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Abstract

Fragile X Syndrome (FXS) is characterized by mental impairment and autism in humans, and it often features hyperactivity
and repetitive behaviors. The mechanisms for the disease, however, remain poorly understood. Here we report that the
dfmr1 mutant in the Drosophila model of FXS grooms excessively, which may be regulated differentially by two signaling
pathways. Blocking metabotropic glutamate receptor signaling enhances grooming in dfmr1 mutant flies, whereas blocking
the vesicular monoamine transporter (VMAT) suppresses excessive grooming. dfmr1 mutant flies also exhibit elevated levels
of VMAT mRNA and protein. These results suggest that enhanced monoamine signaling correlates with repetitive behaviors
and hyperactivity associated with FXS.
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Introduction

Fragile X Syndrome (FXS) is the most common form of

inheritable mental impairment and the leading identified cause of

autism. It affects approximately 1/5000 males and roughly half as

many females [1]. FXS is caused by the loss of the fragile X mental

retardation protein (FMRP), largely due to transcriptional

silencing that results from a tri-nucleotide (CGG) repeat expansion

in the 59 untranslated region of the fragile X mental retardation 1

(FMR1) gene [2]. In addition to cognitive impairment, individuals

with FXS exhibit behavioral problems including hyperactivity,

attentional deficits, and impulsivity [3,4]. Autistic-like character-

istics, such as anxiety and stereotypic, repetitive behavior, are also

common features of FXS, and approximately 30% of patients

meet the diagnostic criteria for autism [5,6,7,8,9]. Studying the

role of FMRP in the nervous system is thus necessary to

understand the pathogenesis of both mental impairment and

autism and for developing new treatment strategies.

Mouse and fly models of FXS exhibit phenotypic defects

remarkably similar to the human disorder. Fmr1 knockout (KO)

mice, which lack expression of the mouse homolog of FMRP,

exhibit morphological abnormalities, learning and memory

defects, and behavioral problems including attentional dysfunc-

tion, impulsivity, anxiety, and excessive grooming [10,11,12,13].

The Drosophila gene dfmr1 codes for the protein dFMRP [14],

which contains the same functional domains as the mouse and

human homologues [15]. dfmr1 mutant flies exhibit defects in

neuronal morphology [15,16,17,18], physiology [17,19], circadian

rhythm [15,20,21,22], sleep [23], courtship [20], learning,

memory [24], and locomotion [17,19,25].

Although there is currently no effective treatment for FXS,

research in the past decade has significantly advanced the

understanding of the disorder. A major finding indicates that

synaptic plasticity is altered in KO mice due to hyperactive

signaling via the metabotropic glutamate receptor (mGluR) [26].

Further, reduction of mGluR expression in mutant mice, as well as

treatment with mGluR antagonists, remarkably improves a

number of phenotypes, including learning and memory

[27,28,29]. However, these measures do not correct maroorchid-

ism, indicating that enhanced mGluR signaling cannot account for

all FXS phenotypes [28]. This partial rescue in mice is consistent

with findings in Drosophila where reducing expression of DmGluR,

the Drosophila homolog of mGluR, rescues neuronal overbranching

[30] and physiological defects, but only partially improves synaptic

physiology [31]. Further, blocking DmGluR signaling with the

antagonist MPEP improves courtship, learning, memory, and

rescues morphology defects in dmfr1 mutant flies. MPEP, however,

fails to rescue abnormal circadian rhythm and sleep [32]. These

observations suggest that additional signaling pathways may be

altered in both mouse and fly models of FXS. Given recent

evidence suggesting that FMRP may regulate global translation,

rather than just a subset of translation important for mGluR

signaling, the inability of mGluR antagonists to correct all FXS

defects is not surprising [33,34]. While the evidence strongly

suggests that cognitive impairment in FXS results from aberrant

mGluR signaling, the neuronal mechanisms underlying hyperac-

tivity, impulsivity, and autistic-like behaviors remain poorly

understood.

Here we seek to determine other signaling pathways that may

be affected in the absence of dFMRP. We first identify the novel
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behavioral phenotype of excessive grooming in dfmr1 mutant flies,

which appears to reflect the hyperactive and autistic-like features

of FXS seen in mice and humans and adds another aspect of the

disorder that can be studied in Drosophila. We find that blocking

DmGluRs with MPEP does not reduce the excessive grooming in

dfmr1 mutant flies, supporting the idea that enhanced mGluR

signaling underlies only a subset of FXS phenotypes. Instead, our

results suggest that enhanced monoamine signaling correlates with

the excessive repetitive behavior in dfmr1 mutant flies.

Results

Wild-type dfmr1 transgene rescues aberrant climbing in
dfmr1 mutant flies

dfmr1 mutant flies are adult viable [17], but display a number of

locomotion defects, including abnormal crawling as larvae [25]

and impaired flight as adults [17]. We have shown that dfmr1

mutant flies fail to climb robustly and that climbing progressively

worsens with age [19]. To verify that abnormal climbing is directly

caused by the loss of dFMRP, we introduced a transgene

containing the wild-type dfmr1 gene under the control of the

endogenous promoter [20], into the dfmr1 mutant background. We

then investigated the climbing activity of genetically rescued

mutant flies (hereafter called control), dfmr1 mutant flies, and dfmr1

mutant flies containing a dfmr1 transgene with a frameshift (FS) in

the open reading frame of the genomic rescue fragment (see

Methods for further information on genotypes).

We monitored climbing performance at 5, 15, 25, and 35 days

post-eclosion. We first measured the time for the first fly in a

population of 10 flies to climb to a height of 17.5 cm (Movies S1

and S2). At 5 days old, the first fly in dfrm1 and FS populations

took, on average, 7.8 s and 7.5 s, respectively, to climb 17.5 cm,

significantly longer than the average of 3.9 s for control flies

(P,0.001; Fig. 1A). As the flies aged, the top performer in mutant

populations took progressively longer to reach the target height

(dfmr1 averaged 37 s and FS averaged 96 s at 35 days old; Fig. 1A).

In contrast, the climbing of top performers in control populations

changed little with age, averaging 5.7 s at 35 days old.

To better reflect the climbing activity of all flies in a population,

we counted how many flies reached 17.5 cm after 3 min and

determined the success rate (Fig. 1B). Similar to the data for the

top performers, 5 day-old mutant flies had a significantly lower

success rate than controls (P,0.001; Fig. 1B), and their success

rate declined with age. By 35 days, mutant groups approached a

0% success rate, a dramatic reduction from rates of 75% and 65%

for 5 day-old dfmr1 and FS flies, respectively (Fig. 1B). In contrast,

control flies exhibited a noticeable, but much smaller, decline in

success rate with age. We also measured the time for 50% of flies

to reach 17.5 cm, as well as the failure rates for the first fly, or 50%

of flies, in a population to complete the task successfully (Fig. S1).

For all of these parameters we observed similar age-dependent

declines in dfmr1 mutant flies. Hence, our climbing data

demonstrate an age-dependent decrease in climbing activity in

dfmr1 mutant flies, which is consistent with previous observations

[19]. Further, adding a copy of the wild-type dfmr1 gene to dfmr1

mutant flies rescues the abnormal climbing behavior, indicating

that this phenotype is caused specifically by the loss of dFMRP.

dfmr1 mutant flies groom excessively
While performing the climbing tests we observed that dfmr1

mutant flies frequently stopped climbing and began grooming

themselves. To study this behavior more directly we recorded the

activity of individual flies in a small observation chamber (see

Methods; Movies S3 and S4). At 5 days old, dfmr1 and FS flies

groomed, on average, for 19% and 22% of the 5 min observation

period, respectively (P,0.001; Fig. 2A). Control flies of the same

age groomed significantly less, averaging 7% (Fig. 2A). Similar to

the aberrant climbing, excessive grooming progressed with age in

mutant flies, reaching as high as 79% in 35 day-old FS flies.

Control flies, on average, spent 9% of the time grooming at 35

days, exhibiting little change in grooming activity with age.

In addition, the duration of individual grooming bouts increased

in dfmr1 mutant flies. At 5 days old, dfmr1 and FS flies had slightly

longer grooming bouts than control flies, but a significant difference

occurred only for FS flies (dfmr1: P.0.05, FS: P,0.05; Fig. 2B).

Similar to the overall grooming time in figure 2A, the average

grooming bout duration increased with age in mutant flies (Fig. 2B).

At 35 days, dfmr1 and FS flies groomed 35 s and 59 s per bout on

average, respectively, whereas control flies averaged 5 s per bout

(dfmr1: P,0.001, FS: P,0.01; Fig. 2B).

The mGluR antagonist MPEP partially rescues courtship
behavior, but enhances excessive grooming

To gain insight into the mechanisms underlying the excessive

grooming phenotype, we investigated the role of mGluR signaling.

Figure 1. Aberrant climbing is rescued by genomic expression of the dfrm1 gene. (A). The time for the first fly to climb 17.5 cm. dfmr1 and
FS (dfmr1 with a wild-type dfmr1 transgene that contains a frameshift mutation in the dfmr1 open reading frame) do not express functional dFMRP,
and show a progressive change in climbing behavior over the course of 35 days. The abnormal climbing is rescued by a transgene containing the
genomic wild-type dfmr1 locus (control). Data presented are the Mean +/- SEM (8 trials, total flies n = 80 for each genotype tested at each time point).
(B). Total percentage of flies that successfully reach the 17.5 cm mark within 3 min. For all data, *p,0.05, **p,0.01, and ***p,0.001.
doi:10.1371/journal.pone.0027100.g001

Vesicular Monoamine Transporter and Fragile X Syndrome
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We raised larvae and maintained adult flies on food containing

86 mM MPEP, a dosage previously shown to rescue courtship,

learning, memory, and neuronal morphology defects in dfmr1

mutant flies [32]. We first tested the effects of MPEP on naı̈ve

courtship activity to ensure the drug’s effectiveness. Courtship is an

extensively studied, stereotypic behavior in Drosophila in which the

male fly orients towards the female, tracks and follows her,

produces wing songs, and attempts to lick her genitalia [35]. If the

female is receptive, she then allows copulation. To quantify

courtship activity, we used the standard ’’Courtship Index’’ (CI),

defined as the percentage of time a male fly spends performing any

courtship behavior while in the presence of a female.

In agreement with the results of previous studies [20,32], we

observed reduced naı̈ve courtship in dfmr1 mutant flies. Both 5

day-old dfmr1 and FS flies had an average CI of approximately 6,

whereas control flies had a markedly higher CI of 25 (Fig. 3A).

Mutant flies treated with MPEP showed a partial, but significant,

improvement in naı̈ve courtship (P,0.01; Fig. 3A). Control flies

exhibited a small decrease in CI when treated with the drug, but

the change was not significant. Our results suggest that we

administered MPEP properly.

We proceeded to test the effect of MPEP on excessive grooming.

Surprisingly, we found that 15 day-old dfmr1 and FS flies treated

with MPEP showed a 2-fold and 1.5-fold increase in grooming

activity, respectively, compared to those not treated with the drug

(dfmr1: P,0.001, FS: P,0.05; Fig. 3B). In contrast, MPEP did not

appear to affect the grooming activity of control flies (Fig. 3B).

In addition to MPEP, lithium (LiCl, 5 mM) has also been shown

to rescue courtship, learning, and memory defects in dfmr1 mutant

flies [32]. In this study, 15 day-old dfmr1 and FS flies grown as

larvae and maintained as adults on food containing 5 mM lithium

showed no significant changes in grooming activity, nor did

control flies given the same treatment (Fig. 4). We also treated flies

with lithium only as adults (i.e. larvae were grown on food with no

Figure 2. dfmr1 mutant flies exhibit excessive grooming that increases with age. (A). At 5 days old, dfmr1 and FS flies groom significantly
more than control flies. Grooming increases with age in mutant flies; control flies show consistent levels of grooming at all ages tested. (B). The
average duration of grooming bouts in mutant flies follows a similar trend to the total time spent grooming (A). In contrast, control flies show little
change in the duration of grooming bouts from 5 to 35 days of age. Data are represented as the mean percentage of time single flies spend
grooming during a 5 min period (Mean +/- SEM; n = 10–15 flies for each genotype at each time point). For all data, *p,0.05, **p,0.01, and
***p,0.001.
doi:10.1371/journal.pone.0027100.g002

Figure 3. MPEP rescues courtship defects, but enhances excessive grooming in dfmr1 mutant flies. (A). Treatment of dfmr1 mutant male
flies with MPEP improves courtship of naı̈ve females. Flies were grown as larvae and maintained as adults on either control food or food containing
86 mM MPEP. Data are presented as the mean courtship index (CI, +/- SEM) with sample sizes shown above each bar. dfmr1 and FS male flies treated
with MPEP engage in courtship activity with wild-type virgin females significantly more than when treated with no drug. Control flies court less when
treated with MPEP, but this difference is not significant. (B). 15 day-old dfmr1 and FS flies treated with 86 mM MPEP groom significantly more than
when treated with no drug. MPEP does not affect grooming activity in control flies. Data are presented as the mean percentage of time single flies
spend grooming during a 5 min period (Mean +/- SEM); sample sizes are displayed above each bar. For all data, *p,0.05 and ***p,0.001 (Two-tailed
students t-test).
doi:10.1371/journal.pone.0027100.g003

Vesicular Monoamine Transporter and Fragile X Syndrome
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drug), but found no difference in the drug’s effect (Fig. 4). We

therefore conclude that lithium, at a dosage that rescues other

dfmr1 behavioral defects, does not significantly affect the excessive

grooming in dfmr1 mutant flies.

Reserpine suppresses excessive grooming in dfmr1
mutant flies

As our results with MPEP suggested that excessive grooming in

dfmr1 mutant flies results from changes outside of mGluR

signaling, we searched for other disturbances caused by the loss

of dFMRP. FMRP has been shown to regulate dopamine signaling

in both mouse and fly models of FXS. In cultured neurons of Fmr1

KO mice, dopamine type 1 receptors are hyperphosphorylated

and defective in signaling [36]. In dfmr1 mutant flies, dopamine,

and to a lesser extent serotonin, is elevated in the brain [37].

Moreover, biogenic monoamines have been shown to play a

positive role in grooming in Drosophila. Application of dopamine,

octopamine, and serotonin to the ventral nerve cord of decapitated

flies stimulates grooming [38]. It has also been demonstrated that

overexpression of the Drosophila vesicular monoamine transporter

(dVMAT), which loads monoamines into synaptic vesicles,

increases grooming in flies [39]. Finally, blocking dVMAT with

the drug reserpine suppresses the elevated grooming activity in

flies that overexpress the transporter [39]. Hence, we next tested

the ability of reserpine to suppress excessive grooming in dfmr1

mutant flies to examine if enhanced monoamine signaling might

contribute to the behavior.

15 day-old mutant flies treated with varying concentrations of

reserpine (10, 15, 20, 30, and 50 mM) as both larvae and adults

exhibited a significant decrease in grooming at 50 mM (dfmr1:

P,0.01, FS: P,0.05), but not at the lower concentrations

(Fig. 5A). In contrast, control flies treated with reserpine as larvae

and adults showed significantly suppressed grooming at 10 mM

(P,0.01), 20 mM (P,0.001), and 30 mM (P,0.01) (Fig. 5A). To

determine if reserpine is effective post-developmentally, we treated

flies with the drug only after eclosion. Similar to figure 5A, 15 day-

old dfmr1 flies treated only as adults groomed significantly less at

50 mM (P,0.01), but not at lower concentrations (Fig. 5B). FS flies

treated with reserpine only as adults did not show a significant

difference in grooming at any concentration, but it is worth noting

that the reduction of grooming activity for 50 mM became

significant upon exclusion of an outlier in the sample (data not

shown). Like in figure 5A, post-developmental reserpine treatment

significantly reduced grooming in controls at lower dosages than in

mutants (Fig. 5B). Our results demonstrate that reserpine can

effectively suppress excessive grooming in dfmr1 mutant flies, is

effective when used only in adulthood, and that dfmr1 mutant flies

are less sensitive to reserpine than control flies.

dVMAT mRNA and protein levels are elevated in the
absence of dFMRP

As suppression of excessive grooming in mutant flies required a

higher dosage of reserpine, we hypothesized that dVMAT levels

could be increased in dfmr1 mutant flies. Although dFMRP is

primarily known to regulate translation, it has also been shown to

influence transcript expression [40,41,42,43]. To determine if

dVMAT mRNA levels are affected by the loss of dFMRP, we used

quantitative real-time polymerase chain reaction (qPCR) to

quantify dVMAT transcript levels in dfmr1 mutant flies. At 5 days

of age, dfmr1 mutant flies showed a 29% increase in dVMAT

mRNA compared to control flies, but the change was not

significant (P.0.05; Fig. 6A). At 25 days of age, we detected a 41%

increase in dVMAT transcript levels in mutant flies compared to

control flies. This increase was significant for dfmr1 flies, but not for

FS flies (dfmr1: P,0.05, FS: P.0.05; Fig. 6B). Thus, dVMAT

transcript levels increased in dfmr1 mutant flies over time, up to the

age we tested.

We next examined the effect of the absence of dFMRP on

dVMAT protein levels. Consistent with the increase in mRNA, we

detected a 77% and 35% elevation of dVMAT protein levels in 5

day-old dfmr1 and FS fly heads, respectively, compared to 5 day-

old control fly heads. This represents a significant increase in

dVMAT protein levels for dfmr1 but not for FS flies (dfmr1:

P,0.05; FS: P.0.05; Fig. 6C). We also detected elevated dVMAT

protein levels at 25 days in dfmr1 (52%) and FS (74%) flies, but

neither increase was statistically significant compared to control

flies at both 5 and 25 days (Fig. 6D). Hence, our results show a

trend that dVMAT transcript and protein levels are both

upregulated in dfmr1 mutant flies, and under certain conditions

the increases reach statistically significant levels.

Discussion

There are four major findings from this study: 1) age-dependent

abnormal climbing in dfmr1 mutant flies can be genetically

rescued, 2) excessive grooming is identified as a new behavioral

defect in dfmr1 mutant flies, 3) excessive grooming can be

suppressed by reserpine, and 4) dVMAT mRNA and protein levels

are increased in the absence of dFMRP.

In a previous study we revealed abnormal climbing activity in

dfmr1 mutant flies that progresses with age. Our results in this

study confirm this finding, and additionally show that introducing

a wild-type dfmr1 transgene into the dfmr1 mutant background

restores normal climbing behavior. Further, a frameshift mutation

in the open reading frame of the transgene abolishes the rescue of

climbing behavior. These results demonstrate that the abnormal

climbing in dfmr1 mutant flies is directly caused by the loss of

dFMRP.

In this study we have also identified excessive grooming as an

important and novel behavioral defect in the fly model of FXS.

Our results show that dfmr1 mutant flies groom significantly more

than control flies, and that mutant flies also have significantly

longer grooming bouts. Further, this excessive grooming intensifies

Figure 4. Lithium does not significantly affect grooming in
dfmr1 mutant flies. Grooming activity of 15 day-old flies grown as
larvae and maintained as adults, or only maintained as adults on food
containing 5 mM LiCl. Data are presented as the mean percentage of
time single flies spend grooming during a 5 min period (Mean +/- SEM);
sample sizes are displayed above each bar. For all genotypes, LiCl
causes no significant change in grooming activity (Kruskal-Wallis one-
way ANOVA with Dunn’s post-hoc comparison).
doi:10.1371/journal.pone.0027100.g004
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with age in dfmr1 mutant flies, whereas control flies show

essentially no change in grooming activity over time. A wild-type

copy of the dfmr1 gene can rescue the excessive grooming defect in

dfmr1 mutant flies. It is worth noting that FS mutants show more

dramatic climbing and grooming defects compared to dfmr1

mutants. We do not know the exact underlying cause, but it may

be due to the presence of either mRNA or a truncated peptide

produced from the FS rescue fragment, having gain of function

effects.

In video recordings, control flies mostly walk around the

observation chamber and groom occasionally, but rarely stand

motionless. In contrast, the mutant fly spends more time

Figure 5. Dosage effects of reserpine on grooming. (A). Grooming activity of 15 day-old flies grown as larvae and maintained as adults on food
containing no drug, 10, 30, or 50 mM reserpine (15 and 20 mM are omitted from figure). Reserpine suppresses grooming in dfmr1 and FS flies, but only
at 50 mM; control flies show significantly reduced grooming at the lowest concentration, 10 mM. (B). 15 day-old flies treated with reserpine only as
adults (i.e. larvae were grown on control food), show a similar response. Suppressed grooming in mutant flies is only significant at 50 mM. In contrast,
reserpine significantly decreases grooming activity in control flies at 15 mM. Data are presented as the mean percentage of time single flies spent
grooming during a 5 min period (Mean +/- SEM); sample sizes are displayed above each bar. For all data, *p,0.05 and ***p,0.001 (Kruskal-Wallis
one-way ANOVA with Dunn’s post-hoc comparison).
doi:10.1371/journal.pone.0027100.g005

Figure 6. dVMAT transcript and protein levels are upregulated in dfmr1 mutant flies. Quantitative real-time PCR experiments indicate that
dVMAT mRNA levels are increased in 5 day-old dfmr1 mutant flies (A) and in 25 day-old dfmr1 mutant flies (B) relative to control flies. Western blot
analyses indicate that dfmr1 mutant flies also have increased levels of dVMAT protein at both (C) 5 days and (D) 25 days of age. (E) Representative
blot showing increased dVMAT protein levels in dfmr1 and FS flies compared to control flies. Real-time PCR data are presented as the average of three
biological replicates. Western blot data are shown as the average of three independent trials. *p,0.05 (One-way ANOVA with Dunnett’s post-hoc
comparison).
doi:10.1371/journal.pone.0027100.g006

Vesicular Monoamine Transporter and Fragile X Syndrome
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grooming. It is possible that grooming is a default activity that

occurs whenever a fly is not walking. If this is the case, excessive

grooming in dfmr1 mutant flies could result indirectly from

problems in walking. This explanation would be consistent with

our observation that dfmr1 mutant flies exhibit postural problems

and uncoordinated movement. However, the dfmr1 flies are

capable of climbing after a brief period of mechanical disturbance

(i.e., knocking them down in the graduated cylinder), albeit at a

slower speed compared to control flies. Further, reserpine

suppresses grooming in dfmr1 mutant flies without improving

walking (data not shown). These observations suggest that

grooming is not simply a default behavior in the absence of

walking and that dfmr1 mutations specifically cause excessive

grooming. Notably, Fmr1 KO mice have also been reported to

exhibit excessive grooming when presented with social stimuli

[11,13]. A study of self-injurious behavior in FXS patients

reported a prevalence of harmful rubs and scratches [44]. Hence,

heightened repetitive activity such as grooming is a common

behavioral defect in FXS.

Although reducing mGluR signaling has been shown to rescue

learning and memory defects in both mouse and fly FXS models,

we find that the mGluR antagonist MPEP enhances excessive

grooming in dfmr1 mutant flies. This is not completely surprising,

as the absence of dFMRP likely alters numerous signaling

pathways and developmental processes of the nervous system.

MPEP also fails to rescue abnormal sleep [23] and circadian

rhythm [32] in dfmr1 mutant flies, which may impact locomotor

activity like grooming. It is worth noting that dfmr1 mutant flies did

not groom more when treated with LiCl, suggesting that mGluR

antagonists and LiCl may have different neuronal targets. An

interesting question that arises from these results is whether an

mGluR agonist might suppress grooming in dfmr1 mutant flies.

Previous results have shown that glutamate at concentrations as

low as 5 mM is toxic to dfmr1 mutant flies and significantly affects

various behaviors in the fly [45]. This makes it difficult to assess

the potential benefit of mGluR agonists on grooming.

Previous work shows that dopamine plays a role in FXS in both

mice [36] and Drosophila [37], and that biogenic monoamines

stimulate fly grooming [38,39]. In our studies, blocking dVMAT

with reserpine suppresses excessive grooming in dfmr1 mutant flies,

but only significantly at 50 mM. Control flies groom significantly

less when treated with just 10 mM. These results indicate that dfmr1

mutant flies are less sensitive to reserpine’s effect on grooming.

However, we cannot exclude the possibility that reserpine has

additional targets and therefore generally sedates the fly. Both

suppression of dVMAT as well as a non-specific target could slow

down most motor activities including grooming. Alternatively, it is

possible that basal monoamine activity is required for grooming,

and therefore shutting down monoamine signaling may block the

behavior.

In our study, we find elevated levels of dVMAT transcript and

protein in dfmr1 mutant flies. Although these increases are not

statistically significant in some instances, they are consistent in

both mutant lines. However, it is not clear from our results how

the loss of dFMRP leads to increased dVMAT expression. The

transcription of dVMAT may be directly increased. Alternatively,

degradation of dVMAT mRNA may decrease in the absence of

dFMRP, a distinct possibility as FMRP has been previously

indicated to regulate mRNA stability [46]. How dFMRP regulates

dVMAT protein levels is also unclear. Elevated dVMAT protein

levels may occur exclusively because of increased transcript levels,

but could also result from increased translation or reduced

degradation of the protein. Nonetheless, our observations are in

agreement with the known function of FMRP as a regulator of

transcription and translation [40,42,47].

Many factors may contribute to the excessive grooming in dfmr1

mutant flies, and our data do not resolve whether upregulation of

dVMAT directly influences this behavior. Overexpression of

dVMAT stimulates grooming in flies [39], and dopamine levels

are increased in dfmr1 mutant brains [37]. Monoamines could

directly or indirectly modulate multiple downstream signaling

pathways involved in grooming. The hyposensitivity to reserpine

seems to suggest that a greater number of dVMATs are present on

mutant synaptic vesicles, as a higher concentration of the drug is

required to reduce grooming. We note that overexpression of

dVMAT in serotonergic and dopaminergic neurons leads to

hypersensitivity to reserpine on grooming [39]. One likely

explanation of these differences is that dfmr1 mutations affect not

only monoamine cells but also other cells such as neurons in the

mushroom bodies and neurons postsynaptic to monoamine cells.

We are also are aware that dopamine signaling is reduced in the

forebrain of Fmr1 KO mice [36]. Thus, while plausible given the

effect of reserpine, we cannot establish a clear causal relationship

between excessive grooming and dVMAT expression levels.

Understanding how FMRP functions in development and aging

will be crucial for effective treatment of FXS [48,49]. Studies in

mouse and Drosophila indicate that FMRP is temporally regulated

and that treatment requires proper timing [50,51,52,53,54]. Our

results add to the growing evidence of the importance of FMRP in

age-related processes, and also demonstrate that hyperactivity and

repetitive behavior increase with age in the Drosophila model.

Interestingly, the severity of autistic behavior and anxiety has been

found to increase with age in studies of FXS patients [55,56]. Our

results indicating that reserpine is effective in adult dfmr1 mutant

flies could help develop or improve treatment, as they suggest that

hyperactive and repetitive behavior in older patients is potentially

reversible.

Although we believe excessive grooming in dfmr1 mutant flies is

a model of an impulsive and repetitive behavior, animal models

can never completely recapitulate human disorders. The mecha-

nisms underlying repetitive behaviors in FXS patients are likely

much more complex. Nonetheless, we demonstrate a correlation

between monoamine signaling and the excessive grooming

phenotype in dfmr1 mutant flies and that VMAT is a protein that

merits further study in FXS. Importantly, our study provides

potentially useful information for improving the pharmaceutical

treatment of FXS symptoms in human patients.

Materials and Methods

Fly stocks, Genetics, and Pharmacology
Flies were grown on a standard cornmeal-agar medium under a

12 h/12 h light/dark cycle. fragile X (dfmr1) mutant flies were

generated by crossing w; dfmr183M/TM6B, Tb with w; dfmr13/

TM6C, Sb flies and selecting w; dfmr183M/dfmr13 flies from the

progeny [17,20]. Control flies, which contain a transgene

encoding the wild-type dfmr1 gene in the dfmr1 mutant back-

ground, were generated by crossing w; dfmr183M/TM6B, Tb with

w; wild-type rescue (WT)/+; dfmr13/TM6C, Sb flies [20]. FS flies,

which carry a frameshift in the open reading frame of the

transgenic rescue fragment were generated by crossing w;

dfmr183M/TM6B, Tb with w; frameshift rescue (FS)/+; dfmr13/

TM6C, Sb flies [20]. For grooming assays, 1–3 day-old adult male

flies were collected following brief anesthetization with CO2. Flies

were stored in fresh food vials with 10–13 flies per vial (climbing)

or 2–8 flies per vial (grooming). For MPEP and LiCl administra-

tion, an aqueous stock solution was mixed into recently cooked
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standard food after the food had cooled. As reserpine is insoluble

in water, a stock solution in 1 M acetic acid was mixed into molten

food in a 1:9 ratio [39]. For control experiments, flies were raised

on food containing the same amount of each vehicle (water or

acetic acid). Flies were transferred to new food vials every 4–6

days.

Behavioral Assays
Climbing. For climbing trials, 10 male flies were transferred

to a 250 mL glass graduated cylinder, which was sealed with

parafilm to prevent escape. Next, the flies were knocked down to

the bottom; and care was taken to use similar force for all trials.

Measurements were taken for the (1) time for the first fly to cross

the 150 mL line (17.5 cm from the bottom); (2) percentage of trials

when a first fly did not cross the 17.5 cm line within 3 min; (3)

time for 50% of the population to cross the 17.5 cm line; (4)

percentage of trials when 50% of the population did not cross the

17.5 cm line within 3 min; and (5) the percentage of flies that

crossed the 17.5 cm line within 3 min. Four trials were performed

for each population and their average was taken for a sample

value. A total of 8 samples were taken for each genotype. For data

analysis we excluded events for (1) in which no fly, and for (3) in

which 50% of a population, did not reach 17.5 cm within 3 min.

Experiments were performed between 5–7 pm to minimize

potential effects of circadian oscillation.

Courtship. Virgin male flies collected within 4 hours of

eclosion were stored in individual food vials. Virgin wild-type (CS,

Canton S) female flies, collected on the same day as the virgin

males, were kept in groups of 10–20 per food vial. All courtship

assays were performed with 5 day-old male and female flies

between 3–6 pm. Male flies were first aspirated into an

observation chamber of about 0.4 cm3, and after 1 min of

acclimation, a virgin wild-type female was aspirated into the

chamber and behavior was then monitored for 10 min. The

courtship index (CI) was scored as the percentage of time that a

male fly spent engaged in courtship activity while paired with a

female [32,57]. Courtship behavior was recorded on video and

analyzed later using the iVideo program for Macintosh.

Grooming. Single male flies were aspirated into a 0.4 cm3

observation chamber, allowed to acclimate for 1 min, and then

recorded for a 5 min observation period. Data were collected for

(1) the percentage of time the fly spent grooming and (2) the

duration of individual grooming bouts. Grooming bouts were

recorded as ending when a fly either stopped grooming and

remained motionless for 2 s, or stopped grooming and walked at

least 4 steps. Grooming experiments were performed between 3–

6 pm and were recorded and analyzed using video software.

Quantitative Real-time PCR
Flies were collected within 24 hours of eclosion, aged for 5 days

or 25 days, and frozen in liquid nitrogen between 3–6 pm.

Samples were stored at 280uC. Three biological replicates were

used for each genotype at each age. RNA was extracted from 40

flies with TRIzol (Invitrogen) and purified using a Qiagen RNeasy

Mini Kit (Qiagen) with on-column DNase I (Qiagen) treatment.

RNA yield and purity was checked with a NanoDrop 2000

Specrophotometer (Thermo Scientific). To generate cDNA,

0.4 mg of RNA was used with a SuperScript III Reverse

Transcriptase First-Strand Synthesis Kit (Invitrogen). Real-time

PCR was performed using a Maxima SYBR Green/ROX qPCR

Master Mix (Fermentas). Analyses were performed using an

Applied Biosystems 7500 Real-time PCR System. Relative

expression levels were determined with the 22ddCt method [58],

using rp49 as a reference gene. qPCR primer sequences for

dVMAT were:

59-AAAATTGGACGATGGTTTGC-39 (forward) and

59-ATTCGGGATGATCAGGTGAG-39 (reverse);

primer sequences for rp49 were:

59-CGGATCGATATGCTAAGCTGT-39 (forward) and

59-GCGCTTGTTCGATCCGTA-39 (reverse).

Western blots
Flies were collected within 24 hours of eclosion, aged for 5 days

or 25 days, and frozen in liquid nitrogen between 3–6 pm.

Samples were stored at 280uC. An equal number of fly heads

were isolated for each experiment (15–20 total/condition),

homogenized in Buffer A (150 mM NaCl, 10 mM HEPES,

pH 7.4, 1 mM EGTA, 0.1 mM MgCl2, 2 mM PMSF, and

protease inhibitor cocktail) (Roche, Indianapolis, IN) using a

plastic pestle. Protein lysates were cleared by centrifugation at

22,000 x g for 20 min. Total protein concentration was measured

by a BCA Assay (Thermo Scientific, Rockford, IL), diluted with 2

x SDS Sample Buffer, boiled for 5 min, and equal concentrations

of protein were separated on a 10% SDS-PAGE gel for each

condition. Following transfer to nitrocellulose, the membranes

were incubated overnight at 4uC at 1:4000 in rabbit anti-dVMAT

[59], washed in 0.5% TBS-Tween, and incubated for 1 h at

1:4000 in HRP-conjugated rabbit secondary antibody. Protein was

detected using the ECL method, normalized to tubulin (Sigma, St.

Louis, MO), and quantified using Image J (NIH).

Statistical Analysis
Most statistical analyses were performed using GraphPad Prism

4. ANOVA with a Dunnett’s multiple comparison test was used

for statistical analysis, unless noted otherwise. For data that were

not normally distributed, and for which transformation could not

resolve this issue, a non-parametric test was used (Kruskal-Wallis

one-way ANOVA with a Dunn’s post-hoc test). All data are shown

as mean +/- SEM. *p,0.05, **p,0.01, and ***p,0.001 are

considered statistically significant.

Supporting Information

Figure S1 Additional measurements of climbing behav-
ior in dfmr1 mutant flies. (A). Time for 50% of a population

to climb 17.5 cm. Control flies contain a wild-type dfmr1 transgene

under endogenous regulation in the dfmr1 mutant background.

dfmr1 and FS (dfmr1 mutants that contain a wild-type dfmr1

transgene that has a frameshift mutation in the dfmr1 open reading

frame) do not express functional dFMRP. By 35 days all dfmr1 and

FS populations failed to have 50% reach 17.5 cm within 3 min.

Data presented are the average of Mean +/- SEM (8 trials, total

flies n = 80 for each genotype tested at each time point). (B).

Percentage of failed attempts for populations to have a first fly

reaching the 17.5 cm line. (C). Percentage of failed attempts for

populations to have at least 50% of flies climb 17.5 cm. For all

data, *p,0.05, **p,0.01, and ***p,0.001.

(TIF)

Movie S1 Sample video of control flies climbing. This video

illustrates how climbing experiments were conducted. Ten control

flies at 15 day-old were gently knocked to the bottom of a

graduated cylinder and then observed to climb to the top.

(MOV)

Movie S2 Sample video of the dfmr1 mutant flies climbing. Ten

dfmr1 mutant flies at 15 day-old were gently knocked to the bottom

of a graduated cylinder. The flies then begin climbing, but some
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stop after a short period of time. Later analysis showed that these

flies stopped to groom themselves.

(MOV)

Movie S3 Sample video of dfmr1 mutant grooming activity. A 15

day-old dfmr1 mutant fly initially explores the environment for

10 s, but then begins grooming excessively.

(MOV)

Movie S4 Sample video of grooming activity in a control fly. A

15 day-old control fly explores the environment, stopping only

once to groom for 3 s.

(MOV)
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