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Abstract

This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in
nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in
which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new
devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between
two laminar fluid streams, leaving the animal’s head and tail free to move. The content of the fluid streams can be
manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously
uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this
organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide
range of sensory modalities.
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Introduction

The ability to migrate up or down chemical and thermal

gradients is a key component of spatial orientation behaviors from

single-cell microorganisms [1] to humans [2]. Such abilities – called

chemotaxis and thermotaxis, respectively – are essential to

biological processes as diverse as reproductive fertilization,

development, the immune response, feeding, and habitat selection.

Analysis of the behavioral mechanisms of chemotaxis and

thermotaxis can be simplified by the use of step-like spatial or

temporal gradients. Step gradients are advantageous because

orientation responses in many organisms are triggered by detection

of changes in sensory input rather than its absolute magnitude.

Therefore, in the case of a step gradient, the effective stimulus is

confined to a small region of space or time, making it easier to

establish causal connections between stimuli and responses.

The formation of spatial and temporal step gradients can be

challenging in the fluid environments in which many orientation

behaviors are investigated. Spatial step gradients are problematic

because they are rapidly degraded by antagonistic processes such as

convection and diffusion, whereas temporal step gradients are

problematic because of long switching times when perfusing

macroscopic experimental chambers. At microfluidic scales, however,

spatial step gradients are readily formed by combining laminar streams

of distinct fluids [3]. This feature has led to the development of

microfluidic step gradient generators for the study of spatial orientation

behaviors in several types of widely used microorganisms including

bacteria [4], paramecium [5], sperm cells [6], and nematodes [7,8].

Temporal steps are also comparatively easy to generate in microfluidic

devices because low fluid volumes lead to reduced switching times [7,8].

In the current generation of microfluidic devices for studies of

spatial orientation, organisms move freely within the device.

Although beneficial in many respects, freedom of movement has

two key limitations. First, freely moving microorganisms can be

difficult to track, making longitudinal studies impractical. Second,

in the case of spatial gradients, when, how often, and at what angle

a particular individual encounters the step are uncontrolled

variables that depend entirely on the organism’s behavior. Analysis

of orientation mechanisms would therefore be accelerated by a

general method for presenting step gradients to semi-restrained

individuals.

As a first step toward addressing this need, we sought to develop

step-gradient devices for studying orientation behaviors in the

nematode worm Caenorhabditis elegans. C. elegans is an unusually well-

described organism that is widely used as a model system in

biological and biomedical research [9]. Adults of this species are

1 mm long and ,80 um wide, making them large enough to be

manipulated easily, yet small enough to be compatible with

microfluidic devices [10]. In addition, C. elegans exhibits a diverse

repertoire of spatial orientation behaviors including chemotaxis to

gradients of soluble compounds and odorants [11] thermotaxis to

preferred temperatures [12], and avoidance of regions of high

osmolarity [13]. Two main behavioral strategies have been

proposed to explain spatial orientation behaviors in C. elegans.

The first is a biased random walk, also known as klinokinesis, in

which the frequency of large turns is modulated by the rate of

change of attractant concentration [14]. The second is a directed

strategy known as klinotaxis, in which the animal’s course is

continuously corrected toward the line of steepest ascent up the

gradient [15]. A necessary condition of klinotaxis is that course
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corrections occur as a result of alternating lateral displacements of

the pertinent sensory organs [16]. Neuronal analysis of these

behaviors reveals universally applicable circuit motifs for behaviors

in higher organisms [17].

Here we describe a pair of microfluidic devices that reliably

deliver step gradients in chemical concentration and temperature

to semi-restrained C. elegans. The nematode is clamped at its

midsection by a vacuum-assisted restraint aligned with the border

between two laminar fluid streams. The head and anterior body,

which are free to move, exhibit the side-to-side head swings

characteristic of normal locomotory undulation in nematodes. The

devices are capable of delivering both spatial and temporal steps.

To demonstrate the utility of these devices, we investigated the

behavioral mechanisms of orientation to chemical, thermal, and

osmotic gradients at the resolution of individual head swings in C.

elegans for the first time. Using spatial steps, we found that

locomotion is biased toward favored chemical and thermal

conditions during individual head swings, supporting the hypoth-

esis that C. elegans employs klinotaxis in both modalities. Using

temporal steps, we found that worms transiently increase the

probability of initiating avoidance responses following sudden

changes in osmolarity, indicating that C. elegans may employ an

unusual klinokinesis strategy to orient to osmotic cues. The device

is readily adaptable to a wide range of studies including classical

conditioning and neuronal imaging in intact, behaving animals.

Results

Design of the chemosensory device
The chemosensory device consists of a Y-shaped channel

formed in a single layer of PDMS bonded to a glass substrate

(Fig. 1A,B). Solutions containing chemosensory stimulants enter

via inlets located at the ends of each arm and are removed via an

outlet at the base of the stem. The solution flowing in each arm is

selected manually by means of stopcocks attached to the fluid

reservoirs, or automatically by a bank of solenoid valves (not

shown); flow rate is regulated by a peristaltic pump attached to the

outlet. The worm is positioned at the center of the Y where the

fluids from the arms converge. We found that a simple passive

clamp in the form of a channel with a narrow constriction was

insufficient to prevent the worm from escaping from the device.

This problem was solved by applying a vacuum to both sides of the

worm via a manifold of 10 um wide ports (Fig. 1C). The restraint

immobilizes the middle third of the worm leaving the anterior

(head) and posterior (tail) portions free to move. At the start of an

experiment, the worm is captured in a fluid filled tube, inserted

into the worm inlet, and positioned in the restraint; the vacuum is

activated after the worm is in position.

The central feature of the design is that the two streams meet

without mixing at the point of confluence (Fig. 1D). Thus, when the

streams contain different concentrations of a chemical stimulus, a

step-like chemical gradient is formed across the region in which the

worm’s anterior portion is free to move. Alternatively, the device

can be used to deliver temporal concentration steps. This is done by

flowing the same solution through both arms then simultaneously

switching them to a different solution. We refer to these methods as

the spatial and temporal modes of operation, respectively.

Performance
Animal behavior. On an agar substrate, a freely crawling

worm lies on its right or left side such that undulations occur in the

dorso-ventral plane. We found that when inserted into the device,

Figure 1. Design of the chemosensory device. (A) Top view showing the layout of channels, ports, inlets, and outlets. The region enclosed by
the dashed rectangle is expanded in (C) and (D). (B) Perspective view showing the arrangement of fluid reservoirs and valves for switching fluids. (C)
Schematic of the worm loading process. Arrows represent direction of flow in fluid and vacuum channels. Left panel: The worm is pushed toward the
restraint via a pressurized syringe (not shown) attached to worm inlet. Right panel: Once the worm is in place, an external vacuum source is applied
and the syringe is de-pressurized. (D) Composite image with one stream dyed to demonstrate laminar flow during a complete head swing cycle. (E)
Definition of head angle h used for quantification of behavior. Undulations occur in the dorso-ventral plane. The terms ‘‘left’’ and ‘‘right’’ refer to the
arms of the device.
doi:10.1371/journal.pone.0025710.g001
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the worm invariably adopts such an orientation. We observed that

the anterior portion of the animal moved in a coordinated manner

that qualitatively resembled the locomotion of unrestrained worms

(Fig. 1D). Unrestrained worms exhibit two distinct modes of

locomotion: crawling and swimming, which have undulation

frequencies of ,0.8 Hz and ,2.1 Hz respectively [18].

Undulation frequency in the device was 0.3460.11 Hz (n = 17

worms, s.e.m.) suggesting that the worms were crawling rather

than swimming.

Temporal precision of stimulus delivery. To assess the

chip’s performance when being operated in temporal mode, we

measured the time course of solution exchange. This was done by

switching the flow in one of the arms from a clear solution to one

containing an opaque substance (food dye) and measuring the time

course of average luminance changes in a region of interest located

near the convergence of the two streams. Solution exchange was

complete in 0.5360.19 sec (n = 5 trials, s.e.m.), which is much

shorter than the period of undulation in the device (2.9 sec).

Behavioral responses to step gradients in
chemoattractant concentration

To demonstrate the new types of data that can be acquired by

the chemosensory device, we first examined the behavioral

mechanism of directed orientation responses in C. elegans. These

responses are hypothesized to involve klinotaxis, i.e., modulations

of head angle based on concentration changes sensed during the

lateral component of head movements associated with individual

undulations [15]. However, this hypothesis is based on analysis of

the trajectory of the nematode’s centroid rather than detailed

analysis of alterations in head swings that may be an essential

component of the orientation mechanism. To test the klinotaxis

hypothesis at the resolution of individual head swings, we used

the device in the spatial operating mode. This was done by

subjecting individual worms to an alternating series of symmet-

rical and asymmetrical patterns of the attractant concentration

(NaCl), in five contiguous epochs (Fig. 2A). Symmetrical stimulus

epochs (either 10 mM or 0.001 mM NaCl) were interleaved with

asymmetrical stimulus epochs (10 mM versus 0.001 mM NaCl) in

a counterbalanced design. Behavior was quantified in terms of

angular displacement h of the tip of the worm’s head as shown in

Fig. 1E. Dorsoventral undulations continued throughout the

experiment (Fig. 2B). Data from individual worms showed that

head swings from the high to the low concentration side in

asymmetrical epochs were almost always truncated at the

interface between the two solutions (h = 0), whereas this

truncation was absent during symmetrical epochs, except

immediately after switching to symmetrical solutions. Group

data, in the form of ensemble averages of h, showed that

undulations were strongly biased toward the high concentration

side (Fig. 2C,D; ANOVA with post hoc contrast, p,0.001,

n = 17). Average h during symmetrical epochs was not signifi-

cantly different from zero (post hoc contrast, p.0.05, n = 17),

indicating that the bias seen in asymmetrical epochs was

specifically the result of the concentration differences presented.

We conclude that C. elegans is capable of modulating head swings

in response to concentration changes sensed during the lateral

component of head movements, at least in the case of

concentration changes on the order of 10 mM. This finding

provides direct confirmation of the klinotaxis hypothesis.

Behavioral analysis of chemotaxis mutants is a powerful means

of investigating the cellular and molecular basis of chemotaxis

[11]. To demonstrate the ability of the chip to identify novel

quantitative phenotypes in chemotaxis mutants, we examined the

behavior of the mutant tax-4, which has a well-characterized defect

in chemotaxis [19]. This defect has been traced to impaired

function of the TAX-4 protein, which is an ion channel required

for chemosensory transduction in C. elegans [20]. We found that

mean head angle during asymmetrical epochs was significantly

reduced in the mutants relative to wild type controls (Fig. 2C,D; t-

test, p,0.001, n = 18). This result demonstrates that tax-4 is

required not only for chemotaxis in general, but also for klinotaxis

in particular, thereby providing a new behavioral phenotype for

this mutation.

Behavioral responses to temporal steps in osmolarity
C. elegans avoids a droplet of hyperosmotic fluid placed in its

path by initiating a bout of reverse locomotion [13,21]. The main

chemosensory neuron for detecting changes in osmolarity in C.

elegans is ASH. This neuron is activated not only by sudden

increases in osmolarity (on responses), but also by sudden

decreases in osmolarity (off responses) [22]. Whether osmotic

avoidance is initiated by on responses, off responses, or both is

unknown. This is because a freely moving worm immediately

withdraws from an osmotic stimulus, thereby superimposing on

and off responses.

To address this issue we used the device in its temporal

operating mode. This was done by presenting two groups of

worms with a temporal series of spatially symmetrical stimulus

epochs. The series alternated between solutions of low and high

osmotic strength (370 mOsm and 1000 mOsm, respectively)

according to the counterbalanced design shown in Fig. 3A,B. As

a control for possible mechanical artifacts of solution switching,

a third group of animals was presented with mock solution

changes between two reservoirs containing low osmolarity fluid

(Fig. 3C). Behavior was quantified in terms of the fraction of

worms that initiated at least one reversal in a 5 second interval

at the beginning and the middle of each epoch. The switch from

low to high osmotic strength caused an increase in reversal

probability relative to controls (Fisher’s exact test, p,0.0001,

n = 51), as did the switch from high to low osmotic strength

(Fisher’s exact test, p,0.001, n = 51). Reversal probability was

unaffected in the control group, indicating that reversal bouts

were specifically the result of changes in osmolarity (Fisher’s

exact test, p.0.05, n = 25). These results suggest that both on

responses and off responses in ASH are sufficient to generate

avoidance responses.

Design of the thermosensory device
The thermosensory device is designed to present the worm with

a step-like thermal gradient. It is similar to the chemosensory

device except that the arms of the Y-shaped channel are enlarged

to accommodate a pair of thermistors located immediately

upstream of the point of confluence. The thermistors are used to

monitor the temperature of the two streams. This modification

necessitated a two-layer design in which upper and lower PDMS

layers are bonded with their feature sides apposed (Fig. 4A). The

upper layer contains the worm inlet, vacuum port and manifold,

and the stem of the Y-shaped channel, including the point of

confluence. The lower layer contains the arms of the Y-shaped

channel with embedded thermistors and side channels for

thermistor wires. Prior to assembly, the thermistors are fixed in

place by filling the side channels with optical adhesive which also

seals these channels against fluid leaks. Fluid flowing in the lower

layer reaches the upper layer by traveling up and over the

thermistors (Fig. 4B). At the flow rates used in these experiments,

we estimate that the travel time between thermistor and worm was

less than 500 milliseconds. The temperature of the fluids entering

each arm of the Y-shaped channel was manually regulated by

Microfluidics for Study of Spatial Orientation
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separate Peltier devices (Fig. 4C). The thermosensory device was

operated only in spatial mode because of the length of time

(30 seconds) required for temperature in the arms to equilibrate.

After equilibration, temperature was stable to 60.5uC for the

duration of a typical experiment (,5 min).

Behavioral response to step gradients in temperature
To demonstrate the type of insights that can be gained with the

thermosensory device, we investigated the behavioral mechanisms

of thermotaxis. Thermotaxis in C. elegans involves klinokinesis

[23,24], but whether klinotaxis also plays a role is unknown. To

Figure 2. Behavioral responses to step gradients in chemoattractant concentration. (A) Stimulus protocol for chemosensory experiments.
Values are the concentration of NaCl in mM. All epochs are one minute in length. Shading indicates timing and location of high concentration fluid.
(b) Head angle versus time for a wild-type animal in response to the stimulus protocol in (A). (C) Ensemble averages of head angle for wild type
animals and tax-4 mutants. (D) Mean head angle of wild type animals and tax-4 mutants by stimulus epoch for data shown in (C). Error bars are s.e.m.
doi:10.1371/journal.pone.0025710.g002
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address this question, we cultivated worms under conditions

known to make them prefer a temperature of 20uC [25] and

exposed them in the device to fluid streams of 20 and 25uC.

Behavior was quantified in terms of average head angle (Fig. 1E)

over a three minute trial such that positive angles corresponded to

the head visiting the cooler stream. Temperature was randomized

with respect to the left and right sides of the chip and the

dorsoventral orientation of the worm. Under these conditions,

head angle was clearly biased toward the 20uC stream (Fig. 5; t-

test, p,0.01, n = 16). No such bias was observed in worms exposed

to streams of the same temperature (t-test, p.0.05, n = 19 for the

15, 20, and 25uC conditions), indicating that the effect was specific

to the temperature difference. These findings are consistent with a

role for klinotaxis during thermal migration in C. elegans, at least in

steep thermal gradients. In a second experiment, worms cultivated

at 20uC but exposed to streams of 15uC and 25uC were biased

toward the former (t-test, p,0.01, n = 19). Thus, in a forced choice

between two temperatures equidistant from the preferred

temperature, worms appear to prefer the cooler temperature,

consistent with the finding that in C. elegans, thermotaxis down a

gradient is more robust than thermotaxis up a gradient [26,27,28].

Discussion

The device described here makes it possible to deliver spatial

and temporal step gradients to semi-restrained C. elegans. A key

feature of the device is a vacuum-assisted restraint that aligns the

long axis of the worm with the stable border between two

solutions. As a result, the response of individual worms to multiple

border crossings can be examined. Additionally, the restraint

ensures that the worm always encounters the border at the same

angle. Together, these two aspects of the device improve the

statistical power of step response experiments relative to those that

rely on incidental border crossings in freely moving worms [8,29].

We used the device to investigate the spatial orientation

strategies in C. elegans at the resolution of single head swings. By

presenting spatial concentration steps of a chemoattractant, we

were able to confirm the hypothesis that C. elegans can perform

klinotaxis, at least in response to large concentration changes.

However, our findings do not exclude the possibility that a

different behavioral mechanism is utilized when concentration

changes are small, nor do they necessarily imply that the same

neuronal mechanism is involved. In analogous experiments using a

thermal step, we found that C. elegans is also capable of using

klinotaxis when navigating steep thermal gradients. Both types of

experiment would have been difficult or perhaps impossible to

interpret in the case of freely moving worms in continuous

gradients where concentration, or temperature, changes through-

out the head swing.

We also used the device to investigate responses to temporal

steps in osmolarity. In these experiments we found that sudden

changes in osmolarity trigger reversals not only when osmolarity

rises but also when it falls. We hypothesize that the latter type of

response was missed in previous studies of osmolarity responses

because the unrestrained worm withdraws so quickly from the

stimulus that on and off responses are superimposed. This finding

highlights the value of precise temporal control of stimulus

presentation.

The device is readily adaptable to many other types of

experiments. Orientation responses of wild type and mutant

worms can now be studied at high resolution in response to spatial

and temporal step gradients of a wide range of fluid borne cues

including pH [30], odorants [31], pheromones [32], oxygen [33],

carbon dioxide [34], and environmental toxins [35]. Using the

device in temporal mode, it should be possible to associate sensory

cues with appetitive or aversive stimuli in simple classical

conditioning experiments [36]. The effects of such treatments

could then be tested by presenting the conditioned cues against

each other in the device’s spatial mode. With minor modifications,

the device could be combined with on line image processing to

deliver spatial or temporal steps that are time-locked to particular

behaviors or postures of the animal. Such experiments would

make it possible to test dynamical models of sensorimotor

integration in C. elegans [37]. Finally, the transparency of the

device makes it compatible with optogenetic approaches in which

genetically targeted probes are used to record [38] and stimulate

[39,40] individual neurons while the animal is moving. Such

experiments are likely accelerate our understanding of the

neuronal basis of behavior in this key model organism.

Materials and Methods

Device Fabrication
We fabricated both devices using standard soft lithographic

methods [41]. Full resolution electron files of photomasks are

available in Supplementary Information (Figures S1, S2, and S3).

A silicon wafer master for the chemosensory device was created by

exposing a 60 mm layer of SU-8 2025 resist (Microchem, Newton,

MA) through a transparency mask and dissolving away unexposed

material. Masters for the top and bottom layers of the

thermosensory device were created by exposing 60 and 500 mm

layers of SU-8 2025 and SU-8 2050, respectively. Masters were

treated with chlorotrimethylsilane (Aldrich, St. Louis, MO) to

prevent adhesion of PDMS to the master. Masters were replica

molded in PDMS (Dow Corning Sylgard 184, Corning, NY).

Holes for ports and inlets (1.0 or 1.5 mm diam.) were formed using

a biopsy punch. Thermistors (Panasonic NTC JZ(0201) and

associated wires were embedded into channels in the lower layer of

the thermosensory device with UV-sensitive optical glue (Norland

81, Norland, Cranbury, NJ). PDMS castings were bonded to their

respective substrates after 30 sec exposure to an oxidizing air

plasma. To facilitate alignment in two layer devices, castings were

Figure 3. Behavioral responses to temporal steps in osmolarity.
(A–C) Data are quantified as the fraction of worms that initiated at least
one reversal in the 5 second interval beginning at the times shown on
the abscissa. Shading indicates high osmolarity. Numbers of replications
in A–C were 16, 10, and 25, respectively.
doi:10.1371/journal.pone.0025710.g003
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Figure 4. Design of the two-layer thermosensory device. (A) Top view showing the layout of channels in each layer before and after assembly
(combined). The bottom layer (red) contains the arms of the device with embedded thermistors and wires (black). The top layer (blue) contains the
worm restraint and the point of convergence of the fluid streams. (B) Side view through the plane indicated by dotted line in the combined view in
(A). Saturated colors represent the channels through which fluid flows whereas less saturated colors represent bulk PDMS. Arrows indicate direction
of flow. (C) Perspective view showing the arrangement of fluid reservoirs, Peltier tubing jackets for heating and cooling, and electrical contacts. Peltier
jackets are controlled by an external temperature control module (not shown).
doi:10.1371/journal.pone.0025710.g004
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moistened with methanol immediately prior to assembly. As the

methanol evaporated, the feature sides came into contact and

bonded tightly. The assembled device was then placed in a

polycarbonate clamp and thermistor wires were soldered to an

external circuit board.

C. elegans cultivation
Synchronous populations of wild type (N2) and mutant (tax-

4(p678)) C. elegans were grown on standard nematode growth

medium (NGM) plates seeded with E. coli OP50 as described [42].

On the first day of adulthood, worms were picked to an unseeded

NGM plate and allowed to crawl free of any co-transported

bacterial food. Worms used in chemosensory and osmosensory

experiments were starved for 30–60 minutes prior to experiments

whereas worms used in thermosensory experiments were main-

tained in food until use.

Solutions
In chemosensory experiments, the solutions contained (in mM)

1 CaCl2, 1 MgSO4, 10 HEPES, and NaCl as indicated in the text.

Glycerol was added to achieve a total osmolarity of 370 mOsm.

Similar solutions were used in osmolarity experiments except that

the concentration of NaCl was 1 mM and osmolarity was adjusted

to 370 mOsm or 1000 mOsm in the low and high osmolarity

solutions, respectively. In thermosensory experiments, the solution

used was S Basal [42]. All solutions were filtered with a pore size of

0.22 mm prior to use. In thermosensory experiments, temperature

was regulated by a peltier temperature control system (TC2BIP

with CH module, Cell MicroControls, Norfolk, VA). Flow rates

through the device were 10–15 mL per hour.

Data collection and analysis
Video recordings of worm behavior (30 frames/sec) were

analyzed in MATLAB using a custom routine to compute head

angle h in each image. Briefly, frames were first masked and

thresholded to obtain an image of the worm. The centerline of the

worm was then obtained by a skeletonization procedure. Starting

at the position of the restraint, the centerline was traversed to find

the tip of the head, defined as the point furthest from the restraint.

Initiation of reversals was scored manually by an observer who was

blind to experimental condition. Reversal behavior was defined as

propagation of the undulatory wave in the posterior to anterior

direction as previously described [43].

Supporting Information

Figure S1 Photomask design for the chemosensory
device.

(PDF)

Figure S2 Photomask design for the thermosemsory
device, upper layer.

(PDF)

Figure S3 Photomask design for the thermosensory
device, lower layer.

(PDF)
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