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Abstract

Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses.
Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway,
but because N. ceranae does not induce defecation, it may instead be spread via an oral-oral pathway. Cages that separated
older infected bees from young uninfected bees were used to test whether N. ceranae can be spread during food exchange.
When cages were separated by one screen, food could be passed between the older bees and the young bees, but when
separated by two screens, food could not be passed between the two cages. Young uninfected bees were also kept isolated
in cages, as a solitary control. After 4 days of exposure to the older bees, and 10 days to incubate infections, young bees
were more likely to be infected in the 1-Screen Test treatment vs. the 2-Screen Test treatment (P = 0.0097). Young bees fed
by older bees showed a 13-fold increase in mean infection level relative to young bees not fed by older bees (1-Screen Test
40.8%; 2-Screen Test 3.4%; Solo Control 2.8%). Although fecal-oral transmission is still possible in this experimental design,
oral-oral infectivity could help explain the rapid spread of N. ceranae worldwide.
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Introduction

Nosema ceranae is a parasitic microsporidium that until the 1990s

infected only the Asian honey bee, Apis cerana. It was first reported

in the European honey bee, Apis mellifera, in Spain in 2006 [1],

though later it was found in archived bee samples in the U.S.

dating back to 1995 [2], and in Uruguay pre-1990 [3]. Evidently,

N. ceranae spread rapidly through A. mellifera worldwide, initially

unbeknownst to researchers or beekeepers, and with variable

reports of its virulence [4,5,6]. When honey bee populations

experienced unprecedented die-offs between 2003–2006, dubbed

Colony Collapse Disorder, N. ceranae, which had just been

discovered to infect bees, was identified as a possible causative

agent, whether acting alone [7], or in conjunction with other

infections [8].

Before 2006, it was thought that A. mellifera was infected by only

one microsporidian parasite, Nosema apis, a relatively benign

pathogen [9]. Infectious spores of N. apis leave one host individual

via the feces and enter the next host individual through the

mouthparts (a fecal-oral pathway) [9]. N. apis infections are

correlated with colonies exhibiting diarrhea [9], which could

enhance transmission. In contrast, N. ceranae is not associated with

diarrhea – and yet it has spread rapidly, even replacing N. apis

throughout much of the world [10,11,6]. It may be that N. ceranae

has an alternate pathway for transmission.

Ingested Nosema spores pass through their host’s digestive tract

until the spores germinate, the polar filament punctures epithelial

cells, and they replicate within [12,13]. In infected bees, spore

counts in the midgut can exceed 107 [14]. Filtering hairs in the

bee’s proventriculus act as a one-way valve, preventing spores in

the midgut from reaching the crop [15]. These hairs are capable of

retaining particles as small as 0.5 mm in diameter [16]; N. ceranae

spores measure 4.462.2 mm [17]. While this suggests that most

N. ceranae spores do not pass from the midgut into the crop, there is

a possibility that some spores could cross this barrier. N. ceranae

spores have been found in the pollen loads of bees, which include

some regurgitated nectar from the crop [17]. If spores are able to

pass the proventriculus, and reach the crop, they could be

regurgitated to other colony members during food exchange,

providing a mechanism for oral-oral transmission.

To determine whether N. ceranae can be transmitted during food

exchange, experiments were conducted using hoarding cages.

Initially uninfected bees were separated from infected bees using

one screen or two screens. In the 1-Screen cages, food could be

passed between infected and uninfected bees, but not in the 2-

Screen cages. These cages reduce the likelihood of fecal-oral

transmission, but cannot entirely eliminate the fecal-oral pathway.

Infection rates in the initially uninfected bees were determined

post-treatment. If oral transmission occurs, then post-treatment

infection rates would be predicted to be higher in 1-Screen

separated bees than in 2-Screen separated bees.

Methods

Experiments were performed at the Bee Lab of Plant Research

International, Wageningen University, The Netherlands. 5 trials
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were performed starting 19 April 2011, and 9 trials starting 11

May 2011.

Treatments
The experiment involved giving groups of young, initially

uninfected bees three treatments. In the Solo Control, young bees

were placed in a cage by themselves. In the 2-Screen Test, young

bees were placed in one cage, and older infected bees were placed

in an adjacent cage; the two groups were separated by 1.5 mm

mesh screens spaced 0.6 cm apart for the 19 April trials, and

1.0 cm apart for the 11 May trials. In the 1-Screen Test, young

bees were placed in one cage, and older infected bees were placed

in an adjacent cage; the two groups were separated by only one

screen (see Figure 1).

In all three treatments, the young bees were caged for 14 days.

They were fed ad libitum with a 50% sucrose solution (w/w) feeder.

Over the 14-day test period, any dead bees were removed from the

cages every other day. Mortality rates did not differ between the

three treatments (Young bees- ANOVA; F = 0.39, df between

groups = 2, df within groups = 11, P = 0.69, Older bees- ANOVA;

F = 0.15, df between groups = 1, df within groups = 8, P = 0.71).

Dead bees were not included in the data set. Each young bee that

survived for 14 days was euthanized in a 280uC freezer, before

dissecting its midgut to determine if it was positive or negative for

N. ceranae spores. Bees not dissected immediately were stored in a

220uC freezer.

In both the 2-Screen Test and 1-Screen Test, older bees were

installed in the adjacent cage from day 1 to 4 at an approximate

2:1 ratio (older bees: young bees; mortality altered the final ratios,

as shown in Table 1). The older bees were fed ad libitum with a

50% sucrose solution (w/w) feeder. Only older bees that survived

the full 4 days were included in the data set. Midgut dissection

occurred post 280uC euthanasia. After the older bees were

removed, the cage that held them was left attached to the cage

holding the young bees, to minimize handling time and control for

airborne exposure between the two cages.

In the 1-Screen Test treatment, the food was removed from the

young bees from day 2–4 (three days total). This forced them to

receive food from the older bees. The young bees were observed to

receive food via trophallaxis from the older bees, and in both the

1-Screen and 2-Screen treatments, both the older bees and the

young bees were often found congregating on the screen.

Mortality in the young bees while they did not have access to

food was no different than during the rest of the treatment period

(data not shown).

Bees
Honey bees (Apis mellifera L.) were taken from four colonies in

the Wageningen research apiary. In the 2-Screen Test and 1-

Screen Test treatments, the older infected bees and the young bees

in adjacent cages came from the same colony.

Young bees. Recently emerged bees (easily recognized by

their ‘fuzzy’ and ‘wet’ appearance) were taken directly from combs

using a plastic tube aspirator. They were held in a 250 mL plastic

container until they were placed in a test cage. To confirm that

only young bees had been collected, they were exposed to white

light while placing them in the test cages in the climate room; if

some older bees had been collected accidentally, they would have

flown in the white light. No bees flew.

Older bees. Bees of unknown ages (but no recently emerged

bees, based on the criteria discussed above) were brushed off

combs and placed into a 250 mL plastic container. The older bees

were then installed in a 40640650 cm flight cage with wire screen

walls inside the climate room, with a 50% sucrose solution (w/w)

ad libitum feeder, for 2 hours (in the April 19 trials) or overnight (in

the May 11 trials). This enabled the older bees to defecate before

they were placed in the test cages, and many of them did defecate.

After the opportunity for cleansing flights, the older bees were

collected with an aspirator and placed in test cages. Bees were

carefully removed from the flight cage to prevent them from

contaminating the test cages with feces, but there was no way to

prevent bees from defecating once inside a test cage, which was

observed. Defecation within the test cages did not occur on the

screen facing the young bees, and tissue paper on the floor of the

cage absorbed feces and kept them from becoming spread in the

cage. Because of these precautions, infection from a contaminated

screen is less likely, though still possible.

Infecting bees. To ensure high infection rates in the older

bees, marked bees were artificially infected for the 19 April trials.

Young bees were taken directly from the frame and brought into

the climate room where they were marked with paint according to

hive number, placed in a plastic cage (20620620 cm), and starved

for 1 hour. They were then sprayed with 50% sucrose solution (w/

w) containing N. ceranae spores collected from dissected midguts of

infected bees. The solution concentration made ,400,000 spores

available per bee, depending on rates of ingestion. Spore count

measured using a haemocytometer. As the bees cleaned

themselves they imbibed the spore-laden solution. The bees were

kept in the climate room overnight with an ad libitum 50% sucrose

feeder (w/w), and were then returned to their original colony.

Figure 1. Diagram of cages used in the three treatments. Triangles above cages are feeders, and the circles on the sides represent the
screening between cages. The 2:1 ratio of bees in the image represents the ratio of older bees to young bees (labeled on top of each cage). Multiple
bees were kept in each cage, ranging between 10 and 70 bees. In the 2-Screen Test, but not in the 1-Screen Test, there was spacing between paired
cages to prevent food exchange between bees in the two cages.
doi:10.1371/journal.pone.0043319.g001
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After 12 days, the marked bees were collected with an aspirator,

and treated as older bees (described above).

In the May 11 trials, bees were not artificially infected.

Infections in the older bees were dependent on natural infections

within each colony, and varied between cages. This was done to

mimic naturally occurring infections, as well as a range of infection

rates.

Identifying Bees Infected with N. ceranae
All bees surviving until the end of the trial were individually

dissected. Each bee’s midgut was placed onto a glass slide by

pulling apart the two anterior tergites with tweezers and cutting

out the midgut. Tweezers and micro-scissors were rinsed and dried

after each dissection. A DMLB Leica microscope, at 400x

magnification, was used to determine if each midgut was positive

or negative for N. ceranae spores. A positive sample had many

spores, .100’s, seen in multiple field-of-views. To be sure that all

samples were adequately examined for spores, at least 25 field-of-

views per slide were examined. Since bees infected with N. ceranae

regularly produce up to 107 spores, positive and negative samples

were easily distinguishable. If a sample only had a few spores (,2–

10 spores total), it was marked as uninfected, presumably due to

contamination from the forceps. The forceps were immediately

changed. This conservative approach perhaps underestimated the

infection rates in both the young and older bees, but was

preferable to overestimating the infection rates.

Cages
Individual cages measured 1167.565 cm and were made of

cardboard with transparent plastic sheet on one side. A hole was

cut in the top of each cage to fit a plastic feeder holding ,25 mL

of 50% sucrose solution (w/w in water). Tissue paper was placed

on the bottom of each cage. There was a 4 cm-diameter hole on

one side of each cage. This hole was covered with 1.5 mm-mesh

screen, to keep the bees from escaping their cages, and to expose

the young bees to the older bees. All cages were kept on metal

grate shelves in a walk-in climate room (25uC with 50% relative

humidity). The room could be illuminated with white or red light.

In the Solo Control treatment, the cages were kept separate. In

the 2-Screen Test treatment, cages were arranged in pairs with

their screens facing each other. Cardboard spacers kept the two

screens at a fixed distance throughout the experiment (0.6 cm for

the April 19 trials, 1.0 cm for the May 11 trials). These distances

are longer than a honey bee’s proboscis (,2 mm); so bees could

not share food between the cages. The cages were taped together

to prevent movement. In the 1-Screen Test treatment, the two

cages were placed in direct contact with the 4 cm-holes facing

each other, and only one screen between the two cages. Bees could

share food through the screen. All cages were discarded after use.

For cage diagrams, see Figure 1.

PCR Detection
Real-Time PCR was used to confirm spore species identity.

Spore suspensions were tested for both N. apis and N. ceranae, using

primers from Bourgeois et al. [18]. All microsporidia samples were

positive for N. ceranae and negative for N. apis. For a more detailed

description of the PCR methods, please see Methods S1.

Statistical Analysis
Data were analyzed using statistical software R v2.10.1 (The R

Foundation for Statistical Computing). The dependent variable,

Percent Infected Young, was subjected to a square root

transformation to provide variances suitable for statistical analysis

using an ANOVA. To compare the three treatments, a Tukey

HSD Test was performed.

Results

Table 1 summarizes the results of all 14 trials. There was a

higher mean percentage of infected young bees in the 1-Screen

Test trials (40.8631.1%) than in the Solo Control and the 2-

Screen Test trials (2.865.6% and 3.463.1%, respectively). The

distributions of the percent infected young bees for the three

treatments are shown in Figure 2. There are significant differences

in percent infected young bees among the three treatments

(ANOVA; F = 9.70, df between groups = 2, df within groups = 11,

P = 0.0037). The percent infected young bees is significantly higher

for the 1-Screen Test treatment relative to the 2-Screen Test and

to the Solo Control (Tukey HSD; P = 0.0097 and 0.0065,

respectively). The percentages of infected young bees for the 2-

Screen Test and Solo Control are not significantly different (Tukey

HSD; P = 0.90).

One hive was used twice as a source of bees in each treatment

(see Table 1), so there is a small risk of pseudo-replication. To

check that pseudo-replication did not skew the statistical analysis,

one of the trials was removed (the one from May 11) in each

treatment where bees came from the same hive, and the statistical

Figure 2. Percent infected young bees per treatment. Box and
whisker plot comparing the percent of young bees that became
infected throughout all cage trials for the three treatments.
doi:10.1371/journal.pone.0043319.g002
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analysis was repeated. The percentages of infected young bees in

the three treatments were still significantly different (ANOVA;

F = 13.8, df between groups = 2, df within groups = 8, P = 0.0025),

the 1-Screen Test was still significantly different from the 2-Screen

Test and the Solo Control (Tukey HSD; P = 0.0058 and 0.0044,

respectively), and the 2-Screen Test and Solo Control were not

significantly different (Tukey HSD; P = 0.86).

Discussion

These results are consistent with the hypothesis that N. ceranae

can be spread when infected bees feed uninfected bees. Young

uninfected bees that were fed by older infected bees (fed through a

single screen) developed N. ceranae infections at a level 13-times

higher than young uninfected bees unable to feed from older

infected bees (separated by two screens). This supports the oral-

oral transmission hypothesis, whereby spores are passed across the

single screen during food exchange, resulting in increased infection

rates.

Although these results suggest that N. ceranae can be spread

orally, the fecal-oral pathway could still be present in this

experimental design. Since the older bees were kept in cages for

4 days, bees did defecate, despite preventative efforts (see

methods). No feces were observed on the screen, but infective

spores could have been defecated elsewhere. It is possible that

spores could be passed from the forelegs to the proboscis, and then

transmitted to other bees during food exchange. It seems unlikely,

however, that such high infection rates arose from occasional spore

relocation, since it relies on multiple chance events. Future

experiments could further reduce the likelihood of fecal-oral

transmission by keeping the older infected bees in their cages for a

shorter period of time, to reduce defecation.

While oral transmission of N. ceranae has been previously

suggested [19], this study provides the first experimental support.

Whether spores pass from the midgut to the crop (through the

proventriculus), or are produced directly in the feeding glands, is

unknown. To date, there is no histological evidence for infective

spores being produced outside of the midgut, even though N.

ceranae DNA has been found in hypopharyngeal and salivary

glands [20]. While it is known that the proventriculus filters spores

from the crop within 5–20 minutes [15], it remains to be

determined whether this filtering is 100% effective. Although

speculative, it seems possible that very high spore counts in the

midgut [14] may compromise the ability of the proventriculus to

block spores from reaching the crop- the source of regurgitated

food shared with nestmates. If N. ceranae spores can be transmitted

orally, then this would explain its rapid spread, since food sharing

occurs throughout a colony.

In the Solo Control and 2-Screen Test, low levels of infection

were found, despite efforts to select young bees, which are unlikely

to be infected. There are three possible explanations for this

finding: (1) the young bees were not young bees. This seems

unlikely, since the collected young bees did not fly when exposed

to white light; older bees would have flown. (2) The young bees

were already infected with spores, either from their first post-

eclosion feeding [21,22], or from fecal matter within the hive. This

is possible, but unlikely, since nurse bees have the lowest N. ceranae

infection rates [7], and N. ceranae does not cause diarrhea. (3) N.

ceranae spores are infective via airborne fecal matter. The older

bees did defecate in their cages, and dried fecal particles carrying

spores could have entered all cages within the shared climate

chamber. Of these explanations, (2) and (3) are the most plausible.

Unfortunately, the current experimental design cannot distinguish

between these two explanations for why a low level of infection

was found in the Solo Control and 2-Screen Test.

In the 1-Screen Test, infection rates in the young bees ranged

from 5% to 89%. This variation is expected, since the source of

infection (percent infected older bees) varied between 6% and

96%. In the two trials with highly infected older bees (.90%

infection), the young bees developed infection at 33.3% and

89.5%. Behavioral differences could explain this additional

variation: a single infected older bee could efficiently spread the

infection if it fed numerous young bees. N. ceranae infected bees

have been shown to exhibit a higher level of hunger [12], which

could make them less likely to share food. Of course, if spores can

also be transmitted to the food provider, increased hunger would

increase the spread of N. ceranae; a behavioral change that would

increase the parasite’s transmission.

If N. ceranae is passed via food exchange, as these data suggest,

but cannot confirm, then it could be an overlooked infective

pathway for the disease. Oral transmission may also occur in

N. apis, but previous work only focused on a fecal-oral pathway

[9]. A comparative analysis of infectious pathways could demon-

strate a change in infectious strategy between closely related

microsporidia. These experiments should be repeated with N. apis

to test whether it too can be spread orally. If the rates of infection

in the 1-Screen Test treatment were reduced to the same level as

seen in the 2-Screen Test and Solo Control, then that would

provide strong evidence that N. ceranae, but not N. apis, is able to

take advantage of oral-oral transmission.

Supporting Information

Methods S1 Detailed description of the PCR methods
used for detecting N. ceranae and N. apis.

(DOC)
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