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Abstract

Polysulfone (Psf) hollow fiber membranes (HFMs) have been widely used in blood purification but their biocompatibility
remains a concern. To enhance their biocompatibility, Psf/TPGS (d-a-tocopheryl polyethylene glycol 1000 succinate)
composite HFMs and 2-methacryloyloxyethyl phosphorylcholine (MPC) coated Psf HFMs have been prepared. They have
been evaluated for in vivo biocompatibility and graft acceptance and compared with sham and commercial membranes by
intra-peritoneal implantation in rats at day 7 and 21. Normal body weights, tissue formation and angiogenesis indicate
acceptance of implants by the animals. Hematological observations show presence of post-surgical stress which subsides
over time. Serum biochemistry results reveal normal organ function and elevated liver ALP levels at day 21. Histological
studies exhibit fibroblast recruitment cells, angiogenesis and collagen deposition at the implant surface indicating new
tissue formation. Immuno-histochemistry studies show non-activation of MHC molecules signifying biocompatibilty.
Additionally, Psf/TPGS exhibit most favorable tissue response as compared with other HFMs making them the material of
choice for HFM preparation for hemodialysis applications.
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Introduction

Membrane technology has proven vital in blood purification

applications, especially hemodialysis. In hollow fiber membranes

(HFMs), purification is achieved by regulating blood flow through

the lumen as the dialysate flows counter-currently outside. The

porous structure of the membrane facilitates diffusion of uremic

toxins like urea, creatinine etc. from blood to dialysate without the

loss of important blood proteins such as albumin. Desirable

characteristics of such HFMs include high flux, selectivity and

biocompatibility [1]. However, commercially available and most-

widely used polysulfone (Psf) hemodialysis membranes have

repeatedly been shown to be associated with clinical complications

like hypersensitivity reactions, neutropenia, oxidative stress,

contact and complement activation [2–5]. This translates into

decreased quality of life, life expectancy and mortality of

hemodialysis patients and has limited the success rates of such

membranes [6,7]. Thus, there is a need to enhance the

biocompatibility of such membranes without compromising flux

and selectivity.

Biocompatibility is the most desirable property of a biomaterial,

of being biologically compatible by not producing a toxic,

injurious and immunological response in living tissues or blood

for the case of extra-corporeal devices [8]. The most commonly

accepted mode of improving HFM biocompatibility has been

modification of surface chemistry. Ishihara et al. achieved

improved hemocompatibility of cellulose membranes under in

vitro conditions by grafting with 2–methacryloyloxyethyl phos-

phorylcholine (MPC) polymers [9]. Polyacrylonitrile dialysis

membranes, modified by covalent immobilization of chitosan/

heparin polyelectrolyte complexes, exhibited improved antithrom-

bogenicity and reduced platelet adhesion, thrombus formation and

protein adsorption [10]. In our earlier studies on NIH3T3 cells, we

showed that impregnation of d-a-tocopheryl polyethylene glycol

1000 succinate (TPGS) in Psf matrices enhances the biocompat-

ibility of native HFMs [11]. However, definitive in vivo studies are

required to assess the biocompatibility of such surface modified

HFMs before their practical application in hemodialysis.

During a typical hemodialysis procedure, blood is circulated at

200 ml/min through HFMs (surface areas ,1–2 m2) for 3–5 h

thrice a week and such procedures lasts throughout the life of a

renal failure patient [12]. The continuous, long-term exposure of

blood to such membranes initiates various cellular reactions and

protein conformational changes, depending on the physico-

chemical nature of HFM surface. Hence, as per ISO 10993-1,

systemic toxicity evaluation of membrane material for a week is

necessary before hemodialysis trials [13]. These evaluations

require studies on circulating blood for which number of animal

models have been used [14]. Intra-peritoneal implantation in rats

is a proven method for systemic evaluations, since it exposes the

samples to both fluid and a variety of mesenchymal cell types of

abdominal cavity [15].
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In the present study, we have evaluated the in vivo

biocompatibility of modified Psf/TPGS composite HFMs and

inner-surface coated MPC/Psf HFMs on Wistar rat model. The

effects of implanted membrane material on vital organ systems

such as liver, kidney etc. have been studied by hematology, serum

biochemistry and peritoneal fluid cytology. Tissue and immuno-

logical responses to HFMs have been evaluated using histopath-

ological observations and immuno-histochemistry. These studies

exhibit that Psf/TPGS membranes exhibit improved biocompat-

ibility as compared to the other studied membranes and are

suitable for practical hemodialysis applications.

Results and Discussion

Gross Observations
In any in vivo implant study the change in body weight is an

essential parameter to judge health of animal model. The basal

and final weights of rats at the time of implantation and after

exposure are shown in Table 1. After HFM exposure for 7 days,

the body weights of rats of normal, sham, Psf/TPGS and

Hemoflow F6 groups were increased by 20–30 gm and for Psf

and Psf/MPC groups, by 8–9 gm. By the 21st day, the increase in

body weight was 40–50 gm across all groups indicating healthy

condition of rats. Figure 1a and 2b are the camera images of Psf

HFMs implants in peritoneal cavity on day 7 and 21, respectively.

Both cases exhibit tissue formation on day 7 which becomes

distinct and accompanied by angiogenesis on day 21.

Blood Hematology and Serum Biochemistry Study
Blood hematology studies are carried out to determine surgery-

associated infections during implantation while serum biochemis-

try studies indicate functionalities of vital organs such as liver and

kidney. CBCs, differential leukocyte counts and serum protein

levels in blood of all groups after days 7 and 21 are listed in data

S1. CBCs across all groups were within the normal range [20]

after 7 and 21 days indicating that the implantation procedures

were devoid of any infections.

Slightly increased neutrophil numbers in Leukocyte differential

count on day 7 for Psf, Psf/TPGS, Psf/MPC and Hemoflow F6

groups indicated the presence of a mild inflammatory response as

compared to control and normal groups. These numbers subsided

and reached the normal level on the 21st day of implantation. This

is a usual phenomenon, which occurs in response to foreign

implants and is characterized by reduction in the inflammatory

response with increase in the implantation period [21].

In serum biochemistry measurements (data S1), liver enzymes

and serum proteins of all groups were within the normal range on

days 7 and 21. However, as compared to day 7, the ALT, AST,

and ALP enzyme concentrations for Psf, Psf/TPGS, Psf/MPC

and Hemoflow F6 groups were elevated on day 21 and were even

greater than the sham group. ALP has been documented as a

possible marker for wound healing [22] and may also indicate

tissue repair and angiogenesis. The observed ALP increase in

implanted groups only may, thus, be due to these processes. The

creatinine and blood urea nitrogen (BUN) values were within

normal ranges for all groups indicating healthy and functional

condition of kidney. Since all the implants are non-biodegradable

and non-leachable, so no malfunction of liver and kidney was

observed.

Peritoneal Fluid Cytology
Differential leukocyte counts performed on peritoneal fluid

collected on days 7 and 21 are listed in Table 2. As an initial

response to HFM implants, increased polymorphonucleocyte

(PMN) numbers were observed in the peritoneal fluid at day 7

when compared to the sham and normal groups. However at day

21, these numbers were within the normal range. The elevated

numbers may be due to the surgical procedure. Similar trends

were observed for neutrophils in differential leukocyte counts,

indicating the presence of post-surgical stress which subsides with

time. The decrease in this stress occurs because of wound healing

and tissue formation as the time progresses.

Tissue-HFM interaction study by Scanning Electron
Microscopy

SEM provides high resolution direct information on tissue-

biomaterial interactions with minimal sample preparation as

compared to histology. Further, histological sample preparation

causes implant detachment from tissues and this information is

preserved during SEM sample preparation. The SEM micro-

graphs of HFM implanted groups at day 21 are shown in Figure 2.

Dense tissue integration with the implant was observed in all the

cases (see inset micrographs). No masses were observed in the

implant bores or lumens. Degradation and material surface

changes due to body fluids were not observed. However, it is

difficult to extract detailed information about surrounding tissue/

cells type from these micrographs because of surface similarities in

different types of cells.

Histological Study of Implants
The optical microscopy based histological evaluation of tissues

surrounding the implant provides morphological and pathological

analysis. Tissue reactions in the implanted groups are summarized

in Table 3 and optical micrographs of respective histological

sections at day 7 and day 21 are shown in Figure 3. On day 7 post-

implantation, a relatively greater infiltration of polymorphonucle-

Table 1. Basal and final weight of normal, sham surgeries and implanted rats.

Day 7 (in gm) Day 21 (in gm)

Sample Type Basal Weight Final Weight Basal Weight Final Weight

Normal 150.00614.14 169.50630.60 170.50630.40 220.5063.53

Sham Surgeries 150.50616.26 180.0065.66 173.0062.83 220.0061.41

Psf 156.33616.77 165.33622.37 165.3362.08 213.00617.35

Psf/TPGS 165.67615.95 189.3368.33 154.3369.07 191.0069.90

Psf/MPC 164.00610.15 172.3360.58 159.67613.65 206.33617.62

Hemoflow F6 134.33622.55 165.33614.22 180.0068.00 227.0066.56

doi:10.1371/journal.pone.0025236.t001

In Vivo Biocompatibility of Psf Hollow Fibers
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ars (PMNs) and macrophages into the surrounding tissues of MPC

and Hemoflow F6 implants was observed as compared to the Psf

and Psf/TPGS implants. However, infiltration of fibroblasts

surrounding the implant and degrees of angiogenesis were more

prominent for Psf and Psf/TPGS implants than Psf/MPC and

Hemoflow F6 implants. On day 21, fibroblast recruitment was

enhanced, while angiogenesis remained the same for all cases as

compared to day 7. PMN, macrophage and lymphocyte

infiltrations were reduced on day 21 as compared to day 7.

Similar trends of reduction in PMNs, macrophages and lympho-

cytes with time upon implantation of disulfide-crosslinked

hyaluronan films have been reported earlier [23].

Collagen deposition is vital for new tissue formation and its

distribution and extent can be studied by Masson’s trichrome

staining. Figure 4 shows the optical micrographs of Masson’s

trichrome stained sections of different groups at days 7 and 21. On

day 7 post-implantation, thin collagen bundles (t) were observed

for all implants, while thick collagen bundles (T) were observed on

day 21. The increased collagen deposition may be due to increase

in fibroblast numbers (Table 3) which secrete collagen and is an

indicator of tissue formation. It has also been reported earlier for

poly(l-lactide-co-e-caprolactone) scaffolds implanted subcutaneou-

sely [24].

These histological studies exhibit favorable tissue response to all

implants indicating biocompatibility. However, the Psf/TPGS

group showed minimum lymphocytes and maximum fibroblasts

and angiogenesis (Table 3). These observations indicate that Psf/

TPGS achieves better tissue response as compared other HFM

implants, including commercial HFMs. This may be due to the

presence of TPGS, which leaches and cleaves into vitamin E and

polyethylene glycol moieties by enzymatic reactions [25]. Vitamin

E, a proven anti-oxidant [26], causes a reduction in implant-

associated oxidative stress and contributes to the better perfor-

mance of the Psf/TPGS implant.

Immunohistochemistry by Confocal Microscopy
Studies of immunological response of tissues with HFM

implants are vital for assessing host-verses-graft (implant) reactions.

HLA-DR is constitutively expressed on antigen-presenting im-

mune system cells like dendritic cells, B cells, and monocytes/

macrophages and its expression is further up-regulated upon

activation. It is, thus, considered as an essential marker for

activation of immune system [27,28]. The confocal micrographs of

normal peritoneal tissue and implanted groups stained with DAPI

for nuclei and phycoerythrin (PE) conjugated HLA- DR antibody

for MHC at day 21 are shown in Figure 5. The micrographs

Figure 1. Interaperitoneal implantation of HFM. Images of Psf implants in peritoneum during excision in CO2 euthanized rat at days 7 (a) and
days 27 (b).
doi:10.1371/journal.pone.0025236.g001

Table 2. Leukocyte differential counts for peritoneal fluid after HFM implantation.

Sample Type
Incubation Time
(days) PMN* Mononuclear** Lymphocytes Eosinophils Basophils

Normal (Without Surgery) 7 2162 6166 1663 160 160

Sham Surgeries 7 3061 5162 1562 160 160

Psf 7 4263 4062 1563 261 160

Psf/TPGS 7 3963 4161 1763 261 160

Psf/MPC 7 4264 4164 1460 261 160

Hemoflow F6 7 3963 4364 1562 261 160

Normal (Without Surgery) 21 1962 6164 1863 160 160

Sham Surgeries 21 2061 6662 1162 261 160

Psf 21 2162 6165 1562 260 160

Psf/TPGS 21 2562 5764 1663 261 060

Psf/MPC 21 2462 6062 1363 261 160

Hemoflow F6 21 1962 6564 1562 160 060

(*PMN = polymorph nucleocytes, i.e. granulocytes; **Mononuclear = monocytes, macrophages, and mesothelial).
doi:10.1371/journal.pone.0025236.t002
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showed distinct nuclei of cells surrounding the implants; however,

fluorescence due to PE was not observed indicating non-activation

of immune cells in the tissues surrounding the implants. Also,

peritoneal fluid cytology showed normal leukocyte differential

count in implanted rats. This supports non-activation of immune

system at the implant site and indicates acceptance of the implants

by the animals.

Psf-based implants with different surface charcateristics were

evaluated for their in vivo biocompatibility in rat model. These

implants exhibited improved biocompatibility over commercially

available membranes. The post-implantation CBC, renal and

liver function tests indicated normal health of rat signifying

absence of infections due to surgical procedures. Peritoneal fluid

cytology exhibited elevated PMNs at day 7 post-implantation due

to initial inflammation which returned within the normal range

by day 21 indicating absence of chronic inflammation. Histopa-

thology studies revealed abundunt fibroblast and angiogenesis in

the tissues surrounding Psf/TPGS implants as compared to Psf,

Psf/MPC and Hemoflow F6 implants indicating imporved

biocompatiblity of Psf/TPGS implants attributable to the cleaved

Vitamin E moiety. Immune responses against all the implants

were absent. This study may be useful for generation of hollow

fiber based vascular grafts which are able to grow within the

peritoneal cavity.

Materials and Methods

Ethics Statement
All the animal experimental protocols were approved by

Committee for the Purpose of Control and Supervision of

Experiments on Animals (CPCSEA), India and animal ethical

committee of Mumbai Veterinary College (MVC), Mumbai.

Preparation of Hollow Fiber membrane
Psf (UDELTM P-3500 LCD MB7-BULK) was procured from

M/s. Solvay Advanced Polymers, USA and dried in vacuum oven

Table 3. Inflammatory evaluation of intraperitoneal HFMs implants.

Implantation
Period (days) Implant Type PMC Macrophages Lymphocytes Fibroblast Angiogenesis Collagen Bundles

7 Psf ++ + + + ++ Thin

21 Psf + + + ++ ++ Thick

7 Psf/TPGS + + + ++ ++ Thin

21 Psf/TPGS + ++ + +++ ++ Thick

7 Psf/MPC + + ++ ++ ++ Thin

21 Psf/MPC + ++ + +++ ++ Thick

7 Hemoflow F6 ++ + ++ + + Thin

21 Hemoflow F6 + ++ + ++ ++ Thick

doi:10.1371/journal.pone.0025236.t003

Figure 2. Tissue-HFM interaction study by Scanning Electron Microscopy. SEM micrographs of HFMs implants at day 21 (a) Psf (b) Psf/TPGS
(c) MPC coated Psf and (d) Hemoflow F6 showing integration developed tissue with HFMs implants [scale bar: (a) 500 mm and (b), (c), (d) 1 mm (inset:
(a), (b), (c) and (d) 100 mm)].
doi:10.1371/journal.pone.0025236.g002
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Figure 3. Histopathological analysis of implant by hematoxylin and eosin stain. Optical photomicrograph of hematoxylin and eosin
stained tissue section of normal rat peritoneum at day 7 (a) and day 21 (b); Psf HFMs implants at day 7 (c) and day (d); Psf/TPGS HFMs implants at day
7 (e) and day 21 (f); Psf/MPC HFMs implants at day 7 (g) and day 21(h); Hemoflow F6 HFMs implants at day 7 (i) and day 21 (j). Arrow head, cross and
big white arrow denotes fibroblast, angiogenesis and interface of implant with tissue respectively. [Scale bar: 100 mm (inset: 20 mm)]. Note: Psf/TPGS
(e and f) and Psf/MPC (g and h) implants were detached during tissue processing for histology, but tissue interface with implants are distinctly visible.
doi:10.1371/journal.pone.0025236.g003
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Figure 4. Histopathological analysis of implant by Masson’s trichrome stain. Optical photomicrograph of Masson’s trichrome stained tissue
section of normal normal rat peritoneum at day 7 (a) and day 21 (b); Psf HFMs implants at day 7 (c) and day 21 (d); Psf/TPGS HFMs implants at day 7
(e) and day 21 (f); Psf/MPC HFMs implants at day 7 (g) and day 21 (h); Hemoflow F6 HFMs implants at day 7 (i) and day 21 (j). The symbols t and T
denotes thin, thick blue collagen bundles respectively, while arrow shows interface implant with tissue. [Scale bar: 100 mm (inset: 20 mm)]. Note:
Some hollow fiber implants are detached (c, d, e, f, and g) during processing for histology.
doi:10.1371/journal.pone.0025236.g004
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for 24 h at 90uC to remove absorbed water. Vitamin E TPGS (NF

grade) and MPC polymers PC 2118 [Poly(2-methacryloylox-

yethyl)-29-(trimethylammoniumethyl) phosphate, inner salt)-co-(3-

(trimethoxysilyl)propyl methacrylate)-co-(hydroxypropyl methac-

rylate)] were generously gifted by M/s. Isochem SA (Paris, France)

and M/s. Vertellus Specialties Inc., (Basinstoke, UK), respectively.

The solvent, N-methyl2-pyrrolidone (NMP), was procured from

S.D. Fine-Chem Ltd., India. Psf and Psf/TPGS composite HFMs

were prepared as per the conditions and compositions listed in

Table 4. The prepared fibers were kept in water for one day to

remove the residual solvent and then used for further studies.

Implantation of HFM into Peritoneal Cavity
Wistar female rats (age group of 4–5 weeks) were procured from

Bombay Veterinary College animal house and were housed under

controlled conditions of light (12 h light and 12 h darkness),

temperature (24uC) and humidity (50%) and maintained on

normal chow and water.

Recipient rats were anesthetized (ketamine-80 mg/kg and

xylazine-8 mg/kg, i.p.), shaved, and cleaned and were subjected

to a laparotomy through a 1 cm long incision on the lower right

abdominal wall. The exposed area was kept moist with normal

saline swab. A bunch of three HFMs (each 1.5 cm long) was slowly

delivered inside the peritoneal cavity. Finally, the peritoneum and

skin were sutured using absorbable 6–0 catgut sutures (Stericat

Gutstrings, Delhi). Approximately 2 mm part of the HFMs was

kept above the peritoneum while suturing to avoid implant

dislocation.

The study consisted of 6 groups (n = 3) corresponding to Psf,

Psf/TPGS, Psf/MPC HFMs and commercial membranes (Hemo-

flow F6, Fresenius Medical Care), normal (no surgery) and sham

(surgery without implant). Samples were assessed on day 7 and day

21. All rats (control and experimental) received an i.p. injection of

gentamycin (3 mg/kg body weight), ampicillin and cloxacillin

(20 mg/kg body weight) and diclofenac sodium (0.5 mg/kg body

weight) for 3 days (starting from the day of operation) in addition

to the topical ointments (SoframycinH, Aventis Pharma. Ltd.,

Pune, India) and placed in a cage on a heating pad.

Figure 5. Immunohistochemistry of implants. Confocal laser
micrographs of immunohistochemical stained tissue of (a) Psf HFMs, (b)
Psf/TPGS HFMs, (c) Psf/MPC HFMs and (d) Hemoflow F6 HFMs implants
with DAPI for nuclei (blue) [scale: 100 mm].
doi:10.1371/journal.pone.0025236.g005

Table 4. Process parameters used for hollow fiber membrane preparation.

Parameters Psf HFMs Psf/TPGS HFMs MPC coated Psf HFMs (Psf/MPC)

Ambient Temperature (uC) 25 25 25

Relative Humidity (%) 50–60 50–60 50–60

Dope Solution Composition Psf/NMP (25/75) Psf/TPGS/NMP (25/20/55) Psf/NMP (25/75)

Bore Solution Composition DI Water DI Water 10 mg/ml PC 2118 in DI water

Dope Solution Temperature (uC) 25 25 25

Bore Solution Temperature (uC) 25 25 25

Dope Flow Rate (ml/min) 2 2 2

Bore Flow Rate (ml/min) 2.5 2.5 2.5

Spinneret ID/OD (mm) 0.8/1.4 0.8/1.4 0.8/1.4

Air Gap (cm) 45 45 45

Coagulation Bath Composition RO Water RO Water RO Water

Rinse Bath Composition RO Water RO Water RO Water

Coagulation Bath Temperature (uC) 25 25 25

Rinse Bath Temperature (uC) 35 35 35

Take-up Drum Velocity (m/min) 3.89 3.01 3.89

doi:10.1371/journal.pone.0025236.t004
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Hematology and Serum Biochemistry of transplanted rats
A complete blood count was performed for diagnosis of

infections and inflammatory responses. Retro-orbital blood

collection was performed in two vials (with and without heparin,

1 ml each) as described by Sorg and Buckner [16] on days 7 and

21. The heparin (2 IU/ml) containing vial was used for

hematological studies, while second vial without heparin was used

for serum biochemistry study. Complete Blood Count (CBC) was

performed using Abacus (Diatron MI PLC, Hungary) hematology

analyzer, while serum biochemistry evaluation was done on Erba

Chem 7 (Erba Mannheim, Germany) semi-autoanalyzer using

commercial reagent kits.

Peritoneal Fluid Cytology
Peritoneal fluid cytology was carried out for evaluating

inflammatory responses due to implantation. On days 7 and 21,

three rats from each group were scarified by euthanizing in a CO2

chamber and their abdominal cavities were exposed. The cavities

were filled with 5 ml of chilled phosphate buffer saline (PBS) and

were massaged gently for 3–5 min. The PBS solution was

aspirated; cytospinned and stained using Wright-Giemsa stain

(Sigma Aldrich, MO, USA). The slides were then air-dried and a

leukocyte differential count was performed by counting the cells in

a standard clinical hemocytometer.

Histological Study of Implants
Histopathological evaluation was carried out on days 7 and 21

for sacrificed rats from all the different groups. HFM implants

along with the surrounding tissue were excised and fixed with 10%

formalin, embedded in paraffin, sectioned (2–3 mm thick) with a

microtome at three different distances from the surface, and

stained with hematoxylin and eosin (H&E) (Sigma Aldrich, MO,

USA) as per standard protocol [17]. Sections were then examined

for the presence of fibrin, exudates, induction of vascularization,

and formation of fibrous capsule. Sections were also stained with

Masson’s Trichrome and observed for extent and distribution of

collagen fibers in tissue [18].

Scanning electron microscopy (SEM) Study
Fixed HFM implants with tissue were sectioned with a sharp

cutter, dehydrated with graded alcohol and dried at room

temperature. These samples were coated with gold/palladium

using SC7640 Sputter Coater (Quorum Technologies Ltd, UK)

and observed under scanning electron microscope (Hitachi, S-

3400 N, UK).

Immunohistochemistry Study
Implant sections were prepared as described above. Paraffin was

removed using xylene and the sections were hydrated using a series

of washes in graded alcohol. The sections were then washed with

PBS and heated in 10 mM sodium citrate using microwave oven

for antigen retrieval. They were fixed with 4% paraformaldehyde

for 20 min, washed with PBS and permeabilized using 0.1%

triton-x solution [19]. This was followed by exposure to

phycoerythrin (PE) conjugated HLA- DR antibody (Santa Cruz

Biotechnology, Inc., CA, USA) (1:200) for 1 h in dark at room

temperature to stain major histocompatibility complex (MHC)

antigens. Finally, sections on glass slides were mounted using an

antifade-containing mounting medium (Vectashield, Vector labo-

ratories, Burlingame, USA) and 49,6-diamidoino-2-phenylindole

(DAPI) (Sigma-Aldrich, USA). Images were captured using a

Zeiss-LSM 510 laser scanning confocal microscope (Carl Zeiss

Meditec AG, Jena, Germany) using 106 objectives.

Supporting Information

Data S1 Hematology and serum biochemistry of blood
collected on day 7 & 21.
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