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Abstract

Feasibility of chromosomal manipulation in mammalian cells was first reported 15 years ago. Although this technique is
useful for precise understanding of gene regulation in the chromosomal context, a limited number of laboratories have
used it in actual practice because of associated technical difficulties. To overcome the practical hurdles, we developed a Cre-
mediated chromosomal recombination system using fluorescent proteins and various site-specific recombinases. These
techniques enabled quick construction of targeting vectors, easy identification of chromosome-rearranged cells, and
rearrangement leaving minimum artificial elements at junctions. Applying this system to a human cell line, we successfully
recapitulated two types of pathogenic chromosomal translocations in human diseases: MYC/IgH and BCR/ABL1. By inducing
recombination between two loxP sites targeted into the same chromosome, we could mark cells harboring deletion or
duplication of the inter-loxP segments with different colors of fluorescence. In addition, we demonstrated that the
intrachromosomal recombination frequency is inversely proportional to the distance between two recombination sites,
implicating a future application of this frequency as a proximity sensor. Our method of chromosomal manipulation can be
employed for particular cell types in which gene targeting is possible (e.g. embryonic stem cells). Experimental use of this
system would open up new horizons in genome biology, including the establishment of cellular and animal models of
diseases caused by translocations and copy-number variations.
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Introduction

Modern genetic engineering depends on DNA-modifying enzymes

including restriction endonucleases, ligases and polymerases. This

technology has been applied to manipulation of purified DNA less

than a few hundred kilobases. Broadening the range of manipulatable

DNA to megabase scale would be fundamental to deepen the

understanding of gene regulation in the chromosomal context. To

this purpose, chromosomal manipulation in mammalian cells by Cre

recombinase (a site-specific recombinase derived from bacteriophage

P1, catalyzing DNA recombination between two 34-bp loxP

sequences) after targeted integration of two loxP sites into defined

chromosomal loci has been reported previously [1–8]. These studies

relied exclusively on the selection of cells expressing hypoxanthine

phosphoribosyltransferase (HPRT) as an indicator of recombination,

and therefore, the use of HPRT-deficient cells was a prerequisite. In

this study, we introduced two improvements to this technology. First,

we utilized fluorescent proteins as rearrangement markers to broaden

the range of cells this technology can be applied to. Second, to

facilitate the otherwise cumbersome construction of targeting vectors,

we adopted Gateway cloning system, which utilizes in vitro site-specific

recombination by l-phage-derived integrase complexes (BP and LR

Clonases) [9]. Here, we demonstrate three kinds of application of our

novel chromosomal manipulation: recapitulation of pathogenic

chromosomal translocation, induction of copy-number variation,

and assessment of proximity between gene loci.

Results and Discussion

New vectors for chromosomal manipulation
To monitor the integrity and fate of two junctions, we generated

loxP site-containing targeting vectors to encode green and red

fluorescent proteins after recombination. As shown in Fig. 1,

coding sequences of enhanced green fluorescent protein (GFP) and

the red fluorescent protein variant dimer2 [10] (DsRed) were split

in the middle and fused to each other with intervening drug

selection markers (hygromycin- or neomycin-resistance gene)

franked by loxP sites. Similar strategy utilizing restoration of

split-fluorescent protein by Cre recombinase was previously

adopted for analysis of neuronal differentiation in mice [11].

Our gene cassettes for split-fluorescent protein are bound by FRT

and att (L1 or L2) sites for later recognition by Flp recombinase (a

site-specific recombinase derived from the 2 mm plasmid of

budding yeast) and Gateway LR Clonase, respectively. These

constructed vectors can be easily converted to the final gene-

targeting vectors in a reaction with two homology-arm vectors and

a destination vector (i.e. pDEST DTA-MLS [12]), catalyzed by

LR Clonase.

In this study, we used Nalm-6, a human pre-B acute

lymphoblastic leukemia cell line with high gene-targeting efficien-

cy [13]. Before gene targeting, we stably transfected a vector

expressing 4-hydroxytamoxifen (OHT)-regulated Cre recombi-

nase (MerCreMer [14]) to Nalm-6 to obtain NCR1 cells.
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MerCreMer is a modified Cre both amino- and carboxyl-

terminally fused with hormone-binding domain of human estrogen

receptor a with mutations that reduces response to native

estrogens but not its synthetic analogue OHT (Mer stands for

mutated estrogen receptor). MerCreMer lacks Cre activity in the

absence of OHT but is activated promptly by OHT.

After linearization at multiple linearization sites (MLS), a Site1-

targeting vector was electroporated into NCR1 cells, followed by

PCR screening and Southern blotting. A targeted clone was

further subjected to a second targeting with a Site2 vector. Thus,

double-targeted clones were obtained. Addition of OHT at a later

stage can induce excision of drug-resistant markers, leaving a loxP

site at the GFP–DsRed junction. Then, continued Cre activity

would lead to recombination between the loxP sites in Site1 and

Site2. To remove GFP and DsRed expression units and loxP sites,

Flp recombinase was transiently expressed in GFP- and DsRed-

positive cells, leaving only the 103-bp artificial sequence of attB1-

FRT-attB2 (Fig. 1). We introduced this Flp recombinase-mediated

excision of fluorescent protein expression elements because

presence of those promoters may perturb expression of nearby

Figure 1. Scheme for vector construction and chromosomal recombination. (upper) pENTR-Site1 plasmid contains cytomegalovirus (CMV)
promoter-driven fusion gene, the first half consisting of GFP (green box) and the last half of dimer2 (a DsRed variant, red box) with an intervening
hygromycin-resistance gene (grey box) flanked by loxP sites (red triangles), outer two FRT sites (blue triangles) and attL1 and attL2 sites (open box).
pENTR-Site2 expresses a fusion gene complementary to pENTR-Site1 harboring a neomycin-resistance gene (grey box). These vectors in addition to
59- and 39-targeting homology arm vectors and the pDEST DTA-MLS destination vector were assembled into targeting vectors by LR Clonase. Purple
shadows connect att sites to be recombined. (lower) After gene targeting into homologous chromosomal regions, Cre first removes drug-resistance
genes and then recombines distant loxP sites. After recombination, GFP and dimer2 mRNAs are spliced and expressed. Expression of Flp excises
fluorescent protein genes to achieve clean rearrangement, leaving a 103-bp element. DTA, diphtheria toxin A; MLS, multiple linearization sites (PmeI,
AscI, I-SceI, SwaI, PacI); ori, replication origin; KmR, kanamycin-resistance gene; AmpR, ampicillin-resistance gene; ccdB, bacterial ccdB gene.
doi:10.1371/journal.pone.0009846.g001
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genes. In this paper, we refer to a transgenic state after Flp-

mediated excision of restored fluorescent protein genes as clean

(e.g. clean translocation).

Induction of chromosomal translocation
To test the feasibility of this system, we recapitulated two

pathogenic chromosomal translocations in human hematological

malignancies: t(8;14)(q24;q32) (MYC/IgH) found in Burkitt lym-

phoma and t(9;22)(q34;q11.2) (BCR/ABL1) in chronic myeloid

leukemia. As shown in Fig. 2A, we introduced Site1 within the

immunoglobulin heavy chain a2 (IGHA2) locus on the telomeric

side of the IgH 39 enhancer in MerCreMer-expressing NCR1 cells

(Fig. S1). One of the six clones with correct targeting was

designated NSB1. Subsequently, the MYC locus of NSB1 cells was

targeted by Site2 vector and four targeted clones were obtained

(NSMyc, Fig. S2), of which three clones were cultured in the

presence or absence of OHT for 7 days and analyzed by flow

cytometry.

The frequency of GFP-DsRed double-positive cells was

(1.561.2)61025 [mean 6 standard deviation, n = 3]. Enforcement

of Cre activity by a retroviral vector increased the frequency of

double-positive cells by more than 40 fold (6.861024), indicating

that Cre activity is a major factor influencing translocation

efficiency. We continued Cre activation of one clone, NSMyc23,

until day 20, when we sorted the double-positive cells (Fig. 2B).

The sorted cells were then subjected to limiting dilution to obtain

pure clones of double-positive cells, followed by electroporation of

a Flp-expression plasmid to achieve a clean translocation. The

resulting double-negative cells were cloned by sorting and limiting

dilution. Chromosomal translocation was verified by polymerase

chain reaction (PCR) using MYC/IgH translocation-specific

primers (Fig. 2C) and by fluorescence in situ hybridization (FISH)

using bacterial artificial chromosome (BAC) probes specific to the

IgH or the MYC locus (Fig. 2D).

We similarly induced BCR/ABL1 translocation by Site1

targeting to the BCR locus of NCR1 cells and subsequent Site2

targeting to the ABL1 locus (Fig. 2E, Fig. S3 and Fig. S4). The

frequency of double-positive cells on day 7 of OHT stimulation

was (5.961.8)61025 (n = 10). To verify production of the BCR-

ABL1 translocation, several cell clones with a clean translocation

were obtained after transient expression of Flp recombinase in the

fluorescence-positive cells followed by flow-cytometric sorting and

limiting dilution for fluorescence-negative cells. Successful trans-

location in thus obtained cell clones was verified by FISH analysis

(not shown) and spectral karyotyping (SKY, a FISH-based

cytogenetic technique that allows the simultaneous identification

of all 24 human chromosomes with whole chromosome painting

probes labeled with different combination of fluorescent dyes)

(Fig. 2F). Production of BCR-ABL1 fusion protein was confirmed

by western blot analysis (Fig. 2G). Expected splicing between

juxtaposed exons was confirmed by sequencing reverse-transcrip-

tion PCR product (data not shown).

Induction of copy number variation
Recently, much attention has been paid to the copy-number

variation (CNV) in the human genome, which is considered to

have a greater impact on the phenotype than single nucleotide

polymorphism. Utilities of site-specific recombinases to generate

CNV were previously reported in several organisms including

yeast [15], plant [16], fly [17] and mouse [2]. To demonstrate the

feasibility of our system for generating CNV, we inserted Site1 and

Site2 into the same chromosome 14 (Fig. 3A) with an identical

orientation. For Site2 targeting, NSB1 cells were used, which were

used for recapitulation of MYC/IgH translocation (Fig. 2A–D) and

harbor Site1 at IGHA2 locus. Site 2 was targeted to an intergenic

region between LOC122631 and C14orf180, which lies 1.1-Mb

apart from Site1 to the centromere. Cre activation was expected to

result in two different outcomes. Recombination in the same DNA

molecule leads to deletion of the inter-loxP segment. This causes

GFP expression from fused Site1/2 (59 half of Site1 and 39 half of

Site2) in the chromosome and transient expression of DsRed from

Site2/1 (59 half of Site2 and 39 half of Site1) in the excised circular

product that eventually disappears. Alternatively, nonallelic

recombination at the G2/M phase of the cell cycle between sister

chromatids leads to inter-loxP duplication on one chromatid and

its deletion on the other (Fig. 3A). Subsequent cell division

generates both cells with duplication expressing only DsRed and

cells with deletion expressing only GFP. Therefore, irrespective of

the two recombination modes (intramolecular and intermolecular

recombination), GFP- and DsRed-positive cells represent cells

with deletion and duplication, respectively.

We analyzed double-targeted cells (NSK) selected after

Southern blotting (Fig. S5) and metaphase FISH using Site1 and

Site2 probes to examine whether Site2 integration occurred in the

Site1-integrated chromosome 14 (integration in cis) or in its

homologue (integration in trans) (Fig. 3B, Table 1). The four cis-

targeted clones were cultured in the presence of OHT. On day 7,

cells positive for either GFP or DsRed were observed

[(1.560.4)61022; n = 4] (Fig. 4A, top). Cells were passaged in

the absence of OHT for an additional 10 days, when the fraction

of double-positive cells significantly decreased from 0.461022 to

0.361023 (Fig. 4A, top; compare day 7 and day 17).

To confirm deletion or duplication, we sorted and cloned GFP-

and DsRed-positive populations. Among 12 GFP-only clones, 11

clones revealed similar GFP intensity (comparable to post 1, 2 in

Fig. 4A bottom), while 1 (post 3) showed higher GFP expression.

Profiles of the two DsRed-only clones (post 4, 5) were similar. PCR

analysis of genomic DNA of these clones using deletion- or

duplication-specific primers produced consistent results, except for

the post 3 clone (Fig. 4B), which retained the neomycin-resistant

gene that was detected by sequencing the PCR products.

Therefore, Cre-mediated excision of drug markers was efficient

but incomplete. Culture of DsRed-positive cells in the presence of

OHT generated GFP-positive cells, but not vice versa (Fig. 4A,

lower right). This observation is consistent with our interpretation

that DsRed expression represents cells with inter-loxP duplication.

Two clones determined to be mixed (NSK72 and NSK141) by

FISH analysis using Site1 and Site2 probes (Table 1) were

excluded from the following studies, because these clones may be a

mixture of cis- and trans-targeted clones. However, such a mixed

pattern can be explained by cross-hybridization between Site1 and

Site2, because identical sequence blocks occupy 29% and 38% of

Site1 and Site2 probes, respectively.

Application to assessment of proximity between gene
loci

In somatic cells of fly, homologue pairing (a phenomenon in

which paternal and maternal chromosomes spatially align) was

demonstrated by Flp-FRT-mediated chromosomal recombination

[18]. This observation suggests that recombination frequency can

be an indicator of proximity between two loci. Similar approach by

Cre-loxP system has been applied in the yeast chromosome [19].

Frequency of Cre-loxP-mediated long-range recombination was

shown to decrease with an increase in the inter-loxP distance in fly

[17] and in mouse embryonic stem cells [6]. To reproduce these

results in human cells, we inserted Site2 into Site1-pre-integrated

chromosome 14 at intervals of 1.1, 6.1, 10.5 and 39.8 Mb (Fig. 5A).

In this experiment, NSB1 cells with Site1 integration at IGHA2
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(106.06 Mb on the chromosome 14 coordinate of the reference

human genome build 37.1) were used again. The Site2-targeted loci

are located at an intergenic region between LOC122631 and

C14orf180 (104.94 Mb) for 1.1-Mb interval; an intron of CCDC85C

(99.99 Mb) for 6.1-Mb interval; DICER1 (95.57 Mb) for 10.5-Mb

interval; and an intergenic region between FUT8 and NCOA4P

(66.30 Mb) for 39.8-Mb interval. For inversion to occur, Site2 was

oriented in a direction opposite to Site1. This is because cell lethality

by deletions of large DNA segments might obscure the Cre

recombination frequency [6].

In case of the 1.1-Mb interval (NSC cells), six clones were

confirmed to be correctly targeted by Southern blotting (Fig. S6).

After 7 days of culture in the presence of OHT, these clones were

classified into two groups in terms of frequency of double-positive

cells: high group [(9.461.1)61023; n = 3] and low group

[(8.761.0)61025; n = 3]. FISH analysis using Site1 and Site2

probes revealed that high- and low-group clones were cis- and

trans-targeted, respectively (Fig. 5B, Table 2), which also allowed us

to classify the high and low groups as cis and trans groups,

respectively, for cells with other Site1–Site2 intervals. In case of

the 6.1-Mb interval (Fig. S7), the frequency of double-positive cells

after 7 days of OHT stimulation was significantly lower than that

seen with the 1.1-Mb interval: (1.260.6)61023 (cis, n = 4) and

(3.061.7)61025 (trans, n = 8). Likewise, the targeted clones of 10.5-

and 39.8-Mb intervals (Fig. S8 and Fig. S9) resulted in further

decreasing frequencies: (6.563.5)61024 and (1.660.8)61025 (cis,

n = 4 and trans, n = 3) for 10.5 Mb and (1.260.3)61024 and

(8.965.9)61026 (cis, n = 4 and trans, n = 7) for 39.8 Mb.

Plotting the frequencies of recombination versus different loxP

intervals indicated good linearity (Fig. 6A, 6B-i), suggesting that

the intrachromosomal recombination frequency is inversely

proportional to the distance between recombination sites. This

result is strikingly similar to a result in fly [17] and is consistent

with reported observation by Hi-C method and prediction by the

fractal globule model of chromatin organization [20]. However,

the linearity reduced with an increase in Cre expression provided

by a retroviral vector (Fig. 7) probably because multiple inversions

underestimate the real recombination frequency higher than 2%.

Cre expression in representative clones for each Site1-Site2

interval was augmented by infecting cells with Cre-expressing

retrovirus. Retroviral Cre protein but not that of MerCreMer was

detected using anti-Cre antibody (Fig. 7, upper panel), while

MerCreMer was detected in the presence of OHT by anti-

estrogen receptor a antibody. This result indicated that the

expression level of retroviral Cre was higher than that of

MerCreMer expressed from plasmid transgene.

Sister chromatid recombination in cis-targeted cells can also

lead to cell death associated with dicentric (two-centromere) and

acentric (no-centromere) chromosomes (Fig. 6B-ii), which might

be another reason for the reduced linearity under high Cre

activity. Unexpectedly, the trans group also exhibited a decreasing

trend according to increasing inter-loxP distance (Fig. 6A). In the

case of trans targeting, recombination results in formation of

dicentric and acentric chromosomes, leading to cell death (Fig. 6B-

iii). The decreasing trend of the trans group could be due to

accelerated cell death with longer intervals or homologue pairing

as previously observed in fly [18] and yeast [19]. Limited survival

of those cells was depicted by the disappearance of the double-

positive cells induced by OHT-treatment of trans-targeted NSC

cells after removal of OHT (Fig. 8A), indicating poor survival of

these cells presumably by formation of dicentric and acentric

chromosomes (Fig. 6B-iii). In contrast, the double positive cells

induced from the cis group of NSC cells (Fig. 8B) and those from

the NSK cells with loxP sites in the same orientation (Fig. 8C for

the trans group, Fig. 8D for the cis group) survived after removal of

OHT. This experiment indicates that our system can be applied to

studies of spatial organization of the mammalian genome based on

an easy and rapid flow-cytometric determination of recombination

frequencies.

In this study, we demonstrated the use of our novel system in

studying artificial chromosomal translocation, duplication, dele-

tion, and inversion as well as in determining gene proximity in a

human cell line. At the same time, this system may be useful for

screening of recessive mutations [5] and induction of specific

chromosomal loss [21] in cell lines or animal models. The

applications to cell lineage tracing and neural connection analysis

in animals may also be possible, taking advantage of infrequent

recombination between loxP sites introduced at identical locations

on homologous chromosomes [11]. The technical improvements

reported here will facilitate mammalian chromosome engineering

and better understanding of human diseases caused by chromo-

somal translocations and CNV.

Materials and Methods

Constructs
Procedures for construction of Site1 and Site2 targeting vectors

are described in Methods S1 including Fig. S10, Fig. S11 and

Table S1. pANMerCreMer-zeo was constructed by inserting a

blunt 1437-bp ClaI-BstPI fragment from pVgRXR (Invitrogen,

Carlsbad, CA), containing a zeocin-resistance gene in place of the

AatII-SacI neomycin-resistance gene segment of pANMerCre-

Mer-neo [14]. The Flp expression vector pCAGGS-FLPe was

purchased (Gene Bridges, Dresden, Germany). A retroviral vector

expression Cre, pCre-FBP, was constructed by inserting into pFB

vector (Stratagene, La Jolla, CA) a coding sequence of Cre amino-

Figure 2. Recapitulation of MYC/IgH and BCR/ABL1 translocations. A, Site1 vector (red triangle on chromosome 14) was targeted to the IGHA2
locus of Nalm-6 cells expressing tamoxifen-regulated Cre. Site2 vector (red triangle on chromosome 8) was subsequently targeted to the MYC locus
(red circle). The IgH enhancer is indicated by a green circle. B, Flow cytometric profiles of the indicated stages. Red circles indicate the sorted cell
populations. C, Confirmation of translocation by PCR. PCR products of expected sizes were observed for cells after translocation (post) but not for
cells before Cre expression (pre). H2O lanes show the no-template controls. Triangles above the transgene schemes represent primer positions (IgA2-
B41-F1 and MYC-B23-R1 for green, and MYC-B41-F1 and IgA2-B23-R1 for red), respectively. D, FISH analysis demonstrating MYC/IgH translocation for
cells after recombination by Flp, using BAC probes. Green probe hybridizes to a chromosome 14 region near Site1-integrated IgH locus on the
centromeric side. Red probe hybridizes to a chromosome 8 region near Site2-integrated MYC locus on the telomeric side. These probes co-localize
only after Cre-mediated translocation and appear as a yellow signal (right panel, box), magnification of which is shown in the inset. E, Site1 and Site2
vectors containing loxP sites (red rectangle) were targeted into the first intron of the BCR gene and the ABL1 gene, respectively. Vertical bars and
boxes connected with v-shaped lines indicate exon–intron structure of genes. The derivative chromosome 22 [der(22)] recapitulates the Philadelphia
(Ph) chromosome. F, SKY analysis of cells with artificial BCR/ABL1 translocation. The derivative chromosome 9 [der(9)] in the green box contains the
material (pink) translocated from chromosome 22. The amount of chromosome 9 material that was translocated to chromosome 22 was too small to
be resolved by this SKY analysis (Ph chromosome, pink box). The previously reported translocation between chromosomes 5 and 12 in Nalm-6 cells
[23] could be also detected. G, Western blot confirming expression of the BCR-ABL1 fusion protein (190 kD) after clean translocation (post) with
constitutive expression of ABL1 and GAPDH proteins.
doi:10.1371/journal.pone.0009846.g002
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terminally tagged with nuclear localization signal [22] connected

with a DNA segment consisting of internal ribosome entry site and

puromycin-resistance gene.

Cell culture, transfection and gene targeting
Nalm-6 cells and derivatives were maintained in ES medium

(Nissui, Tokyo, Japan) supplemented with 10% fetal bovine serum,

Figure 3. Site1 and Site2 targeting for copy-number variation. A, Possible outcome of Cre-mediated recombination between two loxP sites
with an identical orientation in the same chromosome 14. Site1 was targeted to the IGHA2 locus within the IgH gene cluster. Site2 was targeted to a
region tentatively designated 104, 1.1 Mb centromeric to the IGHA2 loci. B, Results of representative two cis-targeted (NSK122 and NSK126) and two
trans-targeted clones (NSK107 and NSK108) are shown. The chromosomes 14 with Site1 and Site2 integration harbor red and green signals,
respectively, and are highlighted with boxes, magnifications of which are shown in insets.
doi:10.1371/journal.pone.0009846.g003
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16GlutaMAX (Invitrogen) and 50 mM 2-mercaptoethanol. Two

micrograms of ScaI-linearized pANMerCreMer-zeo was electro-

porated into 26106 Nalm-6 cells using Nucleofector II (Amaxa,

Köln, Germany) with Solution T and Program C-005. One of the

zeocin-resistant clones with OHT-dependent Cre activity assessed

by transient expression of the test substrate was designated as

NCR1 to be used in subsequent experiments. The Site1 and Site2

targeting vectors were linearized by one of the enzymes within the

multiple linearization sites and introduced into NCR1 and Site1-

targeted NCR1, respectively, using Nucleofector II. Drug-resistant

colonies were first screened by real-time SYBR-Green PCR with

Mx3000P (Stratagene) using genomic DNA isolated by FTA card

(Whatman, Kent, UK) as templates. The specific PCR products

were detected by a dissociation curve analysis, taking advantage of

the fact that the melting temperature of specific PCR products that

are $2 kb is significantly higher than that of non-specific products

including primer dimers. The polymerase was selected from

among PrimeSTAR HS, LA Taq HS (Takara, Otsu, Japan),

KOD FX (Toyobo, Osaka, Japan) and Phusion (Finnzyme, Espoo,

Finland) for the best efficiency and specificity upon amplification

using positive control CF and negative control Nalm-6 DNA.

Products with melting temperatures similar to CF were almost

always had the expected size upon 1% agarose-gel electrophoresis.

Positive clones were examined by Southern blotting using

upstream, internal and downstream probes labelled with the

AlkPhos Direct kit (GE Healthcare, Piscataway, NJ). Detection

was performed following 30 min of exposure to LAS-3000 mini

cool-CCD camera (Fuji, Tokyo, Japan). Transient expression of

pCAGGS-FLPe was obtained using Nucleofector II.

Fluorescence in situ hybridization
We performed two-color FISH analysis using two BAC clones

RP11-953L20 (located centromeric to the IgH gene; Spectrum-

Green-labeled) and RP11-55J15 (located telomeric to the MYC

gene; SpectrumOrange-labeled). Labeling reaction was done using

Nick Translation Kit (Abbott Molecular Inc., Des Plaines, IL) and

SpectrumGreen- and SpectrumOrange-labeled deoxyuridine tri-

phosphate (Abbott Molecular Inc.). For discrimination of cis and

trans targeting, we used PCR-amplified Site1 (3.8 kb) and Site2

(2.9 kb) probes labelled with SpectrumGreen and SpectrumOr-

ange, respectively. Images were taken with the fluorescence

microscope MD5000B (Leica, Wetzlar, Germany), equipped with

a cool charge-coupled device camera ORCA-ER (Hamamatsu

Photonics, Hamamatsu, Japan) and iVision-Mac software (BioVi-

sion Technologies, Exton, PA). For spectral karyotyping of BCR/

ABL1 translocation, hybridization was done using a SKYPaint kit

(Applied Spectral Imaging, Vista, CA) and detected by SD-200

(Applied Spectral Imaging).

Induction of recombination and flow cytometry
After double targeting, 100,000 Nalm-6 cells were inoculated in

1 ml of medium with or without 1 mM OHT (day 0). On day 3,

0.5 ml of cells was diluted to 5 ml while maintaining OHT

concentrations. Flow-cytometric analyses were performed by

FACSCalibur (Becton Dickinson, Franklin Lakes, NJ) on day 7

in most cases. In some cases, this was done on day 11 or later, in

which case the cells were diluted 10 times every 3 to 4 days. The

frequencies of fluorescence-positive cells were then calculated from

data acquired for one million cells using CellQuest software

(Becton Dickinson). When OHT-stimulated cells were to be

sorted, culture volume was doubled. Sorting was performed using

FACSCalibur.

Western blotting
We performed western blot analysis for the BCR-ABL1 fusion

protein using mouse monoclonal antibody against c-Abl [c-Abl(24-

11); Santa Cruz, Santa Cruz, CA] or GAPDH (6C1, Millipore,

Billerica, MA) and IR Dye800CW-labelled anti-mouse IgG (Li-

cor, Lincoln, NE) and detected the proteins using a Odyssey

scanner (Li-cor). Cre was detected using mouse monoclonal

antibody (7.23; Abcam, Cambridge, MA) and IRDye680CW-

labelled anti-mouse IgG (Li-cor). MerCreMer was detected with

rabbit polyclonal anti-human estrogen receptor a antibody (sc-

543, Santa Cruz) and IR Dye800CW-labelled anti-rabbit IgG (Li-

cor). Antibody incubation was 10 min at room temperature using

the SNAPi.d. Protein Detection System (Millipore).

Table 1. Targeting configuration of NSK cells with loxP sites spanning 1.1 Mb in the same direction.

Targeting configuration Clone No. of metaphase Colocalization Non-colocalization Frequency of fluorescence-positive cells

cis NSK122 8 7 1 1.261022

NSK126 7 7 0 1.361022

NSK164 7 7 0 1.661022

NSK171 8 7 1 2.061022

mean frequency (mean 6 standard deviation) 1.560.461022

trans NSK107 7 0 7 3.761024

NSK108 12 1 11 3.061024

NSK114 7 0 7 3.661024

NSK116 16 2 14 1.861024

NSK123 8 1 7 2.561024

NSK145 8 1 7 2.061024

mean frequency of (mean 6 standard deviation) 2.860.861024

mixed NSK72 7 3 4 3.861023

NSK141 14 6 8 2.361024

The numbers of metaphases analyzed and those which exhibited colocalization or non-colocalization of signals by Site1 and Site2 probes are shown with frequencies of
double-positive cells after 7 days of OHT stimulation.
doi:10.1371/journal.pone.0009846.t001
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Supporting Information

Methods S1 Construction of Site1 and Site2 targeting vector.

Found at: doi:10.1371/journal.pone.0009846.s001 (0.03 MB

RTF)

Table S1 Oligonucleotide sequences. ‘‘P-’’ indicates 59 phos-

phorylation. PCR enzymes used to amplifiy DNA fragments are

shown. Blue letters indicate relevant ristriction sites. Green letters

indicate SV40 small-t intronic sequence. Red letters indicate att

site sequences.

Found at: doi:10.1371/journal.pone.0009846.s002 (0.04 MB

XLS)

Figure S1 Gene targeting strategy for IGHA2 locus and screening

summary. A, Structure of the IGHA2 loci encoding the constant

Figure 4. Induction of copy-number variation. A, Flow cytometric profiles of double-targeted cells, Cre-activated cells, and Cre-terminated cells
kept OHT-free for 10 days (top). Flow cytometric profiles of sorted cell clones and a DsRed-positive clone 10 days after Cre activation (bottom). B, PCR
confirmation of rearrangement for clones from cis- and trans-targeting cells. Clone numbers from 1 to 5 correspond to rearranged clone numbers (post)
in A. Clones 6 to 9 are derived from trans-targeted cells. Cells before Cre activation (pre), Nalm-6 and the no-template control (H2O) are included.
Triangles above the transgene schemes represent primer positions (IgA2-B41-F1 and 104-B41-R1 for green, and 104-B23-F1 and IgA2-B23-R1 for red).
doi:10.1371/journal.pone.0009846.g004
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region of IgA2 before and after targeting (upper panel) and expected

band sizes on the Southern blot (table). Rectangles indicate exons

and the oval shape indicates the switch region of the IGHA2 locus

(Sa 2). Exon numbers are indicated in white. Regions of targeting

homology are indicated by parallel dotted lines with in-between

numbers depicting bp. Positions of DNA probes used for Southern

blotting are indicated by thick blue (upstream), black (internal) and

red (downstream) lines. Numbers with bp above bidirectional

arrows represent the distance between relevant restriction sites.

Primer positions for PCR screening are indicated by arrowheads.

Unidirectional arrows indicate direction toward the centromere or

the telomere. The table lists the expected sizes of bands on the

Southern blotting using the indicated enzymes and probes. Due to

high homology between the IGHA2 and the IGHA1 loci encoding

Figure 5. Site1 and Site2 integration for assessment of proximity between loci. A, Scheme of chromosome 14 after cis targeting with the
indicated Site1–Site2 intervals. B, FISH analyses of representative two cis-targeted (NSC27 and NSC71) and two trans-targeted clones (NSC94 and
NSC169) are shown. The chromosomes 14 with Site1 and Site2 integration harbor green and red signals, respectively, and are highlighted with boxes,
magnifications of which are shown in insets.
doi:10.1371/journal.pone.0009846.g005

Chromosomal Surgery by Cre

PLoS ONE | www.plosone.org 9 March 2010 | Volume 5 | Issue 3 | e9846



Table 2. Targeting configuration of NSC cells with loxP sites spanning 1.1 Mb in the opposite direction.

Targeting configuration Clone No. of metaphase Colocalization Non-colocalization Frequency of fluorescence-positive cells

cis NSC27 8 8 0 1.061022

NSC71 8 8 0 8.261023

NSC130 8 7 1 9.661023

mean frequency (mean 6 standard deviation) 9.360.961023

trans NSC94 16 1 15 8.861025

NSC169 8 0 8 7.761025

mean frequency (mean) 8.361025

The numbers of metaphases analyzed and those which exhibited colocalization or non-colocalization of signals by Site1 and Site2 probes are shown with frequencies of
double-positive cells after 7 days of OHT stimulation.
doi:10.1371/journal.pone.0009846.t002

Figure 6. Relationship between recombination frequency and genetic distance. A, Plots of physical distance in the chromosome on the x
axis and frequency of recombination on the y axis for cis- and trans-targeted cells. B, Outcome of inter-loxP recombination in cis- and trans-targeted
cells.
doi:10.1371/journal.pone.0009846.g006

Chromosomal Surgery by Cre

PLoS ONE | www.plosone.org 10 March 2010 | Volume 5 | Issue 3 | e9846



IgA1, expected signals from both loci are shown for wild-type (WT)

and targeted (knockout, KO) alleles. B, Southern blot using the

indicated enzymes and probes for representative five clones (#138,

#148, #159, #201 and #209). Genomic DNA of these clones and

their subclones (1–3) with parental NCR1 cells were analyzed.

Outermost lanes of each panel were loaded with a size marker. The

expected positions of WT and KO alleles are shown by arrowheads.

The PvuII fragments detected by the upstream probe from the

Figure 7. Effect of augmented Cre activity on inversion frequency. A, Representative clones for each loxP interval (NSC27 for 1.1 Mb, NSF331
for 6.1 Mb, NSG118 for 10.5 Mb, and NSI95 for 39.8 Mb) were infected with a retrovirus expressing nuclear localization signal (NLS)-tagged Cre and
puromycin-resistance gene. Simultaneously, tamoxifen (OHT) was added to activate MerCreMer. One day after infection, 0.25 mg/ml puromycin was
added to select infected cells. Retrovirally Cre-transduced cells (open diamond) were analyzed by flow cytometry on day 11 to measure the frequency
of fluorescence-positive cells. As a control, non-infected cells (red circle) were stimulated with OHT. B, Western blotting for retrovirally transduced Cre
and MerCreMer proteins in NSC27 and NSMyc23 cells, the latter of which is clone #23 used for MYC/IgH translocation induction (Fig. 2B–D and Fig.
S2). Retrovirus-infected cells were maintained in the presence of puromycin more than two weeks before lysate preparation.
doi:10.1371/journal.pone.0009846.g007
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IGHA1 locus showed allelic polymorphism, and are tentatively

designated a and b alleles. The longer a allele appeared to lose an

upstream PvuII site in the allele b fragment. C, Summary of clone

numbers is indicated. Subclone 1 of clone #159 was designated

NSB1, which was subsequently targeted in all experiments except

induction of BCR/ABL1 translocation.

Found at: doi:10.1371/journal.pone.0009846.s003 (1.83 MB TIF)

Figure S2 Gene targeting strategy for MYC locus and screening

summary. A, Structure of the MYC loci before and after targeting

(upper panel) and expected band sizes on the Southern blot (table).

Rectangles indicate exons of the MYC gene. Exon numbers are

indicated in white. Regions of targeting homology are indicated by

parallel dotted lines with in-between numbers depicting bp.

Positions of DNA probes used for Southern blotting are indicated

by thick blue (upstream), black (internal) and red (downstream)

lines. Numbers with bp above bidirectional arrows represent the

distance between relevant restriction sites. Primer positions for

PCR screening are indicated by arrowheads. Unidirectional

arrows indicate direction toward the centromere or the telomere.

The table lists the expected sizes of bands on the Southern blot

obtained using the indicated enzymes and probes for wild-type

(WT) and targeted (knockout, KO) alleles. B, Southern blot using

the indicated enzymes and probes for eight clones and parental

Figure 8. Time course of fluorescence-positive cells in Cre-activated NSC and NSK cells. Seven days after NSC and NSK cells were
stimulated with OHT to activate MerCreMer, the culture was split into two: one with continued Cre activation (square) and the other without OHT to
terminate Cre activation (triangle). Frequencies of fluorescence-positive cells at the indicated time points were measured by flow cytometry and
plotted for NSC (inverted loxP sites with a 1.1-Mb interval) trans-targeted cells (A) and cis-targeted cells (B), and NSK (direct loxP sites with a 1.1-Mb
interval) trans-targeted cells (C) and cis-targeted cells (D).
doi:10.1371/journal.pone.0009846.g008
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NSB1 cells. Outermost lanes of each panel were loaded with the

size marker. Expected positions of WT and KO alleles are shown

by arrowheads. C, Summary of clone numbers is indicated.

Found at: doi:10.1371/journal.pone.0009846.s004 (2.78 MB TIF)

Figure S3 Gene targeting strategy for BCR locus and screening

summary. A, Structure of the BCR loci before and after targeting

(upper panel) and expected band sizes on the Southern blot (table).

Rectangles indicate exons of the BCR gene. Exon numbers are

indicated in white. Regions of targeting homology are indicated by

parallel dotted lines with in-between numbers depicting bp.

Positions of DNA probes used for Southern blotting are indicated

by thick blue (upstream), black (internal) and red (downstream)

lines. Numbers with bp above bidirectional arrows represent the

distance between relevant restriction sites. Primer positions for

PCR screening are indicated by arrowheads. Unidirectional

arrows indicate direction toward the centromere or the telomere.

The table lists the expected sizes of bands on the Southern blot

using the indicated enzymes and probes for wild-type (WT) and

targeted (knockout, KO) alleles. B, Southern blot using the

indicated enzymes and probes for 14 clones and parental NCR1

cells. Outermost lanes of each panel were loaded with the size

marker. Expected positions of WT and KO alleles are shown by

arrowheads. Clone #177 (NSE177) was subsequently targeted

with an ABL1-targeting vector. C, Summary of clone numbers is

indicated.

Found at: doi:10.1371/journal.pone.0009846.s005 (1.20 MB TIF)

Figure S4 Gene targeting strategy for ABL1 locus and screening

summary. A, Structure of the ABL1 loci before and after targeting

(upper panel) and expected band sizes on the Southern blot (table).

Rectangles indicate exons of the ABL1 gene. Exon numbers are

indicated in white. Regions of targeting homology are indicated by

parallel dotted lines with in-between numbers depicting bp.

Positions of DNA probes used for Southern blotting are indicated

by thick blue (upstream), black (internal) and red (downstream)

lines. Numbers with bp above bidirectional arrows represent the

distance between relevant restriction sites. Primer positions for

PCR screening are indicated by arrowheads. Unidirectional

arrows indicate direction toward the centromere or the telomere.

The table lists the expected sizes of bands on the Southern blot

using the indicated enzymes and probes for wild-type (WT) and

targeted (knockout, KO) alleles. B, Southern blot using the

indicated enzymes and probes for 10 clones and parental NSE177

cells. Outermost lanes of each panel were loaded with the size

marker. Expected positions of WT and KO alleles are shown by

arrowheads. C, Summary of clone numbers is indicated.

Found at: doi:10.1371/journal.pone.0009846.s006 (2.81 MB TIF)

Figure S5 Gene targeting strategy for 104 locus for deletion/

duplication and screening summary. A, EcoRI restriction map of a

region at 104 Mb on the coordinate of chromosome 14, 1.1 Mb

centromeric to the IGHA2 loci (upper panel), and expected band

sizes on the Southern blot (table). Regions of targeting homology

are indicated by parallel dotted lines with in-between numbers

depicting bp. Positions of DNA probes used for Southern blotting

are indicated by thick blue (upstream), black (internal) and red

(downstream) lines. Numbers with bp above bidirectional arrows

represent the distance between relevant restriction sites. Primer

positions for PCR screening are indicated by arrowheads.

Unidirectional arrows indicate direction toward the centromere

or the telomere. The table lists expected sizes of bands on the

Southern blot using the indicated enzymes and probes for wild-

type (WT) and targeted (knockout, KO) alleles. B, Southern blot

using the indicated enzymes and probes for 14 (NSK) clones and

parental NSB1 cells. Outermost lanes of each panel were loaded

with the size marker. Expected positions of WT and KO alleles are

shown by arrowheads. Two extra bands on the upstream probe

blot indicated by open arrowheads and asterisks appeared to be

derived from a highly homologous sequence on chromosome 13.

C, Summary of clone numbers is indicated.

Found at: doi:10.1371/journal.pone.0009846.s007 (1.94 MB TIF)

Figure S6 Gene targeting strategy for 104 locus for inversion

and screening summary. A, EcoRI restriction map of a region at

104 Mb on the coordinate of chromosome 14, 1.1 Mb centro-

meric to the IGHA2 loci (upper panel), and expected band sizes on

the Southern blot (table). Regions of targeting homology are

indicated by parallel dotted lines with in-between numbers

depicting bp. Positions of DNA probes used for Southern blotting

are indicated by thick blue (upstream) and red (downstream) lines.

Numbers with bp above bidirectional arrows represent the

distance between relevant restriction sites. Primer positions for

PCR screening are indicated by arrowheads. Unidirectional

arrows indicate direction toward the centromere or the telomere.

The table lists the expected sizes of bands on the Southern blotting

using the indicated enzymes and probes for wild-type (WT) and

targeted (knockout, KO) alleles. B, Southern blot using the

indicated enzymes and probes for 11 (NSC) clones and parental

NSB1 cells. Outermost lanes of each panel were loaded with the

size marker. Expected positions of WT and KO alleles are shown

by arrowheads. C, Summary of clone numbers is indicated.

Found at: doi:10.1371/journal.pone.0009846.s008 (1.86 MB TIF)

Figure S7 Gene targeting strategy for 99 locus for inversion and

screening summary. A, EcoRI restriction map of a region at

99 Mb on the coordinate of chromosome 14, 6.1 Mb centromeric

to the IGHA2 loci (upper panel), and expected band sizes on the

Southern blotting (table). Regions of targeting homology are

indicated by parallel dotted lines with in-between numbers

depicting bp. Positions of DNA probes used for Southern blotting

are indicated by thick blue (upstream), black (internal) and red

(downstream) lines. Numbers with bp above bidirectional arrows

represent the distance between relevant restriction sites. Primer

positions for PCR screening are indicated by arrowheads.

Unidirectional arrows indicate direction toward the centromere

or the telomere. The table lists the expected sizes of bands on the

Southern blot using the indicated enzymes and probes for wild-

type (WT) and targeted (knockout, KO) alleles. B, Southern blot

using the indicated enzymes and probes for 13 (NSF) clones and

parental NSB1 cells. Outermost lanes of each panel were loaded

with the size marker. Expected positions of WT and KO alleles are

shown by arrowheads. C, Summary of clone numbers is indicated.

Found at: doi:10.1371/journal.pone.0009846.s009 (1.95 MB TIF)

Figure S8 Gene targeting strategy for 95 locus for inversion and

screening summary. A, Restriction map of the DICER1 locus at

95 Mb on the coordinate of chromosome 14, 10.5 Mb centro-

meric to the IGHA2 loci (upper panel), and expected band sizes on

the Southern blot (table). Rectangles indicate exons of the DICER1

gene. Some of exon numbers are indicated in white. Regions of

targeting homology are indicated by parallel dotted lines with in-

between numbers depicting bp. Positions of DNA probes used for

Southern blotting are indicated by thick blue (upstream), black

(internal) and red (downstream) lines. Numbers with bp above

bidirectional arrows represent the distance between relevant

restriction sites. Primer positions for PCR screening are indicated

by arrowheads. Unidirectional arrows indicate direction toward

the centromere or the telomere. The table lists expected sizes of

bands on the Southern blot using the indicated enzymes and

probes for wild-type (WT) and targeted (knockout, KO) alleles. B,

Southern blot using the indicated enzymes and probes for 16
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(NSG) clones and parental NSB1 cells. Outermost lanes of each

panel were loaded with the size marker. Expected positions of WT

and KO alleles are shown by arrowheads. C, Summary of clone

numbers is indicated.

Found at: doi:10.1371/journal.pone.0009846.s010 (2.94 MB TIF)

Figure S9 Gene targeting strategy for 65 locus for inversion and

screening summary. A, Restriction map of a region at 65 Mb on

the coordinate of chromosome 14, 39.8 Mb centromeric to the

IGHA2 loci (upper panel), and expected band sizes on the

Southern blot (table). Regions of targeting homology are indicated

by parallel dotted lines with in-between numbers depicting bp.

Positions of DNA probes used for Southern blotting are indicated

by thick blue (upstream), black (internal) and red (downstream)

lines. Numbers with bp above bidirectional arrows represent the

distance between relevant restriction sites. Primer positions for

PCR screening are indicated by arrowheads. Unidirectional

arrows indicate direction toward the centromere or the telomere.

The table lists the expected sizes of bands on the Southern blot

using the indicated enzymes and probes for wild-type (WT) and

targeted (knockout, KO) alleles. B, Southern blot using the

indicated enzymes and probes for 13 (NSI) clones and parental

NSB1 cells. Outermost lanes of each panel were loaded with the

size marker. Expected positions of WT and KO alleles are shown

by arrowheads. C, Summary of clone numbers is indicated.

Found at: doi:10.1371/journal.pone.0009846.s011 (3.14 MB TIF)

Figure S10 Construction scheme part 1. For details, see

Methods S1.

Found at: doi:10.1371/journal.pone.0009846.s012 (0.61 MB TIF)

Figure S11 Construction scheme part 2. For details, see

Methods S1.

Found at: doi:10.1371/journal.pone.0009846.s013 (1.74 MB TIF)
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