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Abstract

Background: Induction of osteolytic bone lesions in multiple myeloma is caused by an uncoupling of osteoclastic bone
resorption and osteoblastic bone formation. Current management of myeloma bone disease is limited to the use of
antiresorptive agents such as bisphosphonates.

Methodology/Principal Findings: We tested the effects of daily administered parathyroid hormone (PTH) on bone disease
and myeloma growth, and we investigated molecular mechanisms by analyzing gene expression profiles of unique
myeloma cell lines and primary myeloma cells engrafted in SCID-rab and SCID-hu mouse models. PTH resulted in increased
bone mineral density of myelomatous bones and reduced tumor burden, which reflected the dependence of primary
myeloma cells on the bone marrow microenvironment. Treatment with PTH also increased bone mineral density of
uninvolved murine bones in myelomatous hosts and bone mineral density of implanted human bones in nonmyelomatous
hosts. In myelomatous bone, PTH markedly increased the number of osteoblasts and bone-formation parameters, and the
number of osteoclasts was unaffected or moderately reduced. Pretreatment with PTH before injecting myeloma cells
increased bone mineral density of the implanted bone and delayed tumor progression. Human global gene expression
profiling of myelomatous bones from SCID-hu mice treated with PTH or saline revealed activation of multiple distinct
pathways involved in bone formation and coupling; involvement of Wnt signaling was prominent. Treatment with PTH also
downregulated markers typically expressed by osteoclasts and myeloma cells, and altered expression of genes that control
oxidative stress and inflammation. PTH receptors were not expressed by myeloma cells, and PTH had no effect on myeloma
cell growth in vitro.

Conclusions/Significance: We conclude that PTH-induced bone formation in myelomatous bones is mediated by activation
of multiple signaling pathways involved in osteoblastogenesis and attenuated bone resorption and myeloma growth;
mechanisms involve increased osteoblast production of anti-myeloma factors and minimized myeloma induction of
inflammatory conditions.
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Introduction

Multiple myeloma (MM), a hematologic malignancy of

terminally differentiated plasma cells, is closely associated with

induction of osteolytic bone disease and skeletal complications in

.80% of patients. Myelomatous osteolysis is localized to areas

adjacent to tumor growth and is often characterized by increased

activity of osteoclasts and suppression of osteoblastogenesis [1–3].

Current standard management of MM bone disease is limited to

the use of bisphosphonates, which deactivate osteoclasts and may

induce adverse side effects such as osteonecrosis of the jaw [4] and

impaired renal function [5]. Although bisphosphonates reduce

skeletal complications, bone disease often progresses [6,7],

indicating that osteoclastogenesis is only partially inhibited and

that suppression of osteoblastogenesis plays a vital role in

uncoupling the bone remodeling process in MM [8–11].

Recent clinical observations and experimental studies indicate

that bone cells are directly involved in survival and expansion of

myeloma cells in the hematopoietic bone marrow. While

osteoclasts have been shown to promote myeloma cell survival

and to protect the cells from spontaneous and drug-induced

apoptosis [12–14], osteoblasts suppress myeloma cell growth and

interfere with osteoclasts’ stimulatory effects on myeloma cells

[15]. In our mouse model, infusion of mesenchymal stem cells into

myelomatous bones was associated with reduced tumor burden

[15]. These studies suggest that treating MM with osteoblast-

activating agents could simultaneously help control bone disease

and myeloma cell growth. Indeed, blocking the Wnt-signaling
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inhibitor dickkopf-1 (DKK1) with a neutralizing antibody [16], or

stimulating Wnt signaling in myelomatous bones by using lithium

chloride [17] or Wnt3a [18] resulted in stimulating bone

formation and reducing bone loss and myeloma cell growth in vivo.

PTH and its biologically active amino-terminal fragments, when

given intermittently, can prevent and reverse bone loss in

osteoporotic animals and humans [19–23]. Recent studies indicate

that PTH promotes bone formation primarily by modulating Wnt

signaling in bone cells [24–32]. Because MM mainly affects elderly

people and MM bone disease seems to be a reflection of osteoblast

deactivation resulting from myeloma cell secretion of Wnt

inhibitors such as DKK1 [16,33], we hypothesize that daily

administered PTH will help control disease progression indirectly

by stimulating bone formation.

For our studies, we exploited our SCID-rab and SCID-hu

mouse models for primary MM [15,34–37]. These systems are

constructed by implanting each SCID mouse with a nonfetal

rabbit bone (SCID-rab) or a fetal human bone (SCID-hu) into

which primary human myeloma cells are directly injected. The

two models are identical in terms of supporting tumor growth and

of myeloma-induced bone disease: in both systems, myeloma cells

from approximately 80% of patients are successfully engrafted and

grow restrictively in the implanted bones, and their growth is

characterized by increased levels of human monoclonal immuno-

globulins (hIg) in mice sera (indicative of tumor growth) and by

induction of severe osteolytic bone disease [16,34]. To examine

the effects of PTH on a large number of patient samples, we used

the SCID-rab model because it is more cost-effective and it

conveniently allows construction of a large number of animals. We

used the SCID-hu system and human global gene expression

profiling (GEP) to shed light on molecular mechanisms associated

with the effects of PTH on MM bone disease and tumor growth.

Results

Hg Myeloma Cell Line Growth is Attenuated and Bone
Formation is Stimulated in SCID-rab and SCID-hu Mice
after PTH Treatment

Using a procedure we previously reported [38], we established a

novel myeloma cell line, Hg, capable of sequential passaging in

our animal models. Similar to primary myeloma cells, the Igl Hg

myeloma cells are incapable of growth when cultured alone or

cocultured with supporting stromal cells; they also have GEP

signatures similar to those of the original patient’s plasma cells, are

molecularly classified [39] in the MMSET subtype, and express

DKK1 (important in MM-induced bone disease) [33]. These

observations emphasize the authenticity and clinical relevance of

the Hg myeloma line.

We used Hg cells, along with the SCID-rab and SCID-hu

model systems for MM [34,35], to characterize the effects of PTH

on bone metabolism and on myeloma growth in myelomatous

bone and to shed light on the molecular mechanisms of PTH.

SCID-rab (10 mice/group) and SCID-hu (eight mice/group) mice

engrafted with Hg myeloma cells were treated with saline (as a

control) or PTH for 4 weeks. Whereas bone mineral density

(BMD) of the myelomatous bones in saline-treated hosts was

reduced by 1465%, it was increased by 1062% in PTH-treated

hosts (p,0.002 saline vs. PTH-treated hosts); for both treatment

groups, effects were similar in SCID-rab and SCID-hu mice. The

final BMD values of implanted bones from saline- and PTH-

treated SCID-rab mice were 0.05960.004 and 0.007560.016 g/

cm2, respectively (p,0.002) (Figure 1A); in SCID-hu mice,

they were 0.08860.007 and 0.012360.05 g/cm2, respectively

(p,0.003) (Figure 1D). X-ray radiographs also demonstrated the

bone-anabolic effects of PTH on myelomatous bones from SCID-

rab mice (Figure 1B) and SCID-hu mice (Figure 1E). Positive

effects of PTH on preventing MM bone disease and promoting

bone anabolism were associated with reduced growth of Hg

myeloma cells, which was assessed by measuring hIg in mice sera,

in SCID-rab mice (Figure 1C) and SCID-hu mice (Figure 1F).

After PTH treatment, static histomorphometric analyses of

myelomatous implanted bones from SCID-rab mice revealed

increased BV/TV (p,0.05), Tb.Th (p,0.05), and Tb.N (p,0.01)

(Figure 2A). Implanted bone sections from SCID-rab hosts treated

with saline or PTH were immunohistochemically stained for

osteocalcin and histochemically stained for tartrate-resistant acid

phosphatase (TRAP). Analysis revealed that PTH treatment

resulted in a marked increase in the number of osteocalcin-

expressing osteoblasts (p,0.01) and no change in the number of

TRAP-expressing osteoclasts (Figure 2B). Furthermore, dynamic

histomorphometry in these bones revealed that PTH treatment

resulted in marked increases in mineral apposition rate (MAR,

p,0.002), double-labeled surface (dl.s/BS, p,0.009), and bone-

formation rates (BFR, p,0.006) (Figure 2C). The findings indicate

that PTH promotes bone anabolism in myelomatous bones.

Primary Myeloma Growth is Attenuated and Bone
Formation is Stimulated in SCID-rab Mice after PTH
Treatment

SCID-rab mice were successfully engrafted with primary

myeloma cells from 10 patients. Myeloma cells were taken from

patients who varied in clinical disease stage and bone disease status

(Table 1); most were newly diagnosed and their samples were

selected for the study solely based on availability of tumor cells.

For this set of experiments, cells from the same patient were

injected into two mice, and the host with higher hIg levels

(indicative of higher tumor burden) received PTH treatment, while

the other received saline treatment. Upon establishment of MM

tumor growth (indicated by hIg level .10 mg/ml), 10 SCID-rab

hosts engrafted with myeloma cells from 10 patients were treated

with PTH for 4 weeks; an additional 10 matching SCID-rab hosts

served as controls and were treated with saline for 4 weeks. As

previously shown [34,35], different patients’ myeloma cells

produced different MM growth patterns.

Implanted myelomatous bones had higher BMD after treatment

with PTH than before treatment in six experiments, and bone loss

was less severe in one experiment (Table 1). Overall, analysis of

pooled results of experiments with all 10 patients’ myeloma cells

demonstrated that BMD of the myelomatous bone was 2467%

lower than pretreatment levels in saline-treated hosts (0.0626

0.006 g/cm2 versus 0.08360.006 g/cm2 pretreatment level,

p,0.02), but it was 1268% higher than pretreatment levels in

the PTH-treated group (0.09260.006 g/cm2 versus 0.0846

0.005 g/cm2 pretreatment level); the difference in final BMD

values of implanted bones from saline- and PTH-treated hosts was

statistically significant (p,0.003) (Figure 3A). Static histomor-

phometric analyses comparing myelomatous implanted bones

before and after treatment with either saline or PTH demonstrated

increased BV/TV (p,0.004), Tb.Th (p,0.02), and Tb.N

(p,0.02) after treatment with PTH (Figure 3B). Treatment with

PTH increased the number of osteocalcin-expressing osteoblasts

(p,0.001) and had no effect on the number of TRAP-expressing

osteoclasts (Figure 3C). Although PTH treatment had heteroge-

neous effects on MM growth (Table 1), the overall tumor burden

(final hIg levels) was significantly lower (p,0.04) in PTH-treated

hosts than in saline-treated hosts (Figure 3D). These data indicate

that PTH effectively prevents MM-associated bone disease,

promotes bone formation, and reduces MM growth in hosts

Daily PTH Effects on Myeloma
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engrafted with primary myeloma cells from different patients,

which corresponds to the results seen in similar experiments with

the Hg myeloma cell line.

Treatment with PTH also resulted in marked BMD increases

(.12%; p,0.02) from pretreatment levels in uninvolved murine

femurs of SCID-rab hosts (Figure 3E) and BMD increases in

nonmyelomatous implanted rabbit bones of SCID-rab mice (see

below Figure 4B, ‘‘Pre-MM,’’ p,0.0001).

Pretreatment with PTH Prevents MM Progression
The effects of PTH pretreatment on tumor progression were

examined in SCID-rab mice. Mice were treated with PTH for 4

weeks before and after inoculation with BN stroma-dependent

myeloma cells [38] (engineered to express luciferase; six mice/

group) or with primary myeloma cells from three patients (for each

patient’s cells, a total of six hosts were used: three pretreated with

saline, three pretreated with PTH). The effects of PTH

pretreatment on tumor growth were monitored for 8–12 weeks

after inoculation with myeloma cells (see schema, Figure 4A).

Treatment with PTH did not stop after inoculation of the

myeloma cells, in order to prevent a potential increase in osteoclast

activity and bone resorption after PTH withdrawal. The main goal

of this study was to test the ability of PTH pretreatment to prevent

bone loss during MM progression. After 4 weeks of PTH

treatment (before injection of myeloma cells), BMD of the

implanted nonmyelomatous rabbit bones was 60616% higher

than levels before PTH treatment (p,0.0001) (Figure 4B). After

myeloma cell engraftment, BMD of the bones implanted in saline-

treated hosts, but not in PTH-treated hosts, was significantly lower

than (2968%) before myeloma cells were injected (p,0.002). At

the end of the experiments, BMD of the implanted bone in PTH-

treated hosts was slightly lower than before myeloma cells were

injected, but it was significantly higher than in saline-treated hosts

(p.0.004, Figure 4B). In the PTH-pretreatment group, the

Figure 1. PTH treatment promotes bone formation and attenuates Hg myeloma cell growth in SCID-rab and SCID-hu mice. SCID-rab
and SCID-hu mice were engrafted with the Hg myeloma cell line. Upon establishment of MM growth, SCID-rab mice (10 hosts/group) and SCID-hu
mice (eight hosts/group) were subcutaneously treated with saline or PTH (80 mg/kg/d) for 4 weeks. (A–C) Effects of PTH in the SCID-rab model:
changes in bone mineral density (BMD) levels of the implanted bone (A), representative X-ray radiographs before initiation of treatment (Pre-Rx) and
at experiment’s end (Final) (B), and MM burden determined by measuring levels of circulating human immunoglobulins (hIg) before initiation of
treatment (Pre-Rx) and at experiment’s end (Final) (C). (D–F) Effects of PTH in the SCID-hu model: changes in BMD levels of the implanted bone (D),
representative X-ray radiographs before initiation of treatment (Pre-Rx) and at experiment’s end (Final) (F), and levels of hIg before initiation of
treatment (Pre-Rx) and at experiment’s end (Final) (E).
doi:10.1371/journal.pone.0015233.g001

Daily PTH Effects on Myeloma

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e15233



implanted bones had significantly higher BV/TV (p,0.006),

Tb.Th (p,0.01), and Tb.N (p,0.001) than implanted bones from

the control group, based on static histomorphometry (Figure 4C).

The consequences of PTH pretreatment on bone mass before and

after myeloma cell inoculation were also visualized on X-ray

radiographs (Figure 4D).

Because PTH pretreatment resulted in increased bone mass, it is

possible that myeloma cell injection into these bones was less

efficient and resulted in fewer cells reaching the bones, which

would contribute to the appearance of an antimyeloma effect. To

investigate this possibility, luciferase-expressing myeloma cells

were used to compare the number of myeloma cells that were

Figure 2. Treatment with PTH promotes bone formation in SCID-rab mice engrafted with Hg myeloma cells. SCID-rab mice were
engrafted with Hg myeloma cells. Upon establishment of MM growth, SCID-rab mice (10 hosts/group) were subcutaneously treated with saline or
PTH (80 mg/kg/d) for 4 weeks. (A) Static histomorphometry parameters (trabecular bone volume [BV/TV], thickness [Tb.Th], and number [Tb.N]) in
myelomatous bones from hosts treated with saline (Control) or PTH. (B) Number of osteocalcin-expressing osteoblasts and tartrate-resistant acid
phosphatase (TRAP) -expressing osteoclasts in myelomatous bones from hosts treated with saline (Control) or PTH. (C) Dynamic histomorphometry
parameters (mineral apposition rate [MAR], bone formation rate/bone surface [BFR/BS], and double-labeled surface/bone surface [dl.S/BS]) in
myelomatous bones from hosts treated with saline (Control) or PTH.
doi:10.1371/journal.pone.0015233.g002

Table 1. Patient characteristics and changes in BMD of the implanted bone and hIg levels in SCID-rab mice during the experiment.

Pt. Stage* Prior Treatment Isotype MRI FL** Bone Disease" BMD (% of pre-Rx)± hIg (mg/ml)#

Cont PTH Cont PTH

1 IIIa NO IgG l YES YES 86 110 219 90

2 IIIa NO IgA l YES ND$ 96 104 1173 289

3 III NO IgG k YES YES 106 175 183 12

4 IIIa YES IgG k YES YES 89 110 252 92

5 III NO IgG l YES NO 54 88 550 379

6 IIIa NO IgG k YES YES 79 110 387 333

7 IIIa NO IgG k YES YES 83 101 335 69

8 IIIa NO IgG k YES NO 67 128 489 475

9 IIIa NO IgG l YES YES 75 111 530 440

10 IIIa NO IgG k YES YES 30 84 440 450

*Stage at diagnosis, according to the Durie-Salmon staging system.
**Existence of focal lesions (FL) determined by magnetic resonance imaging (MRI).
"Existence of lytic bone lesions determined by standard X-rays.
6BMD of the implanted bone determined by DEXA and calculated as percent of pretreatment level.
#Circulating hIg in mice sera determined by ELISA and calculated as percent of pretreatment level.
$Not done.
doi:10.1371/journal.pone.0015233.t001
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injected into implanted bones with and without PTH pretreat-

ment. We previously demonstrated that luciferase intensity highly

correlated with myeloma cell numbers in vitro and in vivo [38]. The

luciferase assay demonstrated that the numbers of myeloma cells

injected into the implanted bones of PTH-pretreated hosts were

similar to those injected into saline-pretreated hosts (Figure 5A).

Pretreatment with PTH significantly inhibited the growth of

luciferase-expressing BN myeloma cells in SCID-rab mice (six

mice/group) 5 weeks (p,0.004), 7 weeks (p,0.004), and 9 weeks

(p,0.03) after inoculation with myeloma cells (Figure 5B).

Although BN cells differ from Hg cells in their ability to grow in

coculture with stromal cells, in vitro growth of BN cells was reduced

to a greater extent in coculture with osteoblasts than with stromal

cells (data not shown), suggesting that the growth of BN cells in

vivo, like that of Hg cells, is affected by increased osteoblast activity.

Furthermore, pretreatment with PTH resulted in delayed growth

of myeloma cells taken from three additional patients (Figure 5C–
E). Taken together, our data indicate that PTH pretreatment

effectively increased bone mass, and this effect was associated with

inhibition of myeloma cell engraftment and MM progression.

Global GEP Revealed Molecular Mechanisms Associated
with PTH Effects in Myelomatous Bone

We exploited the SCID-hu system to shed light on molecular

mechanisms involved in the effects of PTH treatment on bone

remodeling and myeloma growth. Total RNA was extracted from

human bones of SCID-hu mice engrafted with Hg myeloma cells

and treated with saline or PTH for 4 weeks. These RNA samples

were subjected to global GEP using the human Affymetrix U133-

Plus microarray [39]. Treatment with PTH resulted in significantly

altered ($2-fold) expression of 753 genes in myelomatous bones;

343 genes were upregulated and 410 genes were downregulated

(Table S1). Expression of 19 genes was also evaluated by

quantitative real-time polymerase chain reaction (qRT-PCR); the

results supported those of GEP (Table 2, Figure 6).

Many of the genes demonstrated by GEP to have significantly

altered expression after PTH treatment are relevant to bone

remodeling, PTH signaling, and myeloma pathogenesis (Table 2).

There was a striking upregulation of osteoblastic bone matrix

genes. PTH-induced upregulation of TNFSF11 (RANKL) and

unchanged or reduced expression of important osteoclast-associ-

ated genes (e.g., ACP5/TRAP, CTSK) confirmed our observation

that osteoclast numbers were unchanged in histological analyses of

myelomatous bone sections (see Figure 2B, Figure 3C). A

number of MM-associated genes were downregulated by PTH

treatment, including CD38, IGL, and genes known to be expressed

in MMSET-type MM (e.g., FGFR3, WHSC1, ITGB7), which is the

disease subtype from which the Hg cell line was derived. These

GEP observations support the findings that PTH promotes bone

anabolism, does not increase osteoclast activity, and attenuates

growth of myeloma cells in bone.

Figure 3. PTH treatment promotes bone formation and attenuates growth of primary myeloma cells in SCID-rab mice. SCID-rab mice
were engrafted with primary myeloma cells from 10 patients. In this set of experiments, myeloma cells from the same patient were injected into two
mice; one host was treated with saline (Control) and the other with PTH for 4 weeks. A total of 10 hosts were used in each group (see also Table 1). (A)
Level of BMD of the implanted bone before initiation of treatment (Pre-Rx) and at experiment’s end (Final). (B) Static histomorphometry parameters
(BV/TV, Tb.Th, Tb.N) in myelomatous bones from hosts treated with saline (Control) or PTH. (C) Number of osteocalcin-expressing osteoblasts and
TRAP-expressing osteoclasts in myelomatous bones from hosts treated with saline (Control) or PTH. (D) Human immunoglobulin (hIg) levels
(surrogate for myeloma tumor burden) before initiation of treatment (Pre-Rx) and at experiment’s end (Final) in SCID-rab mice engrafted with Hg
myeloma cells. (E) Level of BMD of the uninvolved murine femur before initiation of treatment (Pre-Rx) and at experiment’s end (Final).
doi:10.1371/journal.pone.0015233.g003
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The GEP data also highlighted alterations in signaling

associated with PTH treatment in myelomatous bone. Treatment

with PTH affected expression of various genes that regulate cAMP

signaling, Wnt signaling, and various forkhead box transcription

factors, along with altered expression of cytokines (e.g., ANGPT1,

ANGPT2), chemokines (CXCL14), growth factors (TGFbeta2,

PDGFA), and receptors (TGFBR1, PDGFRA). Inflammatory-

associated genes such as TNFAIP6 and AIF1 were upregulated

and downregulated, respectively, after PTH treatment. Notewor-

thy are results showing no significant alteration in expression of

SOST but downregulation of DKK1, both of which have been

implicated in the bone-anabolic mechanism of PTH. Taken

together, these findings suggest that PTH treatment affects

multiple signaling pathways known to play significant roles in

bone remodeling.

Myeloma Cells do not Express PTH Receptors, and PTH
has no Effect on Their Growth In Vitro

In two myeloma cells lines (CAG and ARP1) and primary

myeloma plasma cells from seven patients, qRT-PCR was used to

confirm that type-1 PTH receptor (PTH1R) was not expressed by

myeloma cells (Figure 7A) [40]. qRT-PCR also demonstrated

that expression of type-2 PTH receptor was undetectable in all

tested myeloma cell samples, although it was highly expressed in

human brain tissue (data not shown). Global GEP data in our

institute confirmed the lack of PTH receptor expression in .40

myeloma cell lines, including Hg and BN myeloma cell lines. PTH

had no effect on in vitro growth of myeloma cell lines or primary

myeloma plasma cells (n = 6) in the presence (Figure 7B) or

absence (Figure 7C) of serum. However, control cells (Saos-2

osteosarcoma cells) that express PTH1R [41] were protected from

serum starvation-induced growth inhibition when incubated with

PTH (Figure 7B), and no effect was observed in serum-

containing medium (Figure 7C).

Discussion

In this study, we demonstrated that PTH is capable of

increasing bone mass in myelomatous bones in vivo and that the

increased bone formation is associated with a concomitant

reduction in growth of the Hg myeloma cell line and primary

myeloma cells from certain patients. In our animal model,

pretreatment with PTH also resulted in increased bone mass

and a significant delay in MM progression. Treatment with PTH

Figure 4. Bone formation induced by PTH pretreatment inhibits myeloma bone disease. SCID-rab mice (15/group) were treated with PTH
or saline for 4 weeks and then were injected with myeloma cells (BN stroma-dependent myeloma cells, six mice/group; or myeloma cells from one of
three patients, three mice/group for each patient’s cells). (A) A schema demonstrating the experimental design. (B) BMD levels of the implanted
bones were measured before PTH treatment was initiated (Baseline); after 4 weeks of PTH treatment, just before myeloma cell injection (Pre-MM); and
8–12 weeks after myeloma cell injection (MM). Note that PTH treatment increased BMD levels of implanted bones before inoculation with myeloma
cells (Pre-MM), an effect that was retained after engraftment of MM in these bones (MM). (C) Static histomorphometric analysis of the implanted
bones at the end of the experiment. (D) Representative X-ray radiographs of implanted bones at different stages of the experiments in three hosts
treated with saline (Control) or PTH. Note that bone mass increased after treatment with PTH (Pre-MM) and that bone loss after MM engraftment was
less profound in the PTH-pretreated group.
doi:10.1371/journal.pone.0015233.g004
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markedly increased the number of differentiating osteoblasts, but

the number of osteoclasts remained unchanged in bones engrafted

with Hg myeloma cells and was moderately reduced in bones

engrafted with primary myeloma cells. Strongly supporting our

findings, GEP analyses of whole myelomatous bones showed

increased expression of osteoblastic markers and reduced expres-

sion of osteoclastic and myeloma cell markers. GEP analyses also

provided insight on molecular mechanisms that mediate the

various effects of PTH in myelomatous bones. Because PTH had

no direct effects on growth of myeloma cells, we conclude that

shifting bone turnover to an anabolic state in myelomatous bone

results in negative effects on MM progression. The results of this

study support our previous findings, and those of others, that

increased bone mass resulting from exogenous MSC cytotherapy

[15] or treatment with DKK1-neutralizing antibody [15], Wnt3a

[18], or lithium chloride [17] negatively impact MM tumor

burden in bone.

PTH is approved for treatment of osteoporosis in men and

women [21,22], but patients with cancer currently are not treated

with PTH because of concerns that the treatment might promote

tumor growth or osteosarcoma [42]. In the present study, we

tested the effect of a relatively high dose of PTH (80 mg/kg/d) on

MM bone disease and tumor growth in our animal models.

Similar high doses had previously been tested in animal models for

osteoporosis [20,31,43]. Although analogy to the clinical setting

cannot properly be made due to the significantly higher metabolic

rate of mice compared to humans, it is of interest to test whether

lower doses of PTH have a significant effect on prevention of MM

bone disease. Our study demonstrated not only that PTH has no

direct stimulatory effects on myeloma cells but also, intriguingly,

that PTH has antitumor properties, presumably due to its ability

to alter the bone marrow microenvironment. Although PTH has

been shown to promote osteoclastogenesis in certain (but not all)

physiological and experimental conditions [20,23,43], the num-

bers of osteoclasts in myelomatous bones in our study did not

increase during the experimental period. MM-related osteolysis

results from an uncoupling of the processes of osteoclastic bone

resorption and osteoblastic bone formation, which causes bone

remodeling to shift toward bone destruction as activities of

osteoclasts increase and of osteoblasts decrease [1,2]. We speculate

that, in these conditions, PTH contributes to restoring balance to

the coupled bone-remodeling process in MM, which results in

increasing the number of bone-building osteoblasts without

altering the number of osteoclasts and, in some cases, even

reducing the number of osteoclasts.

Indeed, GEP analysis demonstrates alterations in multiple

signaling pathways that are critically involved in bone remodeling

and in regulating the coupling of bone formation and bone

resorption. To our knowledge, this is the first GEP analysis on

human bones following treatment with PTH, and it may provide

insight into additional mechanisms involved with this hormone’s

effects on bone. Interestingly, many of the differentially expressed

Figure 5. PTH pretreatment inhibits myeloma progression. SCID-rab mice were pretreated with PTH for 4 weeks and then injected with BN
stroma-dependent myeloma cells (six mice/group) or with myeloma cells from one of three patients (for each patient’s cells, a total of six hosts were
used: three pretreated with saline, three pretreated with PTH). Treatment with PTH continued throughout the experimental period (see schema of
the experimental design in Figure 4A). (A) In vivo live-animal imaging revealed similar luciferase (Luc) activity in BN myeloma cells a few hours after
injection into saline- and PTH-pretreated hosts, indicating that similar numbers of myeloma cells were injected into the implanted bones in both
groups. (B) Pretreatment with PTH inhibited growth of BN myeloma cells in SCID-rab mice. (C–E) Pretreatment with PTH delayed growth of primary
myeloma cells from three different patients.
doi:10.1371/journal.pone.0015233.g005
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genes are not expressed by the Hg myeloma cells and are thus

considered microenvironment-associated genes.

The actions of PTH are mediated by a G protein-coupled

receptor, PTH receptor 1 (PTHR1) [44]. When PTH binds to the

receptor, Gas-mediated activation of adenyl cyclase is stimulated,

which then stimulates cAMP production and subsequent activa-

tion of protein kinase (PKA). Confirming activation of the cAMP/

PKA pathway in myelomatous bones after PTH treatment, GEP

analyses showed upregulation of cAMP-specific phosphodiester-

ases (e.g., PDE4D), which are involved in regulating osteoblast

production of PTH-induced cAMP [45]. GEP also revealed

upregulation of genes known to be stimulated by PTH treatment

and/or associated with osteoblast differentiation, including

RUNX2, FOS, JUNB, NR4A2, NR4A3, RGS2, GJA1 (connexin43),

Table 2. Selected genes whose expression was upregulated or downregulated in whole myelomatous human bone by PTH
treatment*.

Functional Category Upregulated Genes Downregulated Genes

Osteoblast associated BGLAP, PTN, THBS4, COL11A1, SMOC2, SPARC, THBS2, LUM,
COL5A2, COL14A1, RUNX2, SGCD, GJA1, COL12A1, COL5A1,
CDH11, VCAN, BGN, COL8A2, NID2, COL21A1, COL3A1,
THBS1, POSTN, COL6A3, DCN, GPC1, COL6A1

Osteoclast associated TNFSF11 CA5BL, ATP6V0E1, NFATC1, ACP5

Myeloma plasma cell associated CD38, ITGB7, AURKB, STAT3, WHSC1, IRF4, FGFR3, IGL@

cAMP/PKA NR4A3, RGS2, RGS1, PDE7B, PDE3A, PDE4D, FOS, CREB3L1,
FOSL2, JUNB, PDE3B

Wnt signaling WNT5A, ROR2, SPON1, CYR61, TWIST1, LRP4, FZD1, WISP1,
NKD2, TCF4, PPARD

DKK1, CTBP1, TNIK

FOXO and oxidative stress FOXC1, MSX1, MSX2, FOXF1 FOXO3, CAT, FOXO1A

Cytokines and chemokines CXCR7, CXCL14, ANGPTL2, IGFBP5, IGFBP7, ANGPTL4, ANGPT2 ANGPT1, EGFR, VEGFB, CCL5, IL17RB, PECAM1, CXCR3

MMPs MMP13, MMP2

Prostaglandins PTGES, PTGFRN

Integrins ITGBL1, ITGA11, ITGB5, ITGAV ITGB2, ITGA2B

Inflammation regulators TNFAIP6 AIF1

Bone associated signaling FGFR2, FGFR1, ID4, SMAD6, ID3, TGFBR1, TGFB2, PDGFA,
PDGFRA, HGF

Phosphatases PTPRD, DUSP10, PTPRS, PTPRF, PPAP2A PTPN6, SIRPA, PPP1R11, PTP4A1, PPP3CC

G-protein GPR158, GPRC5C, GPR153 GPRC5D

*SCID-hu mice engrafted with Hg myeloma cells were treated with saline or PTH for 4 weeks. Mice were sacrificed 2 hours after the last injection. RNA extracted from
the whole myelomatous human bone (five bones/group) was subjected to global gene expression profiling. Genes are listed in order based on fold changes compared
to the saline-treated group. For detailed information, see Table S1.
doi:10.1371/journal.pone.0015233.t002

Figure 6. PTH treatment alters gene expression in whole myelomatous human bones engrafted with Hg myeloma cells. SCID-hu mice
engrafted with Hg myeloma cells were treated with saline or PTH for 4 weeks. Mice were sacrificed 2 hours after the last injection, and RNA was
extracted from the whole myelomatous human bone (five bones/group). RNA samples were subjected to global gene expression profiling (see partial
list in Table 2 and complete list in Table S1 of differentially expressed genes). The same RNA samples were also used to validate and analyze
expression of selected bone-associated genes by qRT-PCR as indicated in the figure.
doi:10.1371/journal.pone.0015233.g006
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MMP13 (collagenase-3), BGLAP (osteocalcin), SPARC (osteonectin),

DCN (decorin), LUM (lumican), BGN (byglican), and various

collagen types [46,47].

Wnt Signaling
Although PTH is known to stimulate bone formation, the

underlying mechanisms are not yet fully understood [48]. Several

studies have explored links between PTH and the Wnt signaling

pathway [24–32], and our data confirm that Wnt signaling is

involved in the anabolic activity of PTH in myelomatous bones.

We identified increased expression of genes encoding several

components of the canonical Wnt signaling pathway and target

genes of the pathway, such as FZD1, TCF4, AXIN2, NKD2,

TWIST1, WISP1, and CYR61; we also noted downregulation of

negative regulators of the Wnt pathway (i.e., CTBP1, KREMEN2,

and DKK1). Although reduced levels of two other Wnt signaling

inhibitors, sclerostin (SOST) and secreted frizzled related protein-2

(FRZB), have been described in response to PTH [25,27,29], we

did not detect changes in expression of those genes in our

experimental setting.

The significant downregulation of DKK1 that resulted from

PTH treatment emphasizes the critical role of this factor in

myeloma-induced suppression of osteoblastogenesis [16,33].

Because DKK1 is expressed by Hg myeloma cells and PTH

treatment resulted in reduced growth of these cells in myelomatous

bones, DKK1 downregulation could be a result of direct effects of

PTH on osteoblasts, it could be an epiphenomenon of reduced

tumor burden, or it could be a combination of both. Our data are

consistent with recent studies demonstrating that PTH suppresses

osteoblast production of DKK1 and that PTH can stimulate Wnt

Figure 7. Myeloma cells do not express PTH receptors; PTH does not affect myeloma cell growth in vitro. (A) Expression of the type-1
PTH receptor (PTH1R) was determined by qRT-PCR. Saos-2 osteosarcoma cells [74] and MDA-231 breast cancer cells [73] were used as positive and
negative controls, respectively, for PTH1R expression. Note that myeloma cell lines and primary myeloma cells from seven patients did not express
PTH1R. In addition, type-2 PTH receptor was not detected in any myeloma cell samples, but it was highly expressed in the positive control (human
brain tissue; data not shown). (B) Myeloma cell lines (ARP1 and CAG), primary myeloma plasma cells from six patients, and Saos-2 osteosarcoma cells
were cultured in serum-containing medium and treated with various concentrations of PTH. Effects on cell growth were determined by MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Primary myeloma cells were cultured for 24 hours with PTH; all cell lines were cultured
for 72 hours with PTH. Note that growth of cells was not affected by PTH. (C) CAG and Saos-2 cells were cultured in serum-free medium and treated
with various concentrations of PTH for 72 hours before being subjected to MTT assay. Note that Saos-2 cells, but not CAG myeloma cells, were
protected from serum starvation-induced growth inhibition. *p.0.001 versus saline-treated cells (Cont); « p,0.0001 versus Cont and all PTH-treated
groups.
doi:10.1371/journal.pone.0015233.g007
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signaling and bone anabolism in the presence of DKK1 [26,49].

Interestingly, PTH reduced expression of LRP4, which has been

suggested to act as a sink and compete with Lrp5/6 for the binding

of soluble Wnt antagonists (e.g., Wise, DKK1, and sclerostin) that

are then not available to suppress the signal through the Lrp5/6

axis [50]. These findings strongly indicate the important role of

canonical Wnt signaling in the bone-anabolic effects of PTH.

Recent evidence shows that WNT5A activation of noncanonical

Wnt signaling stimulates the osteogenic properties of human

osteoblastic cells by homodimerization and activation of ROR2

[51]. We found that WNT5A and ROR2 are significantly

upregulated by PTH treatment, suggesting a role for noncanonical

Wnt signaling in the anabolic effects of this hormone.

Recent studies suggest that bone-anabolic effects of PTH are

amplified by bone marrow T lymphocytes secreting Wnt ligand

Wnt10b [31]. In our experimental system, Wnt10b was expressed

at very low levels in the human bones, and its expression was not

affected by PTH treatment. Our data showed that PTH also

increased BMD of the uninvolved femurs of SCID mice, which are

deficient of T and B lymphocytes, suggesting that PTH effectively

stimulates Wnt signaling in the absence of T lymphocytes.

Other Signaling Pathways
PTH resulted in upregulation of FOXC1 and FOXF1 and

downregulation of FOXO3, FOXOA1, and free-radical scavenging

enzyme CAT (catalase) in myelomatous bones. Initially it was

suggested that oxidative stress antagonizes Wnt signaling in

osteoblast precursors by diverting b-catenin from T cell factor-

mediated transcription to FOXO-mediated transcription [52].

FOXO transcription factors defend against oxidative stress by

activating genes involved in free radical scavenging and apoptosis

[53], which seems to be indispensable for bone homeostasis.

Furthermore, decreasing oxidative stress levels normalizes bone

formation and bone mass in mice lacking FoxO1 specifically in

osteoblasts [54]. These studies suggest that PTH reduced levels of

oxidative stress in myelomatous bones, directly or indirectly, by

reducing myeloma tumor burden and that regulation of bone

remodeling by FOXO transcription factors depends on the

physiological setting. Our data also suggest that other forkhead-

related transcription factors, such as FOXC1 and FOXF1, may be

involved in osteoblast apoptosis and bone homeostasis.

Although PTH has been shown to upregulate expression of

ephrinB2 (EFNB2) and to induce activation of ephrinB2/EphB4

forward signaling in murine osteoblasts [55], our GEP and qRT-

PCR results showed insignificant increased expression of EFNB2

following PTH treatment. We previously demonstrated that

EFNB2 and EPHB4 are downregulated in osteoblast progenitors

from patients with MM [56], partially explaining the lack of

significant upregulation of EFNB2 in the current study.

PTH treatment affected expression of genes regulating bone

remodeling through signaling pathways other than Wnt signaling.

Upregulation of angiopoietin 1 and 2 and angiopoietin-like 2 is

consistent with recent reports showing that angiopoietin 1

receptor, Tie2, is upregulated in differentiating osteoblasts and

that angiopoietin 1 promotes bone formation [57]. Upregulation

of FGFR1 and FGFR2 is consistent with previous studies and

supports findings that FGF-2 signaling is critically important in the

bone-anabolic effects of PTH [58]. Upregulation of TGFB2,

TGFBR1, SMAD6, and target genes of TGF (ID3 and ID4) strongly

suggests a role for this signaling pathway in mediating the effects of

PTH on bone formation and on coupling bone resorption to bone

formation [59,60]. Upregulation of PDGFA and PDGFRA by PTH

treatment suggests involvement of this signaling pathway in the

bone-anabolic effects of PTH and supports the notion of using

PDGF as a therapeutic agent in treating bone loss associated with

aging and fracture healing [61]. Taken together, these results

strongly suggest that PTH exerts bone anabolism in myelomatous

bone through activation of multiple signaling pathways.

GEP analyses also revealed altered expression of a group of G

protein-coupled receptors (e.g., GPR158) and phosphatase-related

genes (e.g., PTPRD), but the functional association between PTH

and these factors has yet not been elucidated.

Effects of PTH on Bone Marrow Microenvironment in MM
Despite the upregulation of RANKL by PTH, we did not

observe differences in the numbers of osteoclasts or in expression

levels of specific osteoclast markers (e.g., calcitonin receptor and

cathepsin K). This phenomenon is not surprising. Lindsay et al

[62] described a significant increase in bone formation after one

month of PTH treatment but no difference in the eroded

perimeter or the osteoclast perimeter compared with controls.

The apparent discrepancy could be the result of new bone that is

both spatially and temporally unrelated to prior resorption or of

bone formation extending to quiescent surfaces adjacent to the

original resorption cavity [63]. In experimental and clinical

osteoporosis, increased bone formation without increased bone

resorption often occurs in the initial stages of response to PTH,

whereas catabolism occurs within the context of increased

remodeling after approximately 6 months [23]. Thus, the effects

of long-term (.6 months) PTH treatment on MM bone disease

should be carefully examined. Alternatively, PTH may be given in

short cycles or in combination with antiresorptive agents to

maximize the bone-forming effects and minimize potential

proresorptive effects [23].

The GEP data provided important insights into molecular

mechanisms that mediate reduced myeloma growth after PTH

treatment. This hormone elicited marked increases in bone

formation and increased numbers of mature osteoblasts, which

express high levels of potential anti-tumor factors that include

decorin, lumican, and CYR61. We recently demonstrated that

mature osteoblasts negatively affect growth of myeloma cells [15]

and that this effect is partially mediated through production of

decorin [64]. Treatment with PTH had no effect on expression of

myeloma cell growth factors, such as IL-6 and IGF-1, and PTH

treatment did not stimulate myeloma growth in any of the

experiments, even though we observed upregulation of VEGFB

and HGF. In addition to suggesting that PTH treatment may

lessen oxidative stress in myelomatous bone, the GEP data

indicate upregulation of anti-inflammatory factors, such as

TNFAIP6 and CXCL14, and downregulation of inflammatory

factor AIF1. Recent study suggests that TNFAIP6 (also known as

TSG-6) is an important anti-inflammatory factor that mediates

improvement of myocardial infarction by systemic mesenchymal

cell cytotherapy [65]. Whereas CXCL14 suppresses tumor growth

[66], AIF1 seems to promote tumor cell proliferation [67]. These

findings suggest that reduced inflammatory conditions contribute

to PTH control of myeloma cell growth.

Therapeutic Implications
Current standard management for MM bone disease is limited

to reducing tumor burden and treatment with bisphosphonates,

and also often includes treatment with dexamethasone, a steroidal

component that induces osteoporosis by reducing the life span of

osteoblasts [68]. Intriguingly, treatment with PTH has been shown

to counteract the adverse effects of glucocorticoids on bone

formation and strength [69]. Bortezomib, the first proteasome

inhibitor clinically approved for treating MM, stimulates bone

formation in our experimental model [70] and in patients with
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MM [71]. Our current study suggests that combining treatments

with PTH may abrogate dexamethasone-induced osteoporosis and

act synergistically with proteasome inhibitors to stimulate bone

formation and repair bone lesions in MM.

Collectively, the data presented here showed that PTH

promotes bone formation in myelomatous bone by activating

multiple distinct molecular pathways, of which Wnt signaling

seems to play a major role. In vitro, PTH has no direct on effect on

growth of myeloma cells, but in vivo PTH treatment indirectly

attenuated MM progression by stimulating osteoblastogenesis and

increasing osteoblast production of anti-myeloma factors, and by

minimizing oxidative stress and inflammatory conditions in

myelomatous bone. Our study supports the notion that MM and

its associated bone disease are negatively impacted by alterations

in the bone marrow microenvironment induced by osteoblast-

activating agents.

Materials and Methods

Primary Myeloma Cells
The Institutional Review Board Committee of the University of

Arkansas for Medical Sciences (UAMS) has specifically approved

this study. Myeloma cells were obtained from heparinized bone

marrow aspirates from patients with active MM during scheduled

clinic visits. Signed UAMS Institutional Review Board–approved

informed consent forms are kept on record. Pertinent patient

information is provided in Table 1. Myeloma plasma cells were

purified using CD138 immunomagnetic bead separation as

previously described [39].

Myeloma Cell Lines
The BN and Hg myeloma cell lines were established in our

laboratory, as previously described [38]. Briefly, primary myeloma

cells engrafted in SCID-rab or SCID-hu mice were sequentially

passaged into newly constructed animal hosts. BN cells also were

grown slowly in coculture with stromal cells and were infected with

lentiviral particles containing a luciferase/EGFP construct [38].

The Hg myeloma cell line does not grow in vitro, either alone or in

coculture with stromal cells, and is maintained by passaging in

SCID-rab or SCID-hu mice. The myeloma cell lines CAG and

ARP1 were previously established in our institute and grow

independently in vitro in RPMI 1640 medium supplemented with

10% fetal bovine serum (FBS) and antibiotics.

Animal Models and Drug Treatment
SCID-hu and SCID-rab mice were constructed as previously

described [34,35]. Animals were housed and monitored in the

Department of Laboratory Animal Medicine facility at the

University of Arkansas for Medical Sciences. The Institutional

Animal Care and Use Committee approved all experimental

procedures and protocols (Assurance Number A3063-01, File

2779). Myeloma growth was determined by measuring hIg in mice

sera as previously described [35,36]. Live-animal imaging was

performed as previously described [38].

Myelomatous SCID-rab mice were subcutaneously injected

with saline or with PTH 1-34 (Bachem California, Torrance, CA)

(80 mg/kg/day in 0.9% saline, 0.01 mM 2-ME, 0.1 mM acetic

acid) [20,43] for the indicated period of time. To determine

whether increased bone formation affected MM development,

SCID-rab mice were pretreated with PTH or saline (as described

above) throughout the experimental period. Four weeks after

pretreatment with saline or PTH, hosts were injected with the BN

myeloma cell line [38,70] (six mice/group) or with primary

myeloma cells from one of three patients (three mice/group for

each patient’s cells). Tumor growth was monitored for 8–12 weeks

or until control mice reached high tumor burden.

Immunohistochemistry and Histochemistry
Rabbit bones were fixed in 10% phosphate-buffered formalin

for 24 hours. Rabbit bones were further decalcified with 10% (wt/

vol) EDTA, pH 7.0, and embedded in paraffin for sectioning.

Sections (5-mm) were deparafinized in xylene, rehydrated with

ethanol, and rinsed in saline and then underwent antigen retrieval

by microwave. Sections were immunohistochemically stained for

osteocalcin or histochemically stained for TRAP as previously

described [15,34].

Histomorphometric Analyses
For static histomorphometry, decalcified implanted bone

sections were stained with hematoxylin and eosin in most

experiments; in some experiments, undecalcified bone sections

were stained with Masson’s trichrome and used for analysis.

Images of the trabecular area were obtained with a 106objective

using an Olympus BH2 microscope (Olympus, Melville, NY).

Images were acquired using a SPOT2 digital camera (Diagnostic

Instruments, Sterling Heights, MI) and were processed; a total of

five images were obtained per section. BV/TV, Tb.Th, and Tn.N

were measured using Osteometrics software (Osteometric, Atlanta,

GA).

For dynamic histomorphometry, indicated mice were treated

with saline or PTH for 3 weeks and then were intraperitoneally

injected with tetracycline (30 mg/kg, Sigma-Aldrich) 10 days or 3

days before sacrificing. Undecalcifed implanted bones were

processed as previously described [72], and images demonstrating

typical single- and double-labeled areas were obtained with a 206
objective.

Effects of PTH on Cell Growth In Vitro
Saos-2 osteosarcoma cells were maintained in McCoy’s medium

supplemented with 15% FBS and used as a positive control for

response to PTH [41]. Cells from the MDA-231 breast cancer line

variant, which reportedly do not express PTH1R [73], were

maintained in a-MEM medium supplemented with 10% FBS and

insulin (10 mg/ml) and were used as a negative control for PTH1R

expression (see below). ARP1 and CAG myeloma cell lines were

established in our institution and were maintained in RPMI 1640

medium supplemented with 10% FBS. Primary myeloma plasma

cells were selected from bone marrow of patients with MM using

CD138 immunomagnetic bead separation [12]. The examined

cell lines were cultured in 96-well plates (20–256103 cells/well in

100 ml) for 72 hours, and primary myeloma plasma cells were

cultured in 24-well plates (0.56106 cells/well in 1 ml) for 24 hours

in the presence and absence of PTH (1–100 nM). In a subset of

experiments, CAG and Saos-2 cells were cultured similarly in

serum-free conditions for 72 hours. The effects of PTH on cell

growth were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) assays. Expression of PTH1R

and PTH2R in indicated cells was determined by qRT-PCR (see

below).

Global GEP
Myelomatous implanted human bones were removed from

SCID-hu mice 2 hours after the last injection of saline or PTH

and were used for GEP analyses; a total of five profiles were

analyzed in each group. After removal from the hosts, bones were

immediately snap-frozen in liquid nitrogen. Frozen bones were

ground thoroughly in liquid nitrogen by using a mortar and pestle.
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The tissue powder and liquid nitrogen were decanted into a cooled

tube, and the liquid nitrogen was allowed to evaporate. RNA

extraction was then performed using RNeasy Fibrous Tissue Mini

Kit according to the manufacturer’s instructions (Qiagen Inc.,

Valencia, CA).

As previously described, GEP was performed using the

Affymetrix U133-Plus microarray, which contains approximately

54,000 genes (Affymetrix, Santa Clara, CA) [39]. Expression levels

of individual probe sets in the PTH treatment group were

compared with those in the control group. A difference in

expression of a probe set was identified as significant if (a) the

comparison between the two groups had p,0.05 using Student’s t-

test; (b) mean signal was .250 in the PTH group when assessing

upregulated genes and .250 in the control group when assessing

downregulated genes; and (c) the comparison had an absolute fold

change .2. All the GEP data is MIAME compliant and the GEP

raw data has been deposited in the MIAME-compliant database,

GEO (Gene Expression Umnibus).

qRT-PCR
Total RNA (1 mg) from each sample was reverse-transcribed

with the SuperScript III First-Strand Synthesis SuperMix for

qRT-PCR (Invitrogen Corp., Carlsbad, CA). The qRT-PCR was

performed with the TaqMan gene expression assay on an ABI

Prism 7000 sequence analyzer according to the manufacturer’s

recommended protocol (Applied Biosystems, Foster City, CA).

Reverse-transcribed RNA (10 ng) was amplified by using the

TaqMan Universal PCR Master Mix and TaqMan gene

expression assays (ID HS99999905_m1 for GAPDH as an

endogenous control, ID Hs00970627_m1 for EFNB2, ID Hs

00174752_m1 for EPHB4, ID Hs01029144_m1 for ALPL, ID

Hs01002399_m1 for BMP7, ID Hs00154192_m1 for BMP2, ID

Hs00156229_m1 for CALCR, ID Hs00370383 for DCN, ID

Hs00158940_m1 for LUM, ID Hs00370078 for BMP4, ID

Hs00164004_m1 for COLL1A1, ID Hs00166156_m1 for CTSK,

ID Hs00183740_m1 for DKK1, ID Hs01587813_g1 for BGLAP,

ID Hs00231692_m1 for RUNX2, ID Hs00228830_m1 for SOST,

ID Hs00985639_m1 for IL6, ID Hs01547656_m1 for IGF1, ID

Hs00900358_m1 for TNFRSF11b, ID Hs00243519_m1 for

TNFSF11).

Each reaction was run in duplicate. The comparative threshold

cycle (CT) method was used to calculate the amplification fold, as

specified by the manufacturer.

Statistical Analyses
All values are expressed as mean6SEM. The effect of treatment

on BMD, myeloma tumor burden, osteoblast and osteoclast

numbers, and GEP were analyzed using Student’s t-test in

experiments with Hg and BN myeloma cell lines and using

Student’s paired t-test in experiments with primary myeloma cells.

Supporting Information

Table S1 Genes whose expression was significantly
upregulated or downregulated by PTH treatment in
whole human bone from SCID-hu mice. SCID-hu mice

engrafted with Hg myeloma cells were treated with saline or PTH

for 4 weeks. Mice were sacrificed 2 hours after the last injection.

RNA extracted from the whole myelomatous human bone (five

bones/group) was subjected to global gene expression profiling.

Positive (POS) or negative (NEG) expression of those genes in Hg

myeloma cells is indicated to assess cellular source of these genes

(e.g., microenvironmental and/or tumor cells).
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