
Bio-Logic Builder: A Non-Technical Tool for Building
Dynamical, Qualitative Models
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Abstract

Computational modeling of biological processes is a promising tool in biomedical research. While a large part of its
potential lies in the ability to integrate it with laboratory research, modeling currently generally requires a high degree of
training in mathematics and/or computer science. To help address this issue, we have developed a web-based tool, Bio-
Logic Builder, that enables laboratory scientists to define mathematical representations (based on a discrete formalism) of
biological regulatory mechanisms in a modular and non-technical fashion. As part of the user interface, generalized ‘‘bio-
logic’’ modules have been defined to provide users with the building blocks for many biological processes. To build/modify
computational models, experimentalists provide purely qualitative information about a particular regulatory mechanisms as
is generally found in the laboratory. The Bio-Logic Builder subsequently converts the provided information into a
mathematical representation described with Boolean expressions/rules. We used this tool to build a number of dynamical
models, including a 130-protein large-scale model of signal transduction with over 800 interactions, influenza A replication
cycle with 127 species and 200+ interactions, and mammalian and budding yeast cell cycles. We also show that any and all
qualitative regulatory mechanisms can be built using this tool.
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Introduction

With the goal of understanding the complexities of various

biological processes, computational modeling is an important part

of Systems Biology. However, despite the excitement around

computational systems biology and its potential, it has been

difficult to fully utilize modeling as part of laboratory research.

This is largely due to a significant gap between the computational

and experimental sides of the science [1]. Specifically, many

computational models (as well as software to simulate and analyze

these models) involve complex mathematics, and hence are limited

in their utility to those with extensive training in computational

methods (modelers). In order to couple computational models

more closely with experimental studies, software tools to build and

simulate models in a non-mathematical fashion will be required to

bridge this gap. [2–6]. While some tools (e.g., GINSim [7] or

Genetic Network Analyzer [8]) allow users to easily ‘‘draw’’ logical

models, for systems with more complex interactions, users are

required to manually define the models’ underlying mathematics.

In this paper, we present a new tool, Bio-Logic Builder, which

allows those without technical knowledge in modeling to build and

modify complex computational, qualitative models without the

need to write or edit any mathematical equations. Becuase models

created in Bio-Logic Builder utilize a commonly used logical

(Boolean) mathematical framework (e.g., [9–12]), no kinetic

parameters (which are generally unavailable or difficult to obtain)

are necessary to specify individual biological/biochemical inter-

actions. Specifically, interactions defined using the Bio-Logic

builder are described by Boolean expressions that users build by

using qualitative descriptives (or ‘‘bio-logic’’ components) generally

used by laboratory scientists to explain the interaction from

experimental studies (e.g., activators, inhibitors, co-factors, etc.).

The presented Bio-Logic Builder was successfully tested on one

of the largest computational models of signal transduction [13] as

well a model of ErbB-regulated cell cycle created by another group

[14]. Furthermore, we used this tool to construct a budding yeast

cell cycle [15,16], and the largest dynamical model of a regulatory

network governing influenza A infection and the virus’ replication

cycle as part of our most recent research. We found that Bio-Logic

Builder was able to handle the regulatory mechanism of all

biological species in the models, regardless of the complexity of the

mechanism. In the results section, a discussion of the algorithm in

more detail, as well as its application to a biological example is

provided. Specifically, we will demonstrate how Bio-Logic Builder

is used to build a very intricate regulatory mechanism of the Rac

protein, which involves 14 upstream regulators. Bio-Logic Builder

is part of a web-based modeling suite, The Cell Collective (http://

www.thecellcollective.org; [17]) which enables models created
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using this tool to be also simulated and/or downloaded and used

by other modeling tools.

Results

Case study: The regulatory mechanism of Rac
Biological interactions defined using the Bio-Logic builder are

described by Boolean expressions that users build by using

qualitative descriptives (or ‘‘bio-logic’’ components) generally used

by laboratory scientists to explain the interaction from experi-

mental studies. Leveraging the qualitative nature in which many

biochemical interactions are discovered, Bio-Logic Builder pro-

vides users with building blocks of two types. First, users can define

modules corresponding to positive and/or negative regulators that

are involved in a given biological interaction (e.g., kinase X

phosphorylates and activates protein Y, as is the case in studies of

biochemical signal transduction). Because only few biological

interactions can be represented as simple positive and/or negative

regulators, users can specify a second type of bio-logic modules.

These modules – ‘‘conditions’’ and ‘‘subconditions’’ – allow users

to describe regulatory mechanism in which the effects of one or

more positive and/or negative regulators depend on an additional

regulators step (e.g., localization, priming, co-factors etc.), and

hence the activation state or presence (or absence) of an additional

regulator (or group of regulators). As a result, the users can define

complex positive and negative regulatory modules much in the

same way biological data and knowledge are discovered in the

laboratory. To demonstrate how Bio-Logic Builder is used to build

biological regulatory mechanisms, in this section is presented a

case study which centers around the construction of a relatively

complex regulatory system of the signaling protein Rac. Note that

a simpler example of how the tool can be used can be viewed in a

tutorial video at http://www.thecellcollective.org.

Rac is an important player in the regulation of many cellular

processes such as cell migration, cytoskeletal reorganization, DNA

synthesis, etc. Rac belongs to the Rho family of small guanosine

triphosphatases (GTPases), a subgroup of the Ras superfamily.

Rac becomes activated when bound to GTP, a process mediated

by guanine nucleotide exchange factors (GEFs). The hydrolysis of

GTP to GDP results in the inactive state of Rac. This conversion

occurs via Rac’s intrinsic GTPase activity and is further

accelerated by GTPase-activating proteins (GAPs). However, in

addition to GAPs and GEFs, Rac’s activity also depends on its

proper localization as well as the activity state of components of

other signaling pathways. A summary of the intricacies involved in

the (de-)activation mechanism of Rac as reported in the

biochemical literature so far follows. (Note that the following

regulatory mechanism of Rac reflects the optimized mechanism

published as part of a validated large-scale model of signal

transduction in a generic fibroblast cell [13].)

In the aforementioned fibroblast model, Rac is defined as ON

when it is GTP-bound and localized in the plasma membrane.

(See Figure 1 for a graphical summary of the mechanism and the

involved species.) RalBP1 [18,19] and p190RhoGAP [20,21] are

GAPs, and hence negative regulators of Rac when GTP-bound

(i.e., active). RhoGDI is also a negative regulator of Rac [20,22–

24] because it sequesters GDP/GTP bound Rac. PAK is be able

to break up Rac-RhoGDI complex and stop the negative

regulation of Rac by RhoGDI [25]. While Akt appears to also

be a negative regulator of Rac [26], based on the context of the

overall network, it was made not dominant over any of the

following positive regulators (and hence does not effect the activity

state of Rac). The activation of Rac is mediated by RasGRF

[27,28], Tiam [24,28,29], Pix/Cool [30,31], or DOCK180 [32–

34]. The effects of these activators is dependent on cell attachment

which is represented in the model by the activity of ECM and

integrins. However, despite the fact that many of the details

haven’t been fully discovered, the activation mechanism of Rac by

Pix/Cool appears to be relatively complex. In addition to the

requirement of cell attachment, there are three different scenarios

under which Pix/Cool modulates the activity of Rac. First, when

the G protein subunits b and c (represented by a single species

Gbc) [35] AND PAK are ‘ON ’ Pix/Cool only activates Rac if

both Cdc42 AND Rac are ‘Off’. Second, when Gbc is inactive,

Pix/Cool activates Rac only if Rac was previously inactive. In

addition, this step also requires the activity of Cdc42. Finally,

when PAK is inactive, Pix/Cool activates Rac only when Cdc42 is

active, Rac was previously inactive, and RhoGDI, as well all other

positive regulators are also inactive [35–38]. (Note that due to

missing information and/or inconsistencies in biological data,

some of the logic of the mechanism might have been adjusted in

the context of the whole model.)

As one can see, the regulatory mechanism of Rac is intricate

and involves a large number of upstream regulators. Specifically,

the activation states of 13 upstream regulators, in addition to the

activation state of Rac in the previous time point have to be

considered, resulting in 14 regulating inputs of Rac. Thus the truth

table representation of the function would require the scientist to

manually fill out 214 (or 16,384) lines of the species’ corresponding

table. The complexity of the regulatory mechanism is also

matched by the underlying Boolean expression representing the

function:

(RasGRF ^ :(RhoGDI ^ :PAK) ^ :(p190RhoGAP ^ Rac)^

:(RalBP1 ^ Rac) ^ ECM ^ Integrins) _ (Tiam ^ :(RhoGDI^

:PAK) ^ :(p190RhoGAP ^ Rac) ^ :(RalBP1 ^ Rac)^

(ECM ^ Integrins)) _ (PixCool ^ :(RhoGDI ^ :PAK)

^ ((PAK ^ Gbc ^ ((:Cdc42 ^ :Rac) ^ (Integrins ^ ECM)))

_ (:Gbc ^ (Cdc42 ^ (Integrins ^ ECM) ^ :Rac)) _ (:PAK^

(:RhoGDI ^ (:DOCK180 ^ :(RhoGDI ^ :PAK) ^ :

(p190RhoGAP ^ Rac) ^ :(RalBP1 ^ Rac) ^ :RasGRF^

:(RhoGDI ^ :PAK) ^ :(p190RhoGAP ^ Rac) ^ :

(RalBP1 ^ Rac) ^ :Tiam ^ :(RhoGDI ^ :PAK) ^ :

(p190RhoGAP ^ Rac) ^ :(RalBP1 ^ Rac))^

(Integrins ^ ECM) ^ Cdc42 ^ :Rac)))) _ (DOCK180^

:(RhoGDI ^ :PAK) ^ :(p190RhoGAP ^ Rac)^

:(RalBP1 ^ Rac) ^ (ECM ^ Integrins))

ð1Þ

Manual creation of the logical expression for a regulatory

mechanism of this size and complexity would be difficult and

error prone. Using Bio-Logic Builder, users can capture the

complex activation mechanism of Rac in non-mathematical

fashion by using the published qualitative information (as

described above) and building the regulatory mechanism in a

modular fashion as detailed below.

The Bio-Logic Builder tool is part of The Cell Collective

modeling suite [17], which can be freely accessed via a web

browser by visiting http://www.thecellcollective.org. From the

Models page, users can either create a new model, or access any of

the existing (e.g., Published) models. New species can be added or

Bio-Logic Builder
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existing species modified under the Model Bio-Logic page. The

Rac species can be found under the Model Bio-Logic of the

‘‘Fibroblast’’ model (under Published models). Clicking the green

‘‘gear wheel’’ icon next to Rac in the species table takes the user to

the Bio-Logic Builder tool where the regulatory mechanism of the

(Rac) species can be defined/modified. The first screen allows the

user to start building/modifying the regulatory mechanism of Rac

by specifying either the positive or negative regulation modules. In

this study case, we will start with the negative regulation modules

in the Negative Regulation Center. (Note that the order in which

the user starts does not result in a different output. Also note that

the species in the Published model are read-only for curation

purposes; to be able to modify the regulatory mechanisms of the

model’s species, a ‘‘private’’ copy of the model can be made from

the Models page by clicking the ‘‘Copy to My Models’’ icon.)

Negative regulation center. As the name suggests, Negative

Regulation Center is where users designate upstream regulation

modules that have a negative (i.e., inhibitory) effect on the species

of interest (Rac in this example). From the regulatory mechanism

described above, the negative regulators of Rac include Akt,

RalBP1, p190RhoGAP, and RhoGDI. As shown in Figure 2A, the

left panel of the page displays the ‘‘Species Palette’’ which is

responsible for the management of all upstream regulators of Rac.

The Species Palette is available to the user throughout the entire

building process so that new species can be added/edited as

needed. By default, the species for which the regulatory

mechanism is being built (i.e., Rac) is automatically added to the

palette. Before the user can designate species as negative

regulators, they first need to be added to the species palette.

Specifying a species as a negative regulator is as simple as drag-

and-dropping a species from the palette into the box in the main

window (Figure 2).

Once Akt, RalBP1, p190RhoGAP, and RhoGDI are designated

as negative regulation modules, conditions can be specified. As

discussed in the previous sections, conditions allow biologists to

specify regulatory scenarios under which a particular upstream

regulator is dependent on the activity state of another species (e.g.,

a co-factor). In our Rac example, RalBP1 and p190RhoGAP are

responsible for removing GTP from a GTP-bound (i.e., active)

Rac and replacing it with GDP, hence inactivating Rac.

Therefore, the effects of these negative regulators are dependent

on the activation state of Rac itself which can be represented as a

condition for the two upstream regulators. Based on the context of

the whole network in [13], the effect of Akt as a negative regulator

is also dependent on the previous activity level of Rac. In the case

of Rho-GDI, PAK can break up the Rac-RhoGDI complex,

hence a condition also needs to be specified for the RhoGDI

module (Figure 2B). Conditions for each of the negative regulation

modules are defined under their respective ‘‘Centers’’ as discussed

below.

The conditions page is accessed from the Negative (Positive)

Regulation Center page by clicking on the Center of the negative

(positive) regulation module for which conditions need to be

added/modified. For example, the conditions page for RalBP1

can be accessed under the ‘‘RalBP1 Center’’. Users can define

conditions as IF/WHEN and UNLESS statements to define

scenarios when the effects of the regulator for which a condition is

being specified depend on the activity state of another biological

species. As mentioned above, the condition associated with Akt,

RalBP1, and p190RhoGAP is that these species are negative

regulators IF/WHEN Rac is ON. In addition, for users’

convenience, each condition can be annotated to reflect its

biological meaning and context. In this case, the condition was

named ‘‘Rac activity’’, but any annotation can be used. In the case

of RhoGDI, its effect on the activity of Rac depends on the

presence/absence of PAK; specifically, RhoGDI acts as a negative

regulator UNLESS PAK is ON. Note that any number of

conditions (and subconditions) can be associated with any

regulator, allowing for the definition of the most complex

regulatory mechanisms. (An example of multi-condition scenario

is presented in the next section.) See Figure 2C for the final

Negative Regulation Center page which summarizes the complete

negative regulation modules of Rac. The ‘‘Done with Negative

Figure 1. Graphical representation of Rac regulatory mechanism.
doi:10.1371/journal.pone.0046417.g001

Bio-Logic Builder
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Regulation Center’’ returns the user to the Center home page

where the Positive Regulation Center can be selected.

Positive regulation center. Positive regulation modules of

the species of interest (e.g., Rac) are specified in the Positive

Regulation Center. As discussed at the beginning of the Case

Study section, the activating species of Rac include RasGRF,

Tiam, Pix/Cool, and DOCK180. Once these species have been

added to the Species Palette, they can be defined as positive

Figure 2. Negative regulation of Rac. A) Main page of the Negative Regulation Center. B) RalBP1 condition page. In order to define the condition
RalBP1 is a negative regulator of Rac only when Rac is on, the user first selects the IF/THEN clause. In order to specify Rac as the conditioned species,
the user can drag it from the Species Palette into the indicated gray box in the main part of the screen. Finally, the conditioned state of Rac (‘‘is ON’’)
needs to be selected. In addition, as indicated by the green buttons, the user can subsequently i) save the condition and either return to the Negative
Regulation Center page or add another condition for RalBP1, ii) discard this condition, or iii) add one or more sub-conditions that will be attached to
the specified condition of RalBP1. The red Previous button takes the user to the previous screen, whereas the Discard All Conditions & Go Back button
removes all conditions and returns the user to the Negative Regulation Center. C) Negative Regulation Center of Rac with all modules fully defined.
doi:10.1371/journal.pone.0046417.g002

Bio-Logic Builder
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regulation modules in a similar fashion as was done with the

negative regulation modules, and was demonstrated in the

Negative Regulation Center section. As the regulatory mechanism

suggests, all positive regulators are dependent on cell attachment,

and hence the activity of ECM and Integrins. Therefore the

positive regulation modules RasGRF, Tiam, and DOCK180 the

condition (named Cell attachment) ‘‘IF/WHEN ECM AND

Integrins are ON’’. However, the conditions associated with the

positive module Pix/Cool are more complicated. As discussed at

the beginning of this case study, there are three nontrivial

scenarios describing the role of Pix/Cool in the regulation of Rac

activity. To capture this complex regulatory mechanism, both

condition and subcondition bio-logic gates are necessary. Sub-

conditions can be specified after clicking the ‘‘Subconditions’’

button on the condition page of the regulation module center.

The three scenarios differ based on the presence and absence of

Gbc and PAK. First, when Gbc AND PAK are ‘ON’ Pix/Cool

only activates Rac if both Cdc42 AND Rac are ‘Off’.In Bio-Logic

Builder, the first scenario is represented as a condition ‘‘IF/

WHEN PAK AND Gbc are ON’’, followed by subcondition

defining the requirement for the absence of Cdc42 and Rac as:

‘‘IF/WHEN Cdc42 AND Rac are OFF’’. Second, when Gbc is

inactive/absent, Pix/Cool activates Rac only if Rac was previously

inactive, and in the presence of Cdc42. This scenario can be

represented as a condition ‘‘IF/WHEN Gbc is OFF’’ which has a

subcondition defined as ‘‘IF/WHEN Cdc42 is ON’’. The third

scenario – where contains Pix/Cool activates Rac when PAK is

inactive only if Cdc42 is ON, Rac was previously inactive, and

RhoGDI and all other positive regulators are OFF – is also defined

as a combination of a condition with subconditions. As done in a

similar fashion above, to indicate the dependence of Pix/Cool on

the absence of PAK, a condition of ‘‘IF/WHEN PAK is OFF’’ is

defined. To add the dependence on Cdc42, RhoGDI, DOCK180,

RasGRF, Tiam and Rac’s previous activation state, the following

subconditions are defined in a co-operative manner: ‘‘IF/WHEN

Cdc42 is ON’’ (for the dependence on Cdc42 activity), ‘‘IF/

WHEN RhoGDI is OFF’’ (for the dependence on the absence of

RhoGDI), ‘‘IF/WHEN DOCK180 AND RasGRF AND Tiam

are OFF’’, and ‘‘IF/WHEN Rac is OFF’’ (for the dependence on

Rac’s previous activation state). In addition, because the activation

of Rac by Pix/Cool is also dependent on cell attachment (similar

to the other positive regulators), all three conditions have the Cell

attachment subcondition (specified above) associated with them.

Screen shots in Figure 3 and Figure 4 show the Pix/Cool condition

page and the summary page of all positive regulation modules,

respectively.

Once all negative and positive regulation modules are defined,

the user is led to the next screen, the Dominance Page. On this

page, users can define the ‘‘strength’’ of each negative module in

terms of how dominant it is over the individual positive regulation

modules. A negative module dominant over all positive regulators

(pre-selected by default) has the largest (negative) effect on the state

of the species of interest, whereas a negative module dominant

over none of the positive modules will have no effect on the activity

of the species.

Once the strength of the negative regulation modules is selected,

the user needs to specify the final component of the regulatory

mechanism building process – the state (active/inactive) of the

species in the case where none of the positive nor negative modules

are active or present in the cell (model). Upon the last page and

component of the Bio-Logic Builder tool, the user can navigate to

the Summary Page (Figure 5). This page displays all regulatory

modules involved in the regulatory mechanism of Rac. The

program builds the mathematical function based on the regulatory

modules specified by the user, and constructs the appropriate truth

table in the background. The generated truth table can then be

plugged into a larger model and simulated/analyzed by one of the

software tools mentioned in the Introduction section. Specifically,

ChemChains, as described in [39], directly supports logical models

represented as truth tables and can be used to easily simulate

models created with Bio-Logic Builder. The truth table and logical

expression for individual species can be downloaded from the

model species page, or a set of all Boolean expressions and truth

tables, as well as the SBML file for the entire model can be

downloaded from the main Models page in The Cell Collective.

Defining the ‘‘head regulator’’ of a positive/negative

regulation module. In Bio-Logic Builder, the head regulators

represent the main positive/negative regulation modules, within

which conditions and subconditions are subsequently added. In

the Rac case study presented in this section, the head regulators of

the negative regulation modules included Akt, RalBP1, p190Rho-

GAP, and RhoGDI, whereas the head regulators of the positive

regulation modules constituted RasGRF, Tiam, Pix/Cool, and

DOCK180 (Figure 1). All of these head regulators had one or

more conditions (and subconditions in the case of Pix/Cool for

example), and hence forming the corresponding regulation

modules. However, what if it is not clear as to which species

should be considered the head regulator and which species should

be the condition building block of the regulation module? How

does one decide which way it be depicted? Does it matter (in terms

of the mathematical representation) which way the module is

represented?

While for many biological interactions it is clear (based on the

available published data) which of the species is considered the

‘‘head regulator’’, there are many instances in which regulatory

mechanisms can be ambiguous and hence become confusing to

the user of Bio-Logic Builder. These few regulatory mechanisms

can even be relatively simple in terms of the number of species

involved in the interaction. For example, consider a hypothetical

biochemical signaling protein X with two phosphorylation sites in

its regulatory region. Let’s assume that, in order to be fully

activated, both of the phosphorylation sites of X need to be

phosphorylated, one by kinase Y and the other one by kinase Z.

From this described situation, one could consider both kinases as

‘‘equal’’ rather than as a ‘‘head regulator’’/‘‘condition’’ relation-

ship. However, based on the Rac case study and the previous

discussions of the Bio-Logic Builder algorithm, one of the kinases

(Y or Z) has to be considered the head regulator, whereas the

other one is represented as a condition (IF/WHEN ON) as part

of the regulation module. Which way this scenario should be

defined, however, is not clear in this example. Nonetheless, it is

important to note that when a number of regulation species

appear to be conceptually equal, Bio-Logic Builder requires one

of these species be selected as the head regulator whereas the

others be considered as a (sub)condition(s). Fortunately, because

of the mathematical relationship between the head regulators and

the conditions, the mathematical representation of the interaction

will be the same in both cases (as detailed in Supporting

Information S1). If such a scenario arises, the user will need to use

their discretion and decide how to represent the regulatory

mechanism.

Algorithm verification
The scalability, uniqueness, predictability, as well as the correctness of

the algorithm underlying Bio-Logic Builder were tested. The

algorithm scalability was addressed by showing (mathematically)

that any Boolean expression for an n-input node can be created

using Bio-Logic Builder (see Supporting Information S1). For

Bio-Logic Builder
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uniqueness and predictability, we show that given unique

combination of user inputs, Bio-Logic Builder generates a

predictable, however, not globally unique result. In other words,

users can obtain the same truth table with k different sets of

regulation modules (k has not been enumerated). On the other

hand, it is not possible for a set of user-defined regulation

modules to generate more than one unique Boolean function.

Hence, Bio-Logic Builder is unique in an unidirectional fashion.

Figure 3. Pix/Cool conditions. As discussed in the main text, the regulation of Rac by Pix/Cool is associated with three different scenarios
described by three conditions (and subconditions which are not displayed). When multiple conditioned species are added as part of a condition (as is
the case with the first condition of the Pix/Cool module, where the activation states of both PAK and Gbc determine the effects of Pix/Cool on Rac),
the user first drags the species of interest into the condition box. Subsequently the user is prompted to select the relationship between the species
(boxed in red). The available relationships include ‘‘Independent’’ and ‘‘Co-operative’’, corresponding to the OR and AND Boolean operators,
respectively. The Co-operative relationship is selected for the first condition of the Pix/Cool module. Note that any number of conditioned species can
be added as part of a condition, and the selected relationship applies to all conditioned species. Similarly when multiple conditions are specified for a
regulation module (as is the case with the Pix/Cool module), the user needs to also specify either an Independent or Co-operative relationship for the
conditions (highlighted in blue). In the case of Pix/Cool, there are three independent conditions.
doi:10.1371/journal.pone.0046417.g003

Bio-Logic Builder
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This k:1 relationship between sets of user inputs and the unique

Boolean functions provides users with flexibility in the concep-

tual interpretation of a given regulatory mechanism. Detailed

discussions of scalability, uniqueness, and predictability can be

found in the Scalability of the Bio-Logic Builder Algorithm and

Predictability, Uniqueness and Correctness of the results of the Bio-Logic

Builder Algorithm sections in Supporting Information S1, the

results of these analyses of the algorithm are summarized in this

section. The correctness of the algorithm is also addressed in

Supporting Information S1. Therein we detail how Bio-Logic

Builder generates the correct Boolean function of a biochemical

species using the defined set of positive/negative regulation

modules.

Usability and intuitiveness of the graphical user interface
The usability and intuitiveness of Bio-Logic Builder was tested

by creating some of the most complex regulatory mechanisms

included in one of the largest models of signal transduction (135

molecular species with hundreds of biochemical interactions, [13]),

as well as other models such as yeast cell cycle [15,16], ErbB-

stimulated G1/S cell cycle transition [14], and Influenza A

replication cycle (manuscript in preparation, however, the model is

available in The Cell Collective [17]).

Model simulations
Because models constructed in the presented tool are described

using standard Boolean formalisms, they can be simulated by a

Figure 4. Positive Regulation Center of Rac with all regulation modules fully defined.
doi:10.1371/journal.pone.0046417.g004

Bio-Logic Builder
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Figure 5. A screen shot of the Summary Page of the Rac regulatory mechanism.
doi:10.1371/journal.pone.0046417.g005

Bio-Logic Builder
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large number of software tools. In addition to the previously

mentioned Cell Collective (whose simulation engine is based on

ChemChains [39]), additional examples of tools able to simulate

Boolean models include BooleanNet [40], BoolNet [41], GINSim

[7], or Genetic Network Analyzer [8].

Conclusions

The lack of simple-to-use tools for creating/editing and

simulating computational models plays a significant role in the

gap that exists between the computational and experimental sides

of biomedical research [6]. With Bio-Logic Builder, we were able

to capture the qualitative nature of computational models and

translate it into a math-friendly and relatively intuitive user

interface that allows users to build complex biological interaction

without the need to enter or edit any mathematical equations.

This was accomplished by generalizing the relationships between

biological regulatory components to qualitative relationships, or

bio-logic gates. To the users, these bio-logic gates appear as

black-boxes in which the mathematical functions are generated in

the background based on the gates’ properties (i.e., conditions

and subconditions). Using purely qualitative information directly

generated in the laboratory and published in the literature, we

demonstrated how Bio-Logic Builder is used to build the 14-

component regulatory mechanism of the Rac protein without the

need for a direct interaction with mathematical equations. To test

the scalability of the software we show (mathematically) that the

algorithm can be used to build any mathematical representation

of a biological process. Furthermore, to verify the user-

intuitiveness of the tool, we used Bio-Logic Builder to create

some of the most complex signaling regulatory mechanisms of an

existing models [13,14,16] All of these models are available to the

scientific community in The Cell Collective (http://wwww.

thecellcollective.org; [17]). A current limitation of the software

includes the inability to import models created by others. This is

largely due to the fact that current exchange standards such as

SBML lack support for qualitative models. However, a new

extension of SBML, compatible with these models, is already

under development (http://sbml.org/Community/Wiki/

SBML_Level_3_Proposals/Qualitative_Models). Once its devel-

opment is completed, a feature to import models will be also.

Methods

Implementation
Bio-Logic Builder is a server-based tool implemented in Java

and powered by MySQL database. The user interface was

implemented primarily using JavaServer Faces (http://www.

javaserverfaces.org) and Primefaces (http://www.primefaces.org).

Boolean models
Boolean modeling is a (kinetic) parameter-free modeling

approach based on qualitative data (e.g., kinase X phosphorylates

and activates protein Y). Boolean models consist of i) components

(or nodes) that correspond to biochemical species (such as proteins,

genes, etc.) and ii) directed edges representing the interactions

between the components (e.g., protein-protein interactions). Each

node can assume one of two states - ON/active or OFF/inactive

(or 1 and 0, respectively).

Which state a node will assume at any given time is determined

by the node’s Boolean function. Boolean functions can be

represented in various ways such as truth tables or Boolean

expressions. As an example, consider a hypothetical simple two-

node model in Figure 6A. In this particular model, node P

activates node Q and vice versa. In addition, both nodes can self-

activate.

The truth tables depicting regulatory mechanisms of nodes P
and Q are illustrated in Figure 6B. The left-hand side of the tables

contains all theoretically possible combinations of the ON/OFF

states (of which there are 2n) of the input nodes, whereas the right-

most column of the tables corresponds to the Boolean value of the

node (referred to as ‘‘output node’’) for the particular state

combination of the input nodes. As can be seen from the truth

table representation, the functions of both nodes P and Q
correspond to a simple OR function, which can also be

symbolically represented as a Boolean expression as:

P _Q

User input and algorithm structure
Main regulators. At the most basic level of a biological

regulatory mechanism, users can define positive regulation and

negative regulation modules (activator and inhibitors, respectively).

Users also define the dominance of individual negative regulators

over positive regulators (if applicable). Finally, users specify the

state of the biological entity in the absence (i.e., inactivity) of all

positive and negative regulators. These regulatory definitions are

subsequently used by the software to create the Boolean function

representing a regulatory mechanism of a given species as follows.

All main positive/negative regulators are defined as indepen-

dent modulators of the given species. Hence the Boolean

expression is constructed by concatenating all positive regulators

using the Boolean OR operator (Figure 7A). As also illustrated in

the figure, negative regulators defined in the Bio-Logic builder are

then appended (AND‘ed) in a negated form to the positive

regulators. The set of negative regulators that is appended to each

individual positive regulator is determined by the dominance of

the corresponding negative regulator selected by the user. For

example, if NR1 and NR2 are specified to be dominant over PR1,

the corresponding part of the Boolean expression will be the

following:

(PR1 ^ :(NR1 _NR2)):::

If NR3 is specified as the only negative regulator dominant over

PR2, the Boolean expression will be constructed as:

(PR2 ^ :(NR3)):::

Conditions and subconditions. Users may define complex

regulatory mechanisms using conditions and subconditions that

Figure 6. A sample two-node toy model. A) Static diagram
representing the relationship between the nodes. B) Truth table
representations of the Boolean functions for nodes P and Q.
doi:10.1371/journal.pone.0046417.g006
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are applied to a (positive/negative) regulation module. Each

positive or negative regulator can have n conditions. Each

condition is constructed as a Boolean expression substring which

is subsequently appended (AND‘ed) to the positive or negative

regulatory element (Figure 7B). Furthermore, each condition can

have m subconditions. Similar to the conditions, each subcondition

is a Boolean expression substring that is appended (AND‘ed) to the

corresponding conditio (Figure 7C).
Co-operative versus independent relationships. When

defining a condition or subcondition, multiple regulators may be

specified. In this case, the user must specify the relationship

between the regulators. This may be co-operative or independent.

As illustrated in Panels B and C in Figure 7, in a co-operative

relationship, the elements are combined with the AND operator,

whereas in an independent relationship, the elements are

combined with the OR operator.

As mentioned in the Conditions and subconditions section above,

multiple (sub)conditions can be defined. Similar to having multiple

components for each (sub)condition, the user must specify the co-

operative or independent relationship for the (sub)conditions that

are subsequently combined to the corresponding Boolean expres-

sion (Figure 7B and C).
IF/WHEN and UNLESS statements of conditions and

subconditions. Each (sub)condition is defined by combining

the ‘‘IF/WHEN’’ or ‘‘UNLESS’’ statements with a list of

regulators that are specified as either Active or Inactive. In terms

of a Boolean expression, the specifying IF/WHEN Inactive or

UNLESS Active for a given (set of) regulators corresponds to the

Boolean NOT operator. (As mentioned above, multiple (sub)-

condition regulators are defined, the user must specify whether the

regulators are co-operative or independent.

For example, the condition ‘‘IF/WHEN A, B, C ARE OFF’’ (A,

B, and C are co-operative regulators) corresponds the following

Boolean expression:

(:A ^ :B ^ :C)

Also, ‘‘UNLESS A B C IS ON’’ (A, B, and C are independent

regulators) is interpreted as:

(:A _ :B _ :C)

Software output
Once a user defines the regulatory mechanism of a biological

species of interest, Bio-Logic Builder generates the corresponding

Boolean function in the form of a Boolean expression as well as a

truth table which can be saved in text and tab-delimited (.csv) files,

respectively. Because both formats are standard representations of

Boolean functions, they can be subsequently read and evaluated

by other simulation software tools. Furthermore, the regulatory

mechanisms defined in Bio-Logic Builder can be also exported in

the Systems Biology Markup Language format (SBML [42]; based

on the most recent version of the L3 extension for qualitative

models [43]).

Availability and requirements
Bio-Logic Builder is freely available as part of The Cell

Collective modeling platform (http://www.thecellcollective.org;

[17]). The software has been optimized for the Firefox and

Chromium web browsers, and also works in the Opera and

Internet Explorer web browsers.
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