differences are
indicated on the figure.
doi:10.1371/journal.pone.0014771.g002
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supplemented with sodium selenite compared to media containing

sub- optimal Se content [46]. The data presented here do not,

however, reflect the magnitude of change in molecular markers of

Se status that is observed in animal or in vitro models. This is likely

due to higher inter-individual variability in human subjects and

may also reflect the tight regulation of selenogene and selenopro-

tein expression. In addition, the level of Se deficiency routinely

used in animal studies [45,46] does not compare directly with the

marginal sub-optimal status observed in the volunteers on the

study. Furthermore, animal models have different tissue distribu-

tion and expression of Se metabolising enzymes and, in particular,

rats may not be ideal models to study effects of all forms of Se, in

particular monomethylated species [47].

In a longitudinal study of 39 human subjects, Sunde and

colleagues found no correlation between mRNA levels of SEPW1,

selenoprotein P, selenoprotein H, GPX1, GPX3, GPX4 and

plasma Se over 24 weeks [48]. The explanation proposed was that

the volunteers were on the plateau of the response curve for these

markers, and as such had a replete Se status with respect to

expression of the molecular markers measured. However, the

average plasma Se concentration was 1.1360.16 mmol/l [48]

whereas the average plasma Se in volunteers recruited on the

present study was 1.2160.13 mmol/l [24]. It is likely therefore that

our volunteers were on the plateau of the response curve for

SEPW1 and SEPR which would explain why supplementation

with additional Se, up to 200 mg/day, did not produce a consistent

significant change in gene expression of SEPW1 and SEPR.

SEPW1 does, however, present an exception at week 10 where

mRNA levels were negatively correlated with Se-yeast dose (up to

200 mg/day) when a steady state Se status was achieved based on

plasma Se data [24]. This change in SEPW1 gene expression

would not have been encountered by Sunde et al [48] as their study

focussed on differences in molecular markers over a range of

habitual intakes estimated to be 27–83 mg/day and the effect of Se

supplementation on SEPW1 gene expression was not investigated

[48].

Supplementation with Se-enriched onions demonstrated a

consistent, albeit relatively small, increase in the level of mRNA

of all the selenoproteins tested, when compared with the

unenriched onion group, particularly SEPW1. SEPW1 signifi-

cantly increased in the Se-enriched onion group compared to the

unenriched onion group. This result was as expected from in vitro

work with Se-methylselenocysteine adapted human cells [49], as

the predominant form of Se in onions is c-glutamyl methylsele-

nocysteine (66%) [24,50]. In contrast to the Se-enriched onions

which contain ,9% selenomethionine; the major form of Se in Se-

yeast is selenomethionine, constituting ,60% of the Se content

[51]. Supplementation with 200 mg/day L-selenomethionine was

shown to up-regulate expression of 28 genes [52] but the

individuals selected had arsenic-induced pre-malignant skin lesions

and many of the genes found to be up-regulated were involved in

immunological and oxidative stress regulation, which would likely

have been differentially regulated in individuals suffering from this

condition compared to healthy individuals. Additionally, no

selenoprotein genes were found to be differentially regulated by

the supplementation regimen. The effect of form of Se in Se-

enriched onions on expression of key genes encoding selenopro-

teins, plus expression/activity of important selenoproteins war-

rants further investigation.

The lack of compelling evidence for the regulation of SEPR and

to a lesser extent SEPW1 expression in PMBC in response to Se

supplementation, over the range of intakes and time points tested,

is likely to be partly due to high inter-individual variation which

would mask potentially relatively small changes in mRNA level.

The level of inter-individual variation in PBMC gene expression

has been found to be inherently high [31]. In a previous

intervention study using a dietary supplement of 100 mg sodium

selenite/day, the authors were only able to identify changes of 1.2

fold difference between Se supplemented and un-supplemented

individuals in ribosomal protein L30 (RPL30), L37A (RPL37A)

and eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1)

Figure 4. SEPW1, SEPS1 and SEPR mRNA level over the
duration of the intervention in the PBMC samples from the
unenriched and Se-enriched onion meal groups. SEPW1, SEPS1
and SEPR mRNA levels were quantified using real time RT-PCR and
normalised to reference gene, GUSB. Data expressed are means 6 SEM
relative to baseline, week 0 expression. (A) SEPW1, (B) SEPS1, (C) SEPR.
Values are means 6 SEM. ---#--- unenriched onions, n = 14 to 16;
—N— Se-enriched onions, n = 16 to 17. SEPW1 mRNA level is
significantly greater in the enriched onion group compared to the
unenriched onion group (p = 0.012). SEPS1 mRNA level is significantly
influenced by week (p = 0.009).
doi:10.1371/journal.pone.0014771.g004
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genes [53]. This was attributed to the fact that the main control

mechanisms of the targeted genes are predominantly at the post-

transcriptional level [53], which may also be the case for the genes

we investigated. Furthermore, although work with animal models

has identified some highly Se responsive mRNA species the

majority of the selenoproteome appears to be unaffected by dietary

Se variation [54,55]. The effects of Se on gene expression may also

be form-specific and dose-specific, as highlighted by specific

changes in SEPW1 and SEPS1 in response to different treatments

in the present study.

A significant increase was observed in SEPS1 mRNA at week

11, one week after influenza vaccine was administered, but it

should be noted that one limitation of this study was the lack of a

vaccine control group. SEPS1 is known to protect the functional

integrity of the endoplasmic reticulum by the removal of misfolded

proteins and to modulate cytokine production [23,56]. The

modulation of cytokines is hypothesised to function in a regulatory

loop, whereby cytokines elicit increased expression of SEPS1

which then inhibits the production of further cytokines [57]. Our

results are the first observation of a Se dose-specific up-regulation

in SEPS1 mRNA in response to influenza vaccine, as a marker of

immune function effects. The increase in SEPS1 expression in

reaction to such a challenge concurs with its hypothesised key role

in the regulation of cytokines which control the body’s

inflammatory response [56].

In conclusion, SEPW1 and SEPR were not sensitive molecular

markers of exposure to different forms and levels of Se, and did not

significantly change after influenza vaccine challenge in the

population studied. However, quantification of mRNA levels of

SEPS1 in different Se-supplemented groups after influenza vaccine

indicated a dose-specific response in SEPS1 expression after

vaccination. This potentially important finding should be

investigated further, especially in relation to the potential role of

SEPS1 in the immune response.
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