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Abstract

In multi-cellular organisms, spatiotemporal activity of cis-regulatory DNA elements depends on their occupancy by different
transcription factors (TFs). In recent years, genome-wide ChIP-on-Chip, ChIP-Seq and DamID assays have been extensively
used to unravel the combinatorial interaction of TFs with cis-regulatory modules (CRMs) in the genome. Even though
genome-wide binding profiles are increasingly becoming available for different TFs, single TF binding profiles are in most
cases not sufficient for dissecting complex regulatory networks. Thus, potent computational tools detecting statistically
significant and biologically relevant TF-motif co-occurrences in genome-wide datasets are essential for analyzing context-
dependent transcriptional regulation. We have developed COPS (Co-Occurrence Pattern Search), a new bioinformatics tool
based on a combination of association rules and Markov chain models, which detects co-occurring TF binding sites (BSs) on
genomic regions of interest. COPS scans DNA sequences for frequent motif patterns using a Frequent-Pattern tree based
data mining approach, which allows efficient performance of the software with respect to both data structure and
implementation speed, in particular when mining large datasets. Since transcriptional gene regulation very often relies on
the formation of regulatory protein complexes mediated by closely adjoining TF binding sites on CRMs, COPS additionally
detects preferred short distance between co-occurring TF motifs. The performance of our software with respect to
biological significance was evaluated using three published datasets containing genomic regions that are independently
bound by several TFs involved in a defined biological process. In sum, COPS is a fast, efficient and user-friendly tool mining
statistically and biologically significant TFBS co-occurrences and therefore allows the identification of TFs that
combinatorially regulate gene expression.
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Introduction

Cell-type specific gene expression results from the combinatorial

interaction of transcription factors (TFs) with cis-regulatory DNA

elements, which are instructed by clusters of TF binding sites

(TFBSs) [1,2]. Notably, not only the presence of TFBSs but also

their spatial arrangements within cis-regulatory modules (CRMs) is

a critical aspect of spatiotemporal regulation of gene expression.

Preferred TFBS spacing may indicate formation of regulatory

protein complexes mediated by closely adjoining TFBSs (Dbp <
10 bp) [3], indirect interactions mediated by adaptor proteins

(Dbp = multiples of 10 bp) and direct/indirect interactions of

distant TFs mediated by chromatin structures, i.e. chromatin loops

(Dbp = multiples of 100 bp) [4,5].

In recent years, the wide-spread use of genome-wide chromatin-

profiling methods such as chromatin immunoprecipitation (ChIP)

followed by microarray analysis (ChIP-on-Chip) or massively

parallel sequencing (ChIP-Seq) and DNA-adenine methyltransfer-

ase identification (DamID) has generated the in vivo binding maps

of numerous TFs. In several cases, the determination of in vivo

binding patterns for a set of TFs involved in the same biological

process has allowed the dissection of combinatorial TF interactions

at the genome-wide level. Prominent examples include the

elucidation of the transcriptional networks controlling muscle

and nervous system development in Drosophila [6,7] as well as the

identification of TF combinations instructing heart development in

mammals [8].

Despite the increasing availability of genome-wide DNA

interaction data for a vast number of TFs, the acquisition of

binding profiles for all TFs essential for the regulation of cell- or

tissue-type specific developmental processes is so far almost

impossible in higher organisms. Furthermore, TFs are often

expressed in many different cell types and yet manage to co-

ordinate cell-type specific transcriptional programs via their

collaboration with different co-regulators. Therefore, as single or

few TF binding profiles are not sufficient for dissecting complex

regulatory networks, computational programs mining statistically

significant and biologically relevant co-occurrences of TF motifs

are crucial for the identification of co-regulatory TFs. Computa-

tional tools that scan pre-selected sequences or whole genomes for

homotypic or heterotypic clusters of TFBSs are the most effective
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among the existing approaches implemented for the identification

of combinatorially regulated CRMs (reviewed in [9]).

In this study, we present COPS (Co-Occurrence Pattern

Search), a computational tool mining frequent co-occurrences of

TF motifs in genome-wide data using a combination of association

rules and Markov chain models. In addition to detecting motif co-

occurrences, COPS reports the preferred spatial arrangement of

the TFBSs, an important feature of cell-type specific CRM

activities. The performance of COPS was evaluated by analyzing

cell type-specific in vivo binding regions for two Drosophila and one

mouse genome-wide datasets [6,7,8]. In all three cases, COPS

retrieved the BSs of known co-regulators of the analyzed TFs,

demonstrating that it is a powerful tool for detecting biologically

relevant TFBS co-occurrences and is thus useful for identifying

novel transcriptional co-regulators. The availability of in vivo

binding data for known co-regulatory TFs allowed us to validate

the in vivo significance of the detected motif co-occurrences.

Importantly, in all cases COPS calculated a substantial number

of co-occurring motifs for TFs with known functions in the selected

tissue-specific biological processes, suggesting their combinatorial

activity on selected CRMs. In comparison to existing computa-

tional approaches, COPS is more suitable for handling large

datasets combined with extensive motif collections. Furthermore,

it detects preferred spatial arrangements of BSs, an important

aspect of regulatory TF complex formation. In sum, we show that

COPS is a powerful, time-efficient and user-friendly bioinfor-

matics tool for identifying co-regulatory TFs that control cell- and

tissue-specific target gene expression in a combinatorial manner.

Materials and Methods

Datasets Analyzed Using COPS
Drosophila mesoderm dataset. The genomic regions

bound by Twist (Twi), Myocyte enhancer factor 2 (Mef2), Tinman

(Tin), Bagpipe (Bap) and Biniou (Bin) at the embryonic stages 10 to

11 (6–8 h of development) [6] were analyzed. Due to the large

variation in the length of ChIP-on-Chip identified regions we

analyzed regions of a length #1000 bp (809 Twi-bound, 934

Mef2-Bound, 666 Bin-bound, 407 Bap-bound and 514 Tin-bound

sequences).

Drosophila neural stem cell TF dataset. Genomic regions

bound by the neurogenic factors Prospero (Pros) (2611 sequences),

Asense (Ase) (2745 sequences), Deadpan (1426 sequences) and

Snail (4000 sequences) at the embryonic stages 10 to 11 were

defined by extending the DamID-identified regions [7] by 500 bp

on each end.

Mouse cardiac TF dataset. We analyzed the genomic

regions bound by Mef2a (883 sequences), GATA-binding protein

4 (GATA4) (473 sequences), NK2 TF related, locus 5 (Nkx2.5)

(386 sequences) and Serum response factor (Srf) (1291 sequences),

as defined by ChIP-on-Chip in HL-1 cells [8].

Motifs Used for Scanning the Datasets
All TF binding motifs annotated in open source databases

(JASPAR [10], TRANSFAC [11]) were used. Additionally, the

optimized Position Weight Matrices (PWMs) for Twi, Mef2, Tin,

Bap and Bin [6] were used for detecting BSs of these TFs in both

Drosophila datasets. The Pros PWM described by Down et al.

(2007) [12] was used for detecting Pros BSs in both Drosophila

datasets. The PWM of GATA1 (JASPAR, TRANSFAC) was used

for detecting GATA4 BSs, as motifs recovered from GATA4

bound regions were reported to match the GATA1 motif [13]. All

motifs used for scanning for BSs of the main TFs from all three

datasets are shown in Figure S1.

Analysis of the Tissue-specific Properties of the Co-
occurring TFs

Information concerning the tissue-specific expression and

developmental functions of Drosophila and mouse TFs was retrieved

from FlyBase [14] and UniProtKB [15,16] respectively.

Sequence Overlap Analysis
In order to compare the in vivo overlap with the expected

(background) overlap, an overlap analysis was performed for the

frequent motif patterns for which genome-wide data was available.

The expected overlap was measured by randomly permuting

(1000 times) the same number of regions bound by one TF

through the genome and the mean overlap was subsequently

calculated. The significance of the observed compared to the

expected overlap was calculated by assuming that the overlap

follows a Poisson distribution.

COPS Implementation
Scanning the sequences for TF motifs. Motif position

frequency matrices (PFMs) describing the probability of nucleotide

distribution at each position were used for detecting TFBSs. First a

weight sum of log scaled score was calculated as described in [17].

Since the scores vary for the different motifs, the score distribution

of each motif was calculated as described in [18], in order to

estimate the threshold cut-off for a given p-value.

Frequent pattern (FP)-tree building. A data mining

method based on a frequent pattern (FP) growth algorithm was

used. This method uses an extended prefix tree structure for

storing quantitative information about frequent patterns. The FP-

tree is composed of a header table and nodes representing items,

and each node has three member variables node-name, node-

count and node-link. The node-name represents the item name,

the node-count records the path reaching this node and the node-

link links to the next node in the FP-tree carrying the same node-

name. The header table consists of the item name and head of

node-link, which points to the first node in the FP-tree carrying the

item name. The nodes were arranged in a way that frequent co-

occurrence nodes would have higher chance for sharing nodes

[19].

Let I~fm1,m2,:::,mng be a set of motifs, and a database

DB~fS1,S2,:::,Sng is the motif occurrence in Si (each sequence)

which contain a set of motifs in I . The support of a pattern A,

which is a set of motifs, is the number of sequences containing A in

DB. The set of motifs I were sorted alphabetically, the ordering is

defined as L. The order of the motifs is important, as each path of

the tree will follow this order.

The FP-tree is gradually built by incorporating results from

scanning each sequence. A list of motifs found on the sequence will

be first sorted according to L, and then sequentially inserted into

the tree. The insertion starts from the root node and recursively

traverses the tree to update node count and node link until it has

reached the last node. The major operations involved in the

update process are node count increment and new node creation.

Each sequence Si in the DB is mapped to one path in the FP-tree,

and the occurrence of each motif in the sequence is stored in the

FP-tree.

The header table together with the constructed FP-tree were

used for mining frequent patterns. Starting from the node-link of

each node-name in the header table, the frequent pattern is

generated by concatenating the nodes in the same prefix path.

Their corresponding number of occurrence is calculated by nodes

accumulation and prefix path count adjustment.

Detecting Transcription Factor Motif Co-Occurrence
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Statistical validation of frequent patterns. In our ap-

proach, a log likelihood score based on a Markov model was used

to calculate the statistical significance of the frequent patterns.

l~(A,p) denotes a Markov model, where A~ aij

� �
is the state

transition probability matrix, and each transition probability is

defined as aij~P Sj DSi

� �
; Si,Sj[ a,c,g,t½ �. The probability of the

observed sequence O~fO1,O2,:::,OTg, considering the Markov

model l can be calculated as:

P ODlð Þ~P o1,:::,oT Dlð Þ~P o1ð Þ:::P otDotz1ð Þ:::P oT{1DoTð Þ. In

our approach we trained two third-order Markov models lobs

and lbgs using the observed sequences (genome-wide dataset) and

background sequences (all non-coding sequences). The probability

of observing a sequence ‘‘atgta’’ using a third-order Markov model

is calculated as: P(atgtaDl)~P að ÞP(aDt)P(gDat)P(tDatg)P(aDtgt).

Assuming both Markov models are ergodic, the empirical

Kullback-Leibler divergence (KLD) between two Markov models

is

D O,lobs,lbgs

� �
~

1

T
log

P ODlobsð Þ
P(ODlbgs)

,

where O is a sequence of observation and T is the length of the

observed sequence. D(O,lobs,lbgs) was estimated using Monte

Carlo simulations [20], and it can be explained as how well the

lobs scores the observation sequence relative to the lbgs. A score

based on the KLD for the frequent motif pattern is defined as:

D(Pattern,lobs,lbgs)~
1

n

Xn

i~1

D(Oi,lobs,lbgs),

where Oi is the BS of the frequent motif pattern in each sequence,

and n is the total number of BSs of the frequent motif pattern. For

instance, for a pattern composed of motifs A and B, the subset of

sequences containing motifs A and B is used to calculate the score.

Oi is the BS of A and B in each sequence, and n is the total

number of BSs of motif A and B. In our analysis, we used genome-

wide data sets generated for a given TF (main TF), therefore any

pattern containing this TF will have a high score, as the motifs of

this TF are enriched in this dataset. In order to reduce the bias

caused by the main TF, the main TF binding sites are not included

in the calculation. The background was estimated by randomly

taking a subset of DNA sequences from the observed sequences

and calculating D(Patternrandom,lobs,lbgs). Assuming the score

follows a normal distribution, we define a Z score as:

z~
D(Pattern,lobs,lbgs){D(Patternrandom,lobs,lbgs)

s
,

where D(Patternrandom,lobs,lbgs) is the estimated mean score of

the random pattern, and s is the estimated standard deviation of

the random pattern.

Analysis of preferred distance arrangements between co-

occurring TFBSs. A distance analysis was carried out in order

to detect distance preferences between motif pairs in the frequent

motif patterns. The motifs were scanned on the sample sequences

and their corresponding coordinates were used to calculate the

pair-wise distance. The pair-wise distance is always representing

the distance between the last nucleotide of the first motif and the

first nucleotide of the second motif of the pair. The calculated

distances between the motifs in the pair were distributed in equally

spaced intervals of 10 bp. The background was estimated by

analyzing the pair-wise distance of the motifs in the pair in

randomly selected sequences from non-coding regions in the

genome. The significance of the interval was calculated by fitting

the interval data to a binomial distribution and the p-value was

calculated for each interval.

GO Term Analysis of Genes Associated to Genomic
Regions Containing Closely Spaced TFBSs

The non-coding regions upstream and downstream of every

gene in the Drosophila genome were scanned using a 500 base pair

window, in order to detect short distance motif pairs (Bin/Tin:

21–9 bp, Mad/Twi: 21–9 bp and Ase/Dpn: 21–9 bp). The GO

terms of the genes associated with regions containing the

respective short distance pairs were compared to the rest of the

genes in the genome using the Fisher exact test.

Comparison to Other Computational Approaches
The relative performance of COPS was compared to Mod-

uleDigger [21] and CPModule [22] using the Matthews correla-

tion coefficient (MCC). ModuleDigger uses Clover [23] to scan the

observed and background sequences and enumerates all frequent

co-occurrence motifs, finally ranking the finding by a gene-set

specificity score. CPModule scans the sequences using a library of

PWMs and then uses constraint programming for item set mining

approach to enumerate all motif patterns.

For comparing COPS with these programs, we used all three

tools to analyze subsets of sequences from the Twi and Pros

dataset and from all non-coding regions in the Drosophila genome

(background). The size of the sequence subsets ranged from 50 to

300 sequences. The number of times a program could identify the

motif pairs Bap/Twi, Tin/Twi in the Twi dataset and the motif

pairs Ase/Pros, Snail/Pros in the Pros dataset was considered as

True Positive count (TP). The False Positive count (FP)

corresponds to the number of times these motif pairs were

detected in the background. The Matthews Correlation Coeffi-

cient (MCC) was calculated as follows:

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ,

where TN = true negative and FN = false negative.

ModuleDigger and CPModule were accessed at (http://homes.

esat.kuleuven.be/̃ kmarchal/Supplementary_Information_Sun_

2009_ModuleDigger/Index.html) and (http://homes.esat.

kuleuven.be/̃ kmarchal/Supplementary_Information_Sun_2011/

Index.html) respectively.

Implementation and Availability of COPS
COPS is implemented in Python (which is platform indepen-

dent) and can be used directly after download and installation of

the SciPy package. We exemplarily cite the memory requirements

and data processing time for some of the datasets described in the

manuscript.

Drosophila melanogaster Twist dataset (scanned for 75 motifs):

484 MB, 158.978 sec.

Drosophila melanogaster Pros dataset (scanned for 75 motifs):

552 MB 216.774 sec.

Mus musculus Mef2 dataset (scanned for 49 motifs): 2.1GB

283.928 sec.

The main memory consumption is due to the calculation of the

score distribution of the PWMs. Therefore longer motifs (i.e.

mouse TFs) increase memory usage.

Detecting Transcription Factor Motif Co-Occurrence

PLOS ONE | www.plosone.org 3 December 2012 | Volume 7 | Issue 12 | e52055



Results

COPS: A Computational Tool Detecting TF Motif co-
occurrences in Genome-Wide Datasets

In this study we present COPS (Figure 1), a computational tool

that detects statistically significant TFBS co-occurrences in

genome-wide datasets consisting of genomic regions bound by a

single TF (referred to as ‘‘main TF’’) in vivo, as shown by ChIP-on-

Chip, ChIP-Seq or DamID experiments. An analysis with COPS

aims at identifying candidate co-regulators of the main TF

involved in the control of cell type-specific processes.

Initially, COPS scans the input sequences using all TF binding

motifs annotated in open source databases (JASPAR [10],

TRANSFAC [11]) or retrieved from other resources (i.e. published

optimized or alternative PWMs, Figure S1), thereby building the

FP-tree. The FP-tree based approach efficiently compresses large

datasets into a condensed data structure and in contrast to the

Apriori-like set-generation-and-test method [24] it avoids costly

candidate generation and repeated database scans [19,25].

Therefore employing an FP-tree algorithm makes COPS efficient

with respect to both data structure and implementation speed, in

particular when mining large datasets. The frequent patterns

containing BSs for the main TF are selected for further validation.

Each motif co-occurrence pattern is statistically validated based on

the log likelihood score calculated using two Markov models. The

models are trained separately using the adequate input sequences

and background sequences assembled from all the non-coding

sequences of the respective genomes. The statistical significance

cut-off score for motif co-occurrence (Z score) is calculated by

comparing the log likelihood score of the frequent pattern to the log

likelihood score distribution of the background. An additional

feature implemented in COPS is the calculation of the preferred

distances between co-occurring DNA motifs and its statistical

significance.

COPS ultimately generates a list of co-occurring TFBS pairs

and reports for each of them the statistical significance of the co-

occurrence (Z score) and the percentage of overlap between the

BSs of the TF pair. Highly overlapping motifs can generate

Figure 1. COPS flowchart. COPS first scans the input sequences using all known TF binding motifs annotated in open source databases or
retrieved from other resources and builds the frequent pattern (FP)-tree. The statistical significance (Z score) of the motif co-occurrences is calculated
by comparing the log likelihood score of the frequent pattern to the log likelihood score distribution of the background. The percentage of overlap
between the motifs of the pair is also calculated and reported. Additionally, COPS offers the option to calculate the preferred distance between co-
occurring TF binding motifs and its statistical significance (Z score).
doi:10.1371/journal.pone.0052055.g001

Detecting Transcription Factor Motif Co-Occurrence
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ambiguous results and therefore COPS users may decide to

discard such pairs from the list of results. However, before a pair is

discarded, users need to consider that TFs of the same family very

often bind to highly similar sequences, therefore the properties of

the TFs of the pair should be examined. Furthermore, COPS

calculates the preferred distance arrangement between the motifs

of the detected TF pairs and its statistical significance (p-value). As

the requirements of individual users may vary when they employ

COPS for data analysis, the parameters provided by the program

for each motif pair can be considered accordingly. Generally, a

high Z score and a low BS overlap are good indicators of true

positive results. Nevertheless, motif pairs are likely to be ranked

with a rather low statistical significance score in cases when the

reported PWMs fail to represent the actual binding profile of the

respective TFs or they are poorly annotated. Therefore, additional

parameters defined by the users are sometimes required for further

analysis of the results. For instance, the users can resort to

databases in order to address whether the co-occurring TFs are

expressed in the same tissues as the main TF or whether they are

suggested to physically interact with the main TF. Examples of

additional means employed for result validation are given in the

following sections.

Analysis of Genomic Regions Bound by the Mesoderm
Specification TF Twist in Stage 10 to 11 Drosophila
Embryos

In order to evaluate the biological relevance of COPS

predictions, we analyzed three published genome-wide datasets

containing CRMs interacting with several co-regulatory TFs. The

first dataset contains the in vivo binding regions for five Drosophila

mesoderm specification TFs, namely Twist (Twi), Myocyte

enhancer factor 2 (Mef2), Tinman (Tin), Bagpipe (Bap) and

Biniou (Bin), identified by ChIP-on-Chip in stage 10 to 11

embryos [6]. From this dataset, we first analyzed the genomic

regions bound by Twi, the master regulator of mesoderm

differentiation [26]. At the chosen developmental stages, many

of the identified Twi CRMs are bound in vivo by all the other

mesoderm specifying TFs mentioned above [6]. Therefore, co-

occurrences of Twi and Bap/Bin/Mef2/Tin BSs on the selected

genomic regions can be considered as ‘‘true-positive’’ results.

Scanning of Twi-interacting regions using all annotated PWMs

as well as a number of optimized PWMs described in the literature

[6,12] identified 25 co-occurring TFBSs (statistical significance

cut-off: Z score .2.0), including three out of four known Twi co-

regulators, Bap, Bin and Tin (Table 1; Table S1). The Twi co-

regulator Mef2 could not be retrieved, most likely due to the high -

AT- content of the motif. The Z scores (statistical significance) of

the frequent patterns Bap/Twi (Figure 2A) and Tin/Twi

(Figure 2B) are shown as representative examples. Furthermore,

COPS detected BSs for Snail, a TF that together with Twi is

involved in the regulation of mesodermal and dorsoventral-

patterning genes in early Drosophila embryos [27,28]. In order to

address whether the Twi/Snail BS co-occurrences identified by

COPS correlate with in vivo binding, we used genomic regions

shown by ChIP-on-Chip to be combinatorially bound by Twi/

Dorsal/Snail in vivo in stage 5 to 7 Drosophila embryos [28]. Despite

the differences in the developmental stages used in the two studies,

a comparison of genome-wide Twi binding regions (stage 10 to 11)

with Twi/Dorsal/Snail binding regions (stage 5 to 7) revealed a

substantial and statistically significant overlap (Table 2, Figure 3A),

indicating that Snail interacts with the respective CRMs in

consecutive developmental stages and represents a Twi co-

regulator in mesoderm specification.

In addition to the four known Twi co-regulators, we detected

co-occurring BSs for five TFs described either to be expressed in

mesoderm-derived tissues or to be implicated in muscle develop-

ment (Table 1; Table S1). Thus, we assumed these factors to

function as so-far unknown Twi transcriptional co-regulators in

mesoderm development. In sum, 16% of the TFs predicted to bind

on Twi-regulated CRMs are known to combinatorially regulate

gene expression together with Twi. Moreover, 20% of the

predicted TFs control mesoderm-derived tissue development,

showing that COPS successfully identified biologically meaningful

TF co-occurrences (36% of the detected TF pairs) on Twi CRMs.

Interestingly, COPS detected Twi BSs in combination with BSs

for TFs related to nervous system development, among which

Deadpan (Dpn), Asense (Ase) and Snail (Table S1). The substantial

and statistically significant overlap of genome-wide Twi [6] and

Dpn-, Ase- or Snail- [7] binding regions (Figure 3B and 3C,

Table 2) suggests in vivo implications for the co-occurrence of Twi

with neuronal TFs. Since Twi, in addition to its prominent role in

mesoderm specification, has been suggested to be important for

patterning the neurogenic ectoderm during early embryonic

development [29], this result underlines the power of COPS in

identifying potential tissue-specific TF co-regulators and uncover-

ing new transcriptional networks regulating specific biological

processes.

In addition to the Twi-bound genomic regions, we indepen-

dently analyzed the genomic regions bound by Bin, Tin, Bap and

Mef2. In all four sequence-sets, COPS detected co-occurrence of

the motif of the respective TF with the motifs of other mesoderm

specification factors (Table S1), i.e. Twi/Bin, Tin/Bin and Bap/

Bin motif pairs were found on Bin-bound regions.

Analysis of Genomic Binding Regions for the Neuroblast
Differentiation TF Prospero in Stage 10 to 11 Drosophila
Embryos

The second genome-wide dataset consists of genomic regions

bound by the neural stem cell TFs, Prospero (Pros), Ase, Dpn and

Snail, as defined by DamID in stage 10 to 11 Drosophila embryos

[7]. Within the genomic regions bound by the key neuronal stem

cell differentiation TF Pros [30], COPS identified 16 co-occurring

TFBSs (statistical significance cut-off: Z score .2.0) (Table S2),

among which the BSs for the three known Pros co-regulators

Snail, Ase and Dpn as well as BSs for seven TFs implicated in

neuronal differentiation and nervous system development (infor-

mation retrieved from FlyBase) (Table 3, Table S2). The statistical

significance (Z score) of the frequent patterns Ase/Pros (Figure 2C)

and Snail/Pros (Figure 2D) are shown as representative examples.

In line with the prominent role of Pros in regulating gene

expression in glial cells, the known regulator of glia development

Tramtrack (Ttk) was identified as a co-occurring TF on Pros

binding genomic regions.

The genomic regions bound by Ase, Dpn and Snail were

independently analyzed and in all cases COPS detected co-

occurrence of the motif of the respective TF with the motifs of all

other neural stem cell specification factors (Table S2).

Analysis of Genomic Binding Regions for Mef2a in HL-1
Mouse Cardiomyocytes

In addition to the two Drosophila datasets, we analyzed the

genome-wide data generated by Schlesinger et al. (2011) using

mouse HL-1 cardiomyocytes. In this study [8], ChIP-on-Chip was

performed for four key cardiac TFs, Mef2a, GATA-binding

protein 4 (GATA4), NK2 TF related, locus 5 (Nkx2.5) and Serum

response factor (Srf). Scanning Nkx2.5 genomic binding regions

Detecting Transcription Factor Motif Co-Occurrence
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for TFBS co-occurrences (Table 4, Table S3) retrieved BSs of the

known Nkx2.5 co-regulator Mef2a. Srf BSs were not detected on

Mef2a-bound regions. Two likely explanations are that Srf BSs are

only partially represented by TRANSFAC PWMs and that only a

small number of Srf binding regions contain Srf BSs [8,13].

GATA4 BS could not be detected either, which is very likely due

to the fact that the GATA1 motif was used for performing the

analysis (the GATA4 motif is not available). In line with the

Table 1. Classification of TFs co-occurring with Twi on Twi-bound genomic regions in stage 10 to 11 Drosophila embryos.

No. of TFs

Known Twi co-regulators (mesoderm development): Bap, Bin, Tin [6] 3

Known Twi co-regulator in dorsoventral patterning: Snail
[28]

1

TFs involved in mesoderm specification/muscle development: Mad, Med, Odd, Usp, Byn 5

TFs with functions in other tissues or with uncharacterized functions 16

Total Number of TFs 25

% of known Twi co-regulators 16%

% of mesoderm/muscle related TFs 20%

The TFs were classified based on their known co-regulatory function with Twi and their involvement in mesoderm specification and muscle development or other
developmental processes.
doi:10.1371/journal.pone.0052055.t001

Figure 2. Selected examples of the statistical significance of the identified co-occurrence patterns. The statistical significance of selected
motif pairs from the different genome-wide datasets is depicted. The log likelihood score (blue bar) of the motif pairs Bap/Twi (A), Tin/Twi (B), Ase/
Pros (C) and Snail/Pros (D) is shown in relation to the log likelihood score distribution of the background (red curve).
doi:10.1371/journal.pone.0052055.g002
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Figure 3. Observed overlap of the genomic regions bound by the TF Twi and its co-regulators. A-C: The observed overlap (blue bar)
between genomic regions bound by Twi and genomic regions bound by its known co-regulator Snail and its candidate co-regulator Ase is
depicted in comparison to the expected random overlap (red curve). The overlap of genomic regions bound by Twi in stage 10 to 11 [6] with
the genomic regions bound by Twi/Snail/Dorsal in stage 5–7 [28] (A), Snail (stage 10 to 11 [7]) (B) and Ase (stage 10 to 11 [7]) (C) is shown. A’-
C’: Distribution and overlap (red) of Twi- and Twi/Snail/Dorsal- (A’), Twi- and Snail- (B’) and Twi- and Ase- (C’), bound genomic regions. The
regions bound by Twi are shown in blue, the regions bound by the co-regulatory TFs in green and the overlapping regions bound by both Twi
and the co-regulatory TFs in red.
doi:10.1371/journal.pone.0052055.g003
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prominent role of Nkx2.5 in heart morphogenesis, BSs for three

TFs regulating heart development (information retrieved from

UniProtKB) were found together with Nkx2.5 BSs (Table 4, Table

S3).

The genomic regions bound by Mef2a were independently

analyzed and COPS detected co-occurrence of the Mef2a motif

with the BS of the co-regulator Nkx2.5 (Table S3). SRF and

GATA4 bound genomic regions were not analyzed due to the

above mentioned limitations concerning the motifs of these TFs.

Detection of Short Distance Arrangements between
Motif Pairs

Systematic analyses of TFBS arrangements on developmental

enhancers have highlighted that random distributions of TFBSs on

CRMs are not sufficient for precise regulation of target gene

expression [31,32]. On the other hand, short distance arrange-

ments between TFBSs on CRMs (Dbp,100 bp) have been

proposed to mediate protein-protein contacts as well as interac-

tions with co-activators/co-repressors that ultimately result in the

efficient formation of higher-order regulatory complexes for

precise gene regulation [3,33]. Since fixed spacing of TFBSs is

an integral aspect of transcriptional synergy, COPS was designed

to detect statistically significant short distance motif arrangements.

After detection of frequent motif pairs, COPS can be employed to

search for preferred spatial arrangements between the TFBSs.

Here we used COPS to scan for preferred distance arrangements

ranging from -1 to 100 bp, using a 10 bp window. Nonetheless

COPS presents no limitations concerning the minimum and

maximum TFBS distance or the interval (number of bp) used for a

TFBS arrangement analysis, since these parameters can be

individually specified before scanning the dataset of interest. In

the datasets analyzed in this work, COPS reported preferred

distance arrangements for several motif pairs (for the full list of

results from the individual datasets refer to Tables S1, S2 and S3).

Interestingly, COPS detected short distance spacing (,20 bp) for

the BSs of the known co-regulatory TF pairs Bap/Twi, Tin/Twi,

Bap/Tin, Bin/Tin, Bap/Bin, Pros/Ase, Snail/Twi, Dorsal/Snail

and Ase/Dpn as well as for the BSs of potential new co-regulators

identified in this study (Table 5, Tables S1, S2 and S3).

Next, we decided to address the biological significance of the

close spacing of TFBSs detected by the software using the TF pairs

of the known co-regulators Bin/Twi, Ase/Dpn and the novel co-

regulatory pair Mad/Twi detected by COPS in this study. All

selected pairs showed a preferred close distance motif spacing of -1

to 9 bp. Our approach involved scanning all non-coding regions of

the Drosophila genome for sequences containing the above

mentioned TFBS pairs at a distance of -1–9 bp as reported by

COPS and examining the GO terms of the genes associated with

these regions. In all three cases, genes associated with these specific

short-distance TF combinations exhibited similar functional

annotations as the respective TF pair (Table S4). In particular,

among the genes associated with the Ase/Dpn short-distance TF

pair we found enrichment of GO terms related to cell division (i.e.

‘‘mitotic cell cycle’’, ‘‘regulation of mitotic cell cycle’’, ‘‘positive

regulation of S phase of mitotic cell cycle’’) (Table S4), in line with

the role of Ase and Dpn in neural stem cell division [7]. Similarly,

genes coupled to the Bin/Twi short-distance TF pair displayed the

following GO terms enriched, ‘‘visceral muscle development’’,

‘‘larval visceral muscle development’’ and ‘‘somatic muscle

development’’ (Table S4), in agreement with the role of Twi as

a master regulator of mesoderm development [26] and of Bin as

the main coordinator of visceral muscle differentiation [34].

Interestingly, genes associated with regions containing closely

spaced Mad/Twi BSs were found enriched for the GO terms

‘‘cardioblast differentiation’’, ‘‘heart development’’ and ‘‘pericar-

dial cell differentiation’’ (Table S4). As Mad, Twi and Tin have

been shown to combinatorially act on selected cardioblast

enhancers [35], our results raise the possibility that their combined

Table 2. Overlap of genomic regions bound by Twi and Twi co-regulatory TFs in vivo.

TF Pair Twi-bound regions Co-TF bound regions Observed overlap Expected overlap P-value

Twi (st. 10–11)/Twi/
Snail/Dorsal (st.5–7)

1576 861 226 24.93 0

Twi/Snail 1576 2121 166 111.60 3.661026

Twi/Dpn 1576 1083 92 30.88 0

Twi/Ase 1576 1741 201 50.27 0

Overlap of Twi-bound regions with the genomic regions bound by Twi/Snail/Dorsal in stage 5 to 7 embryos and with the regions bound by the neurogenic TFs Snail,
Ase and Dpn in stage 10–11 embryos.
doi:10.1371/journal.pone.0052055.t002

Table 3. Classification of TFs co-occurring with Pros in DamID identified genomic regions in stage 10 to 11 Drosophila embryos.

No. of TFs

Known Pros co-regulators in neuroblasts: Snail, Ase, Dpn [7] 3

TFs involved in nervous system development: Ttk, Brk, Btd, Hkb, Deaf1, Ct, H 7

TFs with functions in other tissues or with uncharacterized functions 6

Total Number of TFs 16

% of known Pros co-regulators 19%

% of nervous system related TFs 44%

The TFs were classified based on their combinatorial activity with Pros and their involvement in nervous system development and other developmental processes.
doi:10.1371/journal.pone.0052055.t003
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activity might be of broader relevance for the regulation of

enhancers controlling cardiac identity. Therefore, preferred close

distance arrangements detected by COPS can be considered as

evidence of transcriptional synergy.

Comparison of COPS with Other Computational
Approaches

The advantage of the multiple sequence tool COPS, in

comparison to the single sequence tools Cister [36] and

ClusterBuster [37] is its more accurate prediction of TFBS

combinations present in CRMs associated with gene sets

displaying similar tissue-specific expression. Even though the

above-mentioned programs are very efficient in detecting motif

combinations on single sequences, they cannot retrieve informa-

tion concerning groups of genes regulated by enhancers with

similar architecture in terms of motif composition.

The performance of COPS was directly compared to available

multiple sequence tools, namely Compo [38], ModuleDigger [21]

and CPModule [22]. Our attempt to use Compo for analyzing the

datasets scanned with COPS was not successful, since the software

was not able to handle such large numbers of sequences (in some

cases .2000 sequences i.e. Pros dataset) and extensive motif

collections (.70 motifs). Therefore we did not proceed with a

direct comparison of the performance of the two programs. The

comparison of COPS to ModuleDigger [21] and CPModule [22]

was carried out using sequence-sets of increasing size from the Twi

and Pros datasets and the motif pairs Twi/Bin, Bap/Twi, Tin/

Twi, and Ase/Pros, Snail/Pros respectively (described in detail in

Materials and Methods). As shown in Figure 4, the performance of

COPS with respect to the MCC value is comparable or superior to

CPModule at differently sized sequence sets with different TF

pairs, while COPS outperforms ModuleDigger in every run.

Discussion

Genome-wide analyses of TF-DNA interactions ultimately aim

at unravelling the molecular mechanisms underlying the control of

gene expression. As it has been established that the combinatorial

input of different TFs on CRMs is a key determinant of

spatiotemporal regulation of gene expression, detection of TFBS

co-occurrences provides an excellent starting point for identifying

TF combinations with tissue-specific transcriptional outputs. To

this end, we have developed COPS, a new computational tool

which scans genomic sequences for statistically significant TF

motif co-occurrences. The performance of COPS with respect to

the biological significance of the detected co-occurring TFBS pairs

was evaluated by analyzing three independent genome-wide

datasets. In all cases, COPS successfully detected co-occurrence

of each TF with its known co-regulators. As genome-wide data are

available for several of these co-regulators, we could show that co-

occurrence of these motif pairs indeed correlates with in vivo

combinatorial binding. Furthermore, for all analyzed TFs COPS

reported co-occurrences with TFs involved in common tissue-

specific processes. Therefore COPS is applicable for identifying

potential transcriptional co-regulators of a TF of interest.

One advantage of COPS is the use of a FP-tree based data

mining approach [19], which avoids the costly candidate

generation and testing and is therefore time-efficient, especially

when mining large datasets. Moreover, the calculation of the

statistical significance of the frequent motif patterns is more

dependent on DNA sequence content and to a lesser extent on

sequence length, thus eliminating the requirement for normaliza-

tion of the motif frequencies against the sequence length.

Importantly, COPS is capable of efficiently scanning large datasets

(i.e. the Snail DamID dataset consisting of 4000 sequences) for

extensive motif collections. Overall, the above-mentioned param-

eters render COPS a powerful, time-efficient and statistically

reliable computational tool.

Table 4. Classification of TFs co-occurring with Nkx2.5 in ChIP-on-Chip identified genomic regions in HL-1 cells.

No. of TFs

Known Nkx2.5 co-regulator in heart development: Mef2a [8] 1

TFs involved muscle or cardiac development: NFATC2, Sox17 and Prrx2 3

TFs with functions in other tissues or with uncharacterized functions 11

Total Number of TFs 15

% of known co-regulators 7%

% of potential co-regulators of Nkx2.5 in heart or muscle development 20%

The TFs were classified based on their known interactions with Nkx2.5 and their involvement in muscle or heart development.
doi:10.1371/journal.pone.0052055.t004

Table 5. Short distance arrangements between BS of known
co-regulatory TFs.

Dataset
analyzed TF Pair

Preferred Distance
Arrangement p-value

Twi Dataset
Bap Dataset

Bap/Twi (21–9)
(9–19)

2.31E-02
4.34E-02

Tin Dataset Tin/Twi (9–19) 3.33E-03

Tin Dataset Bap/Tin (9–19) 3.62E-02

Bin Dataset
Bin Dataset

Bin/Tin (21–9)
(9–19)

1.32E-02
2.84E-02

Bin Dataset Bap/Bin (21–9) 3.99E-02

Pros Dataset Pros/Ase (21–9) 3.60E-02

Snail Dataset Snail/Twi (9–19) 1.84E-02

Snail Dataset
Snail Dataset

Dorsal/Snail (9–19)
(21–9)

3.64E-02
3.18E-02

Ase Dataset
Ase Dataset
Dpn Dataset

Ase/Dpn (9–19)
(21–9)
(21–9)

2.01E-02
1.51E-02
4.57E-02

The table lists the preferred short distance arrangements (Dbp) between the
BSs of known co-regulatory TF pairs, as reported by COPS by analyzing different
genome-wide datasets (first column). The last column shows the statistical
significance (p-value) of the short distance arrangement for each pair of TFBSs.
Only pairs with a motif spacing of ,20 bp are listed in the table.
doi:10.1371/journal.pone.0052055.t005
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Notably, COPS is not restricted to the detection of motif pairs,

but it can also be used for identifying longer co-occurrence

patterns, namely combinations of three or more TFBSs. However,

the number of motif combinations dramatically expands when

scanning for longer patterns using large motif collections, hence

resulting in increased memory requirements and processing time.

We exemplarily mention that when a Drosophila genome-wide

dataset is scanned for detecting combinations of three TFBSs using

the whole collection of Drosophila TF motifs (75 motifs) COPS will

have to scan the sequences for a total number of 67525 frequent

patterns. Therefore when possible, we advice COPS users to

preselect a smaller subset of motifs in analyses involving longer

patterns, in order to facilitate their analysis.

One feature of COPS not found in other sequence-screening

tools is the detection of distance preferences between co-occurring

motifs. The defined spatial organization of TFBSs on CRMs is

critical for the proper assembly of functional regulatory complexes,

since protein-protein interactions very often depend on favourable

arrangements of BSs [3,5,33,39,40,41]. Protein complex formation

between TFs binding at adjacent BSs can explain how TFs with

degenerate DNA-binding specificity precisely regulate their target

genes in a cell type-specific manner, either by modifying their

DNA recognition properties [42] or by exhibiting a synergistic

activity [3,41,43]. Therefore, preferred close distance arrange-

ments of TFBSs reported by COPS raise the possibility of direct

interactions between the respective TFs. As we showed in this

study, genomic regions containing closely spaced TFBS pairs (as

reported by COPS) are associated to similar gene classes that

reflect the properties of the TFs of the pair, therefore close distance

arrangement of TF motifs may at least in some cases indicate cell-

type specific combinatorial activity of the respective TFs.

When analyzing sequences with bioinformatics tools such as

COPS, a parameter that should be taken into consideration is the

important role of PWMs. TF co-occurrences are likely to be falsely

omitted if the reported PWMs fail to represent the actual binding

profile of the respective TFs or if they are poorly annotated.

Furthermore, false positive results may be obtained due to

degenerate PWMs that are frequently encountered in the genome

and are therefore likely to be part of co-occurrence patterns on

multiple genomic regions. An additional critical parameter is the

definition of the genomic regions that will be considered as ‘‘TF-

bound DNA regions’’. In contrast to the regions defined by ChIP-

Seq, which are usually in the range of a few hundreds base-pairs

long, DamID- and ChIP-on-Chip- detected regions often extend

up to several kilo base-pairs. In such cases, the region that is bound

by the TF in vivo is not always easy to detect due to a decrease of

the signal to noise ratio. Moreover, similarly to all computational

routines, COPS cannot capture several aspects of in vivo

transcriptional regulation. First of all, recruitment of TFs can

occur without the presence of recognizable TF motifs on the

Figure 4. Comparison of COPS to two other computational approaches. The plots depict the Matthews Correlation Coefficient (MCC) values
as determined using COPS and the published tools CPModule and ModuleDigger, for the co-occurrence patterns Bap/Twi, Tin/Twi, Ase/Pros and
Snail/Pros in sequence-sets of increasing size (ranging from 50 to 300 sequences). The MCC values used for evaluating the performance of the
different computational tools were calculated as described in the Materials and Methods. The red line illustrates the performance of COPS, the blue
line CPModule and the green line ModuleDigger.
doi:10.1371/journal.pone.0052055.g004
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respective genomic region. In such cases, genomic localization of

the TF is mediated via binding at distal sites followed by DNA

looping or via protein-protein interactions [44]. For instance,

when Mef2a- and Nkx2.5-bound sequences were analyzed in our

study, COPS failed to detect the BSs of the known co-regulator Srf

due to the fact that Srf binding at target sequences largely relies on

protein-protein interactions and to a lesser extent on the

recognition of consensus sequences [8,44]. In addition, as

epigenetic modifications often define the accessibility of genomic

regions to TFs, TFBSs detected by COPS might not be occupied

in vivo [44,45,46]. Therefore, genome-wide data on histone

modifications could be used to optimize the interpretation of

results obtained by COPS. Finally, detection of co-occurring BSs

by COPS does not necessarily mean that the respective TFs

combinatorially interact with the CRMs, but they could also be

occupied by the TFs in different tissues or at different develop-

mental stages.

In sum, COPS is a potent computational tool applicable for

identifying potential transcriptional co-regulators that define

context-dependent transcriptional outputs. In combination with

genome-wide data for TF-DNA interactions, histone modifications

and protein-protein interactions COPS allows the elucidation of

cell type-specific regulatory networks.

Supporting Information

Figure S1 Motif logos for the main TFs analyzed in the study.

The logos of the motifs used for scanning for BSs of the main TFs

from all three datasets are depicted in this figure. All other motif

logos can be found in the open source databases TRANSFAC and

JASPAR.

(TIF)

Table S1 Analysis of genomic regions bound by mesoderm

specification TFs in stage 10 to 11 Drosophila embryos. The table

includes all results generated by analyzing Twi-, Tin-, Mef2-, Bin-

and Bap-bound genomic regions using COPS. The TF motif pairs

found to co-occur are listed in column A. Known co-regulators are

shown in bold. Candidate co-regulatory TFs expressed in the

muscle/mesoderm are highlighted in yellow. Column B shows the

statistical significance of the co-occurrence pattern (Z score) and

column C the percentage of motif overlap as calculated by the

program. The tissue-specific expression of the co-occurring TF of

each pair as reported in FlyBase is shown in column D and the

literature supporting a co-regulatory role with the main TF in

column E. Columns G-M show the preferred distance arrange-

ments between the TF motifs of the different pairs and their

statistical significance.

(XLS)

Table S2 Analysis of genomic regions bound by neuroblast

differentiation TFs in stage 10 to 11 Drosophila embryos. The table

includes all the results generated by analyzing Pros-, Ase, Dpn-

and Snail-bound genomic regions using COPS. The TF motif

pairs found to co-occur are listed in column A. Known co-

regulators are shown in bold. Candidate co-regulatory TFs

expressed in neuroblasts/nervous system are highlighted in light

blue. Column B shows the statistical significance of the co-

occurrence pattern (Z score) and column C the percentage of motif

overlap as calculated by the program. The tissue-specific

expression of the co-occurring TF of each pair as reported in

FlyBase is shown in column D and the literature supporting a co-

regulatory role with the main TF in column E. Columns G-O

show the preferred distance arrangements between the TF motifs

of the different pairs and their statistical significance.

(XLS)

Table S3 Analysis of genomic regions bound by cardiac

mesoderm specification TFs in HL-1 mouse cardiomyocytes.

The table includes all the results generated by analyzing Nkx2.5-

and Mef2a-bound genomic regions using COPS. The TF motif

pairs found to co-occur are listed in column A. Known co-

regulators are shown in bold. Candidate co-regulatory TFs

expressed in the heart are highlighted in orange. Column B shows

the statistical significance of the co-occurrence pattern (Z score)

and column C the percentage of motif overlap as calculated by the

program. The tissue-specific expression and developmental

functions of the co-occurring TF of each pair as reported in

UniProtKB is shown in column D and the literature supporting a

co-regulatory role with the main TF in column E. Columns G-K

show the preferred distance arrangements between the TF motifs

of the different pairs and their statistical significance.

(XLS)

Table S4 Overrepresented GO terms of genes associated to

genomic regions showing close distance arrangements of TFBS

pairs. The table shows the GO terms (biological process, Column

B) that were found overrepresented among the genes associated

with genomic regions containing the motif pairs Bin/Twi, Mad/

Twi and Ase/Dpn (Column A of each worksheet) at a close

distance arrangement of 21–9 bp. The P value for each

overrepresented GO term is shown in Column G. The P value

was calculated by comparing the number of genes linked to each

GO term to the total number of genes associated with genomic

regions containing the short distance motif pair (Column C vs

Column D) in relation to the number of genes linked to the GO

term and associated to regions without the short distance motif

pair (Column E vs Column F).

(XLS)
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