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Abstract

Background: In Northern European descended populations, genetic susceptibility for multiple sclerosis (MS) is associated
with alleles of the human leukocyte antigen (HLA) Class II gene DRB1. Whether other major histocompatibility complex
(MHC) genes contribute to MS susceptibility is controversial.

Methodology/Principal Findings: A case control analysis was performed using 958 single nucleotide polymorphisms (SNPs)
spanning the MHC assayed in two independent datasets. The discovery dataset consisted of 1,018 cases and 1,795 controls
and the replication dataset was composed of 1,343 cases and 1,379 controls. The most significantly MS-associated SNP in
the discovery dataset was rs3135391, a Class II SNP known to tag the HLA-DRB1*15:01 allele, the primary MS susceptibility
allele in the MHC (O.R. = 3.04, p,1610278). To control for the effects of the HLA-DRB1*15:01 haplotype, case control analysis
was performed adjusting for this HLA-DRB1*15:01 tagging SNP. After correction for multiple comparisons (false discovery
rate = .05) 52 SNPs in the Class I, II and III regions were significantly associated with MS susceptibility in both datasets using
the Cochran Armitage trend test. The discovery and replication datasets were merged and subjects carrying the HLA-
DRB1*15:01 tagging SNP were excluded. Association tests showed that 48 of the 52 replicated SNPs retained significant
associations with MS susceptibility independently of the HLA-DRB1*15:01 as defined by the tagging SNP. 20 Class I SNPs
were associated with MS susceptibility with p-values #161028. The most significantly associated SNP was rs4959039, a SNP
in the downstream un-translated region of the non-classical HLA-G gene (Odds ratio 1.59, 95% CI 1.40, 1.81, p = 8.45610213)
and is in linkage disequilibrium with several nearby SNPs. Logistic regression modeling showed that this SNP’s contribution
to MS susceptibility was independent of the Class II and Class III SNPs identified in this screen.

Conclusions: A MHC Class I locus contributes to MS susceptibility independently of the HLA-DRB1*15:01 haplotype.
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Introduction

The autoimmune disease multiple sclerosis (MS) is one of the

leading causes of neurological disability in young adults.

Pathologically the disease is characterized by focal areas of

inflammation and demyelination (plaques) within the central

nervous system with ensuing axonal damage. Although the

etiology is not fully understood, MS is a complex genetic disorder

and whole genome studies indicate that the major histocompat-

ibility complex (MHC) on chromosome 6p21 represents the

strongest genome-wide MS susceptibility locus [1,2].

In both Northern European and African descended popula-

tions, MS susceptibility is associated with alleles of the HLA Class

II gene DRB1 [2–5] whereas the contribution of other genes

within the extended MHC has been controversial [6–8].

Extensive linkage disequilibrium (LD) operating in the region

[9–11], as well as marked polymorphism and high gene density,

have complicated efforts to fully resolve the roles of HLA and

non-HLA genes in MS susceptibility. Due to these inherent

challenges, a comprehensive approach is needed to refine the

contributions of the MHC to genetic risk for MS that includes a

large and well-characterized dataset, dense concentration of

markers, and appropriate methods to control for the extensive

LD across the region.

A panel of single nucleotide polymorphisms (SNPs) selected for

moderate LD across the 29 to 34 Mb region of the MHC was

employed to map both HLA and non-HLA disease susceptibility

signals [12]. Here we present the results of an analysis of two

independent case control MS datasets using 958 SNPs adjusting

for the effect of HLA-DRB1*15:01 whose extended haplotype

spans the MHC.

Results

Case control study
Following quality control, 958 markers were genotyped in both

datasets. In the discovery dataset the average number (standard

deviation) of missing genotypes for cases was .0040 (.0331) and for

controls was .0027 (.0325). In the replication dataset, the average

number (standard deviation) of missing genotypes for cases was

.0020 (.0060) for controls was .0022 (.0080). There was not a

statistically significant difference in missing genotypes between

cases and controls in either dataset.

Case control analysis was performed in the discovery dataset

composed of 1018 cases and 1795 controls (Table S1) using 958

MHC spanning SNPs (Table S2, see Figure S1 for study design).

Population stratification effects were controlled for by including

sex and location of subject recruitment (United States versus

United Kingdom) in the regression analyses. The Cochran

Armitage trend test was used to identify MS associated SNPs

and the false discovery rate (FDR = .05) was used to correct for

multiple comparisons [13]. The most highly associated SNP was

rs3135391 (odds ratio = 3.04, p,1610278), a Class II SNP known

to tag the primary MS susceptibility allele HLA-DRB1*15:01 with

very high sensitivity and specificity [11].

Using the trend test in the discovery dataset, a total of 501 SNPs

in Class I, II and III regions showed statistically significant

association with MS susceptibility; most of these associations were

likely due to LD within extended haplotypes, particularly the one

anchored by the HLA-DRB1*15:01 allele (Figure1A). To correct

for the effect of this haplotype, the trend test was performed

adjusting for rs3135391 using the 958 SNPs (FDR = .05) and the

number of significantly associated SNPs was reduced to 87

(Figure 1B).

A second independent dataset consisting of 1343 cases and 1379

controls was then used to replicate these associations (Table S1).

All 958 markers were assessed in the replication dataset with the

same association strategy adjusting for the HLA-DRB1*15:01

tagging SNP rs3135391 (FDR = .05). Only markers that were

significantly associated in both cohorts, and had the same direction

of association, were studied further. 52 such SNPs were

significantly associated with MS susceptibility in both datasets

(Table S3).

The merged HLA-DRB1*15:01(-) dataset
A merged cohort was next created by combining the discovery

and replication datasets. The MAF for each SNP is reported for

cases and controls in the merged dataset as well as the strength of

association using the trend test (Table S3). A SNP in the

downstream non-coding region of HLA-G (rs4959039) was the

most significantly associated marker (p,8.65610212) in the

merged cohort analysis, after adjusting for the HLA-DRB1*15:01

tagging SNP rs3135391 and potential stratification effects caused

by sex, location (US versus UK), and dataset (discovery versus

replication).

To further demonstrate that these 52 replicated SNP associa-

tions were independent from effects of the extended HLA-

DRB1*15:01 haplotype, all subjects carrying at least one copy of

this allele, as defined by the tagging SNP rs3135391, were dropped

from the merged dataset to create a ‘‘HLA-DRB1*15:01(-)’’

dataset. This excluded a total of 2088 subjects (1277 cases and

811 controls) leaving a HLA-DRB1*15:01(-) dataset that consisted

of 1075 cases and 2363 controls. Association tests were performed

in this merged HLA-DRB1*15:01(-) dataset and significant

associations were found for 48 of the 52 SNPs identified in the

case control screens including all previously identified Class I and

Class III SNPs (Table S4).

Using the genotype test for association in the HLA-

DRB1*15:01(-) dataset, 20 Class I SNPs had p-values #1028

(Table 1). The HLA-G linked rs4959039:A.G allele (rs4959039)

continued to have the strongest association in this HLA-

DRB1*15:01(-) dataset (odds ratio 1.59, 95% confidence intervals

1.40, 1.81, p,8.45610213). Importantly, rs4959039 and the other

Class I SNPs associated with MS susceptibility are poorly

correlated with the SNPs in the Class III and Class II regions as

illustrated by the LD map (Figure 2). For example, the average

(range) r2 for rs4959039 with the Class III SNPs was .081 (.014

to .149) and for the Class II SNPs was .024 (.002 to .085).

In contrast to the poor correlations with the Class III and Class

II SNPs, the LD map (Figure 2) shows that some of the associated

Class I SNPs are closely linked. SNPs in the Class I region with

p-values #161028 that are in moderate to strong LD with each

other (as defined by LD-R2$0.5) include: rs2523822, rs2517701

(HLA-80), rs4713270 (HCG2PG), rs4713274 (MICD), rs2523946

(MICD), rs3823355 (MICD), rs4959039 (in between HLA-G and

HLA-A), rs4713281 (HLA-J), rs9357092 (HCG9), and rs9393989

(RNF39). Using an algorithm to define haplotype blocks by LD-

R2$0.5 an apparently separate Class I SNP cluster (rs1362126,

rs2523393, rs2743951) emerges that includes a tagging SNP for

the HLA-B*44:02 allele (rs2523393), a recently identified MS

protective allele [12,14].

Tests for independent association using logistic
regression models

To confirm that the contribution to MS susceptibility of the

rs4959039 SNP was independent of any residual Class II

associations, logistic regression models were constructed. Because

many of the 48 SNPs associated with MS susceptibility in the HLA-

A MHC Class I MS Locus
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Figure 1. Association test results for 958 SNPs spanning the MHC in the discovery dataset are shown. The location of the SNPs is
depicted on the X-axis and the statistical significance of the association is depicted on the Y-axis. A: Discovery dataset (1018 cases and 1795 controls),
958 common SNP subset, FDR = .05, adjusted for sex and center (US versus UK), trend test. B: Discovery dataset, 958 common SNP subset, FDR = .05,
adjusted for the HLA-DRB1*15:01 tagging SNP rs3135391), sex and center (US versus UK), trend test.
doi:10.1371/journal.pone.0011296.g001
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DRB1*15:01(-) dataset are in moderate to strong LD with each

other a clustering algorithm was used to group the 48 SNPs into 20

clusters (LD-R2$.05) and identify SNPs that tagged each cluster

(Table S5) [15].

Logistic regression with backwards stepwise selection was then

used with the 20 tagged SNPs and covariates to control for

population stratification, i.e. sex and dataset (discovery versus

replication). Using the trend model, the rs4959039 SNP was

significantly associated with MS susceptibility (p = 3.70610210,

odds ratio = 1.54), despite controlling for the cumulative effects of

Class II SNPs. Further logistic regression modeling showed that

the rs4959039 MS association was also independent of the Class

III associated SNPs. When the Class II and Class III SNPs were

included in the logistic regression model, the rs4959039 SNP

retained a highly significant association with MS susceptibility

(p = 9.70610210, odds ratio = 1.52).

To estimate the contributions of the 20 Class I, II and III SNP

clusters to MS susceptibility a model was constructed entering all

20 SNPs, plus covariates to control for stratification effects.

Backwards stepwise selection was used to refine the model so that

only variables with p-values #.01 were retained in the model. In

the final model, SNP rs4959039 maintained the most statistically

significant contribution (p,4.80610210, odds ratio = 1.53). Three

Class II SNPs rs3132963 (p,1.5961025, odds ratio = 1.65),

rs2227139, (p,.00135, odds ratio = 1.20) and rs4711319

(p,.00125, odds ratio = 1.28) were retained in the model

suggesting residual independent Class II contributions. The area

under the receiver operator curve for this model was .634 whereas

the area under the receiver operator curve modeling the

rs4959039 SNP alone was .617 showing that the contribution of

these Class II SNPs is modest. Importantly, during the backward

stepwise selection process all other Class I SNP clusters were

dropped from the model suggesting that the Class I contribution to

MS susceptibility is driven by the SNP cluster tagged by

rs4959039.

Logistic regression was used to determine whether the

association of the rs4959039 SNP was dependent on the

rs2523393 SNP (tags HLA-B*44:02). Despite their close physical

proximity, the association of the rs4959039 SNP remained highly

significant (p = 6.1061026, odds ratio = 1.43) after adjusting for

the effect of the rs2523393 SNP whereas the association of the

rs2523393 SNP (that tags the MS protective allele HLA-B*44:02)

was attenuated (p = .015, odds ratio = .85).

Two-locus Class I haplotypes
To further understand the contributions of these loci to MS

susceptibility two-locus haplotypes were constructed for SNPs

rs2523393 (the HLA-B*44:02 tagging SNP) and rs4959039 (Table

S6). This analysis defined a MS risk haplotype as rs2523393:T.C

with rs45959039:A.G and the converse MS protective haplotype

as rs2523393:C.T with rs45959039:G.A. Due to LD this

analysis could not definitively prove that the influence of these loci

on MS risk was independent. However, the heterozygous

haplotype appears to be protective for MS risk (odds ratio = .71,

p,9.7361025) indicating that the protective haplotype is

dominant.

Table 1. SNPs associated with MS susceptibility with genome-wide statistical significance in the merged dataset excluding all
subjects who carry the HLA-DRB1*15:01 allele listed in order of highest to lowest statistical significance using the Cochran-Armitage
trend test for association.

Merged Cohort HLA-DRB1*15:01(-) Subjects

MS Associated Trend Odds 95% CI

SNP Position Class Gene Allele P Values Ratio Lower Upper

rs4959039 30065047 Class I HLA-G A 8.45610213 1.59 1.40 1.81

rs9393989 30148062 Class I RNF39 A 9.84610213 0.63 0.56 0.72

rs9357092 30092230 Class I HCG9 A 1.17610212 0.63 0.56 0.72

rs4713281 30086330 Class I HLA-J A 3.19610212 0.63 0.56 0.72

rs4713274 30045471 Class I MICD C 5.11610212 1.56 1.38 1.77

rs1736936 29902295 Class I HCG4P8 C 2.22610211 0.70 0.63 0.78

rs2523822 29936638 Class I A 2.99610211 1.51 1.34 1.70

rs4713270 30042675 Class I HCG2P6 A 4.26610211 0.66 0.58 0.75

rs3823355 30050061 Class I MICD C 7.74610211 1.50 1.33 1.70

rs2734971 29942427 Class I 3.8–1.4 C 2.07610210 1.42 1.27 1.58

rs2239530 30260093 Class I TRIM26 C 2.96610210 0.65 0.57 0.74

rs2523393 29813637 Class I FLJ35429 C 6.04610210 0.72 0.65 0.80

rs1541268 30211372 Class I TRIM40 C 1.4061029 0.66 0.58 0.76

rs2256266 29740296 Ext Cls I MOG A 2.6761029 0.66 0.58 0.76

rs2743951 29817212 Class I FLJ35429 C 3.5561029 1.37 1.24 1.52

rs1611710 29936894 Class I C 5.0661029 0.74 0.66 0.82

rs2517701 30033950 Class I HLA-80 A 5.6261029 1.41 1.26 1.58

rs2523946 30049921 Class I MICD C 8.6961029 1.36 1.23 1.51

rs2256543 30045811 Class I MICD A 9.1561029 1.36 1.22 1.51

rs1362126 29798997 Class I HLA-F A 6.9961029 0.75 0.67 0.83

doi:10.1371/journal.pone.0011296.t001
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Transmission disequilibrium test in HLA-DRB1*15:01(-) trio
families

As an additional test of association, the rs4959039 was assessed

using the transmission disequilibrium test in a subset of the

discovery dataset for whom parental genotyping was available. 347

trio families (affected individual plus both parents) that did not

carry the HLA-DRB1*15:01 allele were genotyped for the

rs4959039 SNP. The chromosome carrying the allele of

rs4959039:A.G was transmitted 112 times and not transmitted

81 times in heterozygous trio families. Despite the small size of this

Figure 2. LD map and associations for the 48 SNPs in the merged dataset that excludes all HLA-DRB1*15:01 subjects. Each SNP’s
position in the MHC is shown on the X-axis with the most telomeric SNPs on the left and the most centromeric SNPs on the right. The lower portion
of the figure depicts the strength of LD is in intensity from black to grey to white. Multiple SNPs in the Class I region associated with MS susceptibility
independently from HLA-DRB1*15:01 are in moderate to strong LD with each other. These SNPs are in much weaker LD with the MS associated SNPs
in the Class III and Class II regions. The degree of statistical significance is depicted in the upper portion of the figure where each SNP’s –log10

transformed p-value is depicted on the Y-axis. The most significant associations with MS susceptibility are in the Class I region and the Class III and
Class II signals, although statistically significant, are considerably weaker. An algorithm used to cluster SNPs based on LD-R2 [15] grouped together
SNPs in the Class III NOTCH4 gene (rs2071285, rs206015, rs384247) and Class II gene TSBP (rs9268148, rs3132958, rs3129904, rs3132963, rs2050191).
doi:10.1371/journal.pone.0011296.g002

A MHC Class I MS Locus
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family based dataset, a borderline level of statistical significance

was observed (p = .046) supporting the validity of this SNP as an

MS susceptibility locus using a family-based association test.

To determine whether the rs4959039:A.G allele adds to the

risk of MS in HLA-DRB1*15:01 subjects, bi-allelic haplotypes for

rs3135391:T.C (the SNP that tags HLA-DRB1*15:01) and

rs4959039:A.G individuals were constructed in the merged

dataset (Table 2). Each bi-allelic haplotype was treated as a

dichotomous variable in this analysis. The presence of the

rs4959039:A.G allele contributed to MS susceptibility both in

subjects who carry the HLA-DRB1*15:01 allele as well as those

that do not. In addition, the rs4959039:A.G allele appears to be

additive to the effect of HLA-DRB1*15:01 increasing the odds ratio

for MS from 5.89 to 6.46, although the confidence intervals for the

odds ratios of these haplotypes overlap.

HLA-G SNP associations from a meta-analysis genome-
wide association study

Depending on the reference sequence the SNP rs4959039 maps

to non-coding regions centromeric to HLA-G or HLA-A. The

chromosome 6 cox reference sequence places this SNP in the

intergenic non-coding region centromeric to HLA-G whereas the

chromosome 6 qb1 reference sequence maps the SNP centromeric

to HLA-A. It appears that this SNP tags a possible ancestral

duplication near both genes [16]. This observation raises the

question as to whether the MS susceptibility signal associated with

this SNP arises from alleles of HLA-G, HLA-A, or other nearby

genes. Indeed, as presented above, many of the Class I SNPs

identified in this study are in moderate to strong LD with each

other.

A panel of different SNPs in the HLA-G locus was assessed using

a dataset described in a recent genome wide association scan

(GWAS) meta-analysis [14]. Although the published GWAS meta-

analysis included subjects from the discovery dataset, these subjects

were excluded from the following analysis to create an

independent dataset consisting of 1606 MS cases and 5425

controls. In the GWAS meta-analysis 167 SNPs mapped to the

HLA-G locus. After adjusting for HLA-DRB1*15:01 using a tagging

SNP and sex 63 of the 167 SNPs were associated with MS

susceptibility with p-values #.01 (Table S7). The majority of the

SNPs mapped to the untranslated region centromeric to HLA-G,

some with p-Values #161026 (rs1611715, rs3115627, rs2734982,

rs2975033). 6 SNPs map within the HLA-G gene itself with

p-Values #161024. SNPs rs1611627, rs915668, rs 1736920 and

rs1632933 are intronic SNPs whereas SNP rs1063320 maps to the

39 end of the last exon of HLA-G and is transcribed but not

translated. These data are consistent with the proposition that a

MHC Class I MS susceptibility locus that is independent of the

extended HLA-DRB1*15:01 haplotype maps to the region of the

HLA-G gene.

Summary
This comprehensive SNP based analysis spanning the 29 to

34 kb region of the MHC shows that 52 SNPs in Class I, II and III

regions of the MHC were associated with MS susceptibility in two

independent datasets. Moreover, 20 of these SNPs were associated

with MS susceptibility with p-values ,161028 in a dataset that

does not carry the extended HLA-DRB1*15 haplotype. The most

significant association was with rs4959039, a class I SNP near

HLA-G. The association of this SNP with MS susceptibility

appears to be independent of the effects of the other identified

Class II and Class III SNPs.

Discussion

Using two case control datasets and a panel of SNPs specifically

selected to capture the genetic variation within the MHC region

we found that the MHC locus contributes to MS susceptibility, not

only through the well recognized effect of HLA-DRB1*15:01, but

also through independent contributions from a Class I locus. This

study proves that, after the HLA-DRB1*15:01 extended haplotype,

the Class I region is the most significant contributor to MS

susceptibility within the MHC. Importantly, these observations

contrast with an earlier publication of a Canadian cohort which

concluded that all Class I associations with MS susceptibility were

due to LD with HLA-DRB1*15:01 [5]. Although genetic

heterogeneity might account for these differences, it is more likely

that the structure of the current study, specifically the large dataset

and denser set of informative markers, made possible the detection

of independent effects of Class I and Class III genes.

Class I genes and MS susceptibility
The strongest HLA-DRB1*15:01 independent MS association

was with rs4959039, a SNP near the non-classical HLA-G gene.

Several other SNPs in neighboring pseudogenes HLA-80,

HCG2P6, MICD and HLA-J were also associated with MS

susceptibility and are in LD with the rs4959039 SNP. These

SNPs are not strongly linked to the SNP that tags the recently

identified Class I MS protective allele HLA-B*44:02 [12,14] and

are independent of the major MS susceptibility allele HLA-

DRB1*15:01. Because of the prohibitive cost we were unable to

genotype classical HLA alleles in these large datasets to control for

the possible contributions of HLA-DRB1*0301 [17] or other HLA-

DRB1 alleles. Nevertheless, logistic regression models that

controlled for the 10 most statistically significant Class II SNPs,

as well as the 8 Class III SNPs identified in this study,

Table 2. Paired marker analysis for HLA-DRB1*15:01 and rs4959039 haplotypes in the merged dataset.

HLA-DRB1 rs4959039 N O.R. 95 C.I. lower 95 C.I. upper p-Value

HLA-DRB1*X ‘‘G’’ 3226

HLA-DRB1*15:01 ‘‘G’’ 129 5.89 3.62 9.59 1.036610212

HLA-DRB1*15:01 ‘‘A’’ 1954 6.46 4.57 9.13 4.95610226

HLA-DRB1*X ‘‘A’’ 216 1.90 1.35 2.67 .0002

Two locus haplotypes were constructed and the odds ratio for association with MS susceptibility for each haplotype was tested in a logistic regression model treating
each haplotype as a categorical variable. The odds ratio for the HLA-DRB1*15:01 allele in the merged dataset was 3.50 (p,1.466102100). All results are adjusted for
stratification effects caused by sex, location (US versus UK) and dataset (discovery versus replication). DRB1*X refers to subjects who do not carry the HLA-DRB1*15:01
allele.
doi:10.1371/journal.pone.0011296.t002

A MHC Class I MS Locus
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demonstrated an independent allelic contribution of rs4959039 to

MS susceptibility.

Although this association study cannot exclude the possibility

that another closely linked MHC Class I gene, or genes, gives rise

to the MS susceptibility signal detected by the rs4959039 SNP it is

clearly of interest that this SNP is in the 39 un-translated region of

HLA-G. We conclusively demonstrated that this SNP’s association

with MS susceptibility is independent of HLA-DRB1*15:01 and

provided evidence that this SNP is not tightly linked to any of the

Class III or Class II associations identified in this screen.

However, the rs4959039 SNP also maps to a duplication that is

near HLA-A. HLA-A alleles were previously associated with MS

susceptibility: the HLA*03 allele is thought to increase MS risk in

HLA-DRB1*15:01 subjects [18,19] whereas the HLA-A*02 allele is

thought to reduce MS risk [20]. Several lines of evidence suggest

that the rs4959039 SNP’s association with MS might be through

HLA-G rather than HLA-A*03. First, the HLA-A*03 allele is part of

the extended HLA-DRB1*15:01 haplotype that was effectively

excluded in this study. Second, the HLA-A*03 allele that was

imputed in the discovery dataset is not tightly correlated with the

rs4959039 SNP (r2 = .002). Third, SNPs in HLA-A were not

identified as disease-associated in either the discovery or the

replication datasets. Lastly, using a different panel of HLA-G

imputed SNPs from a genome wide meta-analysis in an

independent dataset, multiple SNPs in the HLA-G locus were

significantly associated with MS susceptibility after adjusting for

HLA-DRB1*15:01. Thus we interpret our results as suggesting that

the rs4959039 SNP association with MS risk is not through HLA-

A*03. However, because typing of class I genes was unavailable for

nearly the entire dataset we were unable to further analyze the

relationship between the rs4959039 SNP and HLA-A*02, or other

HLA-A alleles. Given that SNP rs4959039 tags a large haplotype

block that includes HLA-A, mapping the class I susceptibility gene,

or genes, will not only require classical typing of HLA-A but also

could require an even larger dataset that excludes HLA-

DRB1*15:01 carriers. For this reason, functional studies of HLA-

A and HLA-G associated variants in MS patients will likely be

useful to understand how alleles of these genes influence MS risk.

HLA-G is a biologically interesting candidate gene because of its

prominent function in immune tolerance. HLA-G is a non-

classical, HLA Class I molecule characterized by relatively limited

polymorphism and alternate splice sites that result in several

membrane bound and soluble isoforms [21]. The HLA-G gene

includes 42 alleles at the DNA level, 14 alleles at the protein level,

and 2 null alleles based on sequence variation in exons 2–4 (the _1

to _3 domains) [22]. In theory, polymorphisms affecting the HLA-

G primary sequence, differences in alternate splicing and

expression pattern, could promote or reduce immune tolerance

and in this manner influence MS susceptibility. Prior genetic

studies of HLA-G in MS susceptibility found conflicting results.

One study found no association of three HLA-G alleles and MS

susceptibility [23] whereas another found an association of an

HLA-G promoter polymorphism with MS susceptibility by the

transmission distortion test [8]. Both studies were limited by

relatively small sample sizes and few genetic markers.

In contrast to the ubiquitous expression of HLA-A, HLA-B and

HLA-C, HLA-G is found primarily in extravillous trophoblasts:

fetal cells that invade the maternal decidua during placenta

formation [24,25]. These fetal trophoblasts are thought to play a

role in inducing maternal tolerance for the fetus. HLA-G probably

does not function in antigen presentation to HLA class restricted T

cells [26]. Rather, HLA-G binds to and stimulates signaling via the

leukocyte immunoglobulin-like receptors (LILRB1/ILT2/CD85j)

as well as LILRB2/ILT4/CD85d) and KIR2DL4 (CD158d) [25].

These cell surface receptors are expressed on antigen presenting

cells such as dendritic cells, macrophages and B cells and are also

found on natural killer (NK) cells, T cells, eosinophils, and

osteoclasts. Although not well understood, LILRB signaling

inhibits co-stimulation of T cell responses during antigen

presentation [27]. When expressed on target cells HLA-G inhibits

NK cell killing of the target cell by stimulation of inhibitory

pathways [28]. These observations suggest that HLA-G has an

important role in inducing maternal-fetal tolerance. Additional

support for role of HLA-G in immune tolerance comes from

murine allogenic tissue graft experiments in which HLA-G

expression prolongs graft survival [29].

Whether HLA-G is involved in induction of immune tolerance

in other body tissues, or disease states, is somewhat controversial.

Some authors challenge the idea that HLA-G is expressed

anywhere other than the trophobast [30]. However, a growing

body of evidence suggests that HLA-G has an important role in

preventing immunological targeting of malignant cells [31].

Furthermore, HLA-G may have important roles in inflammatory

skin conditions [32] and myopathies [33].

A role for HLA-G in multiple sclerosis pathogenesis was first

proposed based on the observation that sHLA-G levels were

elevated in MS patients relative to healthy controls [34].

Furthermore, sHLA-G is down-regulated in patients who have

actively inflamed MS plaques as evidenced by gadolinium-DPTA

enhancement on brain MRI imaging [35]. HLA-G is known to be

strongly expressed in brain specimens from MS patients where it is

present in acute inflammatory demyelinating plaques, chronic

active plaques, peri-plaque areas and normal appearing white

matter [36]. In MS, HLA-G is expressed primarily on microglia,

macrophages, and endothelial cells. In addition to HLA-G, one of

its receptors, LILRB1/ILT2, is also found in MS brain tissue

suggesting that HLA-G expression in MS brain is functionally

relevant, possibly through an inhibitory feedback pathway directed

at down regulating pro-inflammatory T cells. Recently, HLA-Gpos

Treg cells were identified in MS cerebrospinal fluid, as well as in

inflammatory brain tissue, and these cells are thought to function

as suppressor cells, counterbalancing the tissue destructive effects

of autoimmune inflammation [37]. Taken together, these

observations suggest that HLA-G may have a fundamental role

in limiting tissue injury in MS by regulating auto-reactive immune

cells within the central nervous system.

Thus, it is possible that a HLA-G associated haplotype could

contribute to MS risk by influencing signaling via LILRB1/ILT2 or

the KIR2DL4 natural killer (NK) receptors [38]. Polymorphisms in

HLA-G or KIR2DL4 could influence CD56bright NK cell function

whose corresponding immunoregulatory pathway involves the

already established MS susceptibility genes, the interleukin 2

receptor (IL2RA) and interleukin 7 receptor (IL7R) [2].

Other Class I loci
In addition to the rs4959039 (near HLA-G) association, several

other Class I SNPs associated with MS susceptibility were

identified, replicated and shown to have HLA-DRB1*15:01

independent effects. One group of SNPs tags the HLA-B*44:02

allele. Tagging SNPs for the closely linked HLA-C*0501 allele [7]

did not survive the stringent criteria for association used in this

study. These SNPs narrowly missed the cutoff for inclusion as

candidates in the discovery dataset screen but were associated with

MS susceptibility in the replication dataset screen. When these

SNPs were included in the merged HLA-DRB1*15:01(-) dataset,

tagging SNPs for HLA-C*05:01 [7] were significantly associated

with MS susceptibility (data not shown). Logistic regression

modeling suggested that the primary signal in the Class I region
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arises from the locus identified by SNP rs4595039 although it

remains possible that there could be independent contributions

from other Class I loci.

Both HLA-C*05:01 and HLA-B*44:02 are reportedly protective

alleles for MS susceptibility [7,12,14]. These neighboring alleles

are in tight LD making discrimination between the effects of each

allele challenging. In addition, different alleles of HLA-A may

influence MS susceptibility in opposite directions. HLA-A*0301

may in crease MS risk; however, this allele is part of the expanded

haplotype shared by HLA-DRB1*15:01 and its proposed influence

on MS susceptibility may be confounded by linkage to HLA-

DRB1*15:01 [6]. In contrast, HLA-A*02:01 appears to have a

protective effect [20]. This allele is also linked to the SNP

identified in the present study, rs4595039. Functional studies, or

fine mapping studies in populations with different patterns of LD,

will be needed to determine whether the protective effect proposed

for HLA-A*02:01 is mediated by linkage to an allele of HLA-G or

other neighboring genes.

In summary, we found MHC SNP associations with MS

susceptibility, independent from the primary influence of HLA-

DRB1*15:01, in the Class I, Class II and Class III regions. The

most significant contribution arises from the Class I region in the

vicinity of the HLA-G gene. HLA-G, or another closely linked gene

such as HLA-A, contributes to MS risk independently from the

recently identified Class I allele HLA-B*44:02, as well as other

Class II and Class III SNPs identified in the present study. Thus a

Class I locus near HLA-G/HLA-A is a replicated locus within the

MHC that contributes to MS risk independently of HLA-

DRB1*15:01. The possible HLA-G association is particularly

interesting because HLA-G is thought to function in induction

of immune tolerance and is highly expressed in MS brain tissue.

Further studies of functional polymorphisms in HLA-G, classical

HLA typing, as well as studies in populations with different

patterns of LD within the MHC, will help further define this

locus’s contribution to MS risk.

Methods

All study subjects signed written informed consent forms

approved by the following local institutional review boards in

accordance with the Declaration of Helsinki: Committee on

Human Research (UCSF), CERDNT (MHI), Human Subjects

Research Office (University of Miami), Partners Healthcare IB/

Human Research Office, North Thames MREC, The North

Shore - LIJ Health System IRB, Vanderbilt HRPP and Berkshire

Research Ethics Committee.

The MS discovery dataset consists of 1018 cases (520 from the

US and 498 from the UK) and 1795 controls (1049 from the US

and 746 from the UK). All MS subjects met International Panel

criteria for multiple sclerosis [39]. The control population was

composed of samples from the United Kingdom 1958 birth cohort

as well as a cohort of healthy subjects form The New York Cancer

Project. The family based trio analysis was conducted on a subset

of 347 trio families (MS patient and both parents) from the

discovery cohort who did not carry the HLA-DRB1*15:01 tagging

SNP.

The genetic marker analysis used for the discovery cohort was a

custom Illumina array that composed of 1337 SNPS to tag

common SNP variation across the 3.44 Mb of the MHC. These

SNPs were selected using the Tagger algorithm for having

relatively low LD from approximately 7000 SNPs spanning the

MHC [11,40]. Overall this set of SNPs captured variation of

common ($5%) HLA markers, less-common (,5%) HLA

markers, common non-HLA markers, and less-common non-

HLA markers, with an average maximum r2 of 0.80, 0.64, 0.90,

and 0.62, respectively. [14] The genetic marker analysis used for

the replication cohort was a custom Illumina array that included

the 1337 SNPS used to tag common SNP variation across the

3.44 MB of the MHC, 29 to 44 Mb as well as other SNPs in genes

of interest that are neither described nor analyzed in the present

manuscript. The HLA-DRB1*15:01 (negative) dataset had .98

power (a= .05) to detect the association of the rs4959039 SNP

with the class I MS susceptibility locus, assuming that this SNP was

tightly linked to the locus with D’ = .8 and using the odds ratio and

minor allele frequencies associated with this SNP in this dataset.

A multi-step quality control (QC) strategy was employed for the

samples and SNPs using the following strategy for both discovery

and replication cohorts.

1. Samples whose call rate was ,75% were removed

2. SNPs whose call rate was ,60% in each group were removed

3. Samples in which there was evidence of contamination as

estimated by p$0.1 using IBD/IBS statistics were removed

4. SNPs with minor allele frequency (MAF) ,1% were removed

5. SNPs where HWE ,0.01 in the datasets (cases and controls)

were flagged

6. Only SNPs that passed QC in both the discovery and

replication datasets were included

Following the QC strategy, 16 MS cases were removed, yielding

a total of 1018 cases available for the discovery case control study.

The replication dataset consisted of an additional 1343 cases and

1379 controls from the US and UK. Of the 1337 Illumina SNPs,

958 passed QC in both datasets.

Marker Trait Association
Associations with MS susceptibility with SNPs and imputed

alleles were assessed by the Cochran Armitage trend tests using the

false discovery rate method to control for multiple comparisons

[13]. SAS, JMPH genomics (Cary, NC) and STATA 9 (North

Fork, TX) were used to perform statistical analyses. Population

stratification caused by differences in markers between the sexes,

the country of the subject’s origin (United States versus United

Kingdom) and dataset (discovery versus replication) was controlled

for by inclusion of these covariates as fixed effects in the regression

analyses.

Following identification of SNPs that were significantly

associated with MS susceptibility in both datasets the discovery

and replication datasets were merged and subjects carrying the

rs3135391:T.C SNP that tags the HLA-DRB1*15:01 allele were

excluded. MS associated SNPs where (Hardy Weinberg Equilib-

rium) HWE ,0.01 in the control population of the merged dataset

were dropped. 52 SNPs were significantly associated with MS

susceptibility in both datasets.

In the discovery dataset previous 2- or 4-digit typing of HLA-

DRB1 was available for 27.6% of the dataset (N = 777). [14] In this

subset, the tagging SNP rs3135391 was 100% sensitive and 100%

specific for correctly calling HLA-DRB1*15:01. HLA typing was

performed by different methodologies, including PCR-based

sequence-specific oligonucleotide probe reverse-line blot assay,

sequence-specific oligonucleotide (LABType) typing, and exons 2/

3 sequence based typing.

Supporting Information

Figure S1 Study design summary. The 958 SNPs spanning the

MHC used in the initial screens are listed in Supplemental Table

2. The 48 SNPs associated with MS in both datasets are listed in
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Supplemental Table 3 and the 48 SNPs with p-values #161028 in

the merged HLA-DRB1*15:01(-) dataset are listed in Table 1.

Found at: doi:10.1371/journal.pone.0011296.s001 (0.10 MB TIF)

Table S1 Table S1. Case control datasets: The proportion of

women to men in the control populations was well matched at the

two study centers. However, the proportion of women to men in

the MS subjects was significantly increased in the UK dataset.

Found at: doi:10.1371/journal.pone.0011296.s002 (0.07 MB

DOC)

Table S2 Table S2: 958 SNPs genotyped in both discovery and

replication datasets. Ext = extended.

Found at: doi:10.1371/journal.pone.0011296.s003 (0.17 MB

DOC)

Table S3 Table S3: 52 SNPs significantly associated with MS

susceptibility in the discovery and replication datasets using

Cochran Armitage trend test, FDR = .05, adjusted for sex, center

(US versus UK) and HLA-DRB1*15:01. The SNPs are listed in

order of chromosomal position from telomere to centromere. The

p-values for the merged dataset are unadjusted. rs2523393 is a

tagging SNP for HLA-B*44:02 [12,14].

Found at: doi:10.1371/journal.pone.0011296.s004 (0.17 MB

DOC)

Table S4 Table S4: 48 SNPs significantly associated with MS

susceptibility in the merged HLA-DRB1*15:01 (-) dataset, using the

trend test and adjusting for sex, center (US versus UK) and dataset

(discovery versus replication). SNPs are listed in order of most to

least statistical significance. Four class II SNPs identified in the

discovery and replication datasets were no longer significantly

associated with MS susceptibility in the HLA-DRB1*15:01 (-)

dataset: rs3129961, rs3135352, rs3135391, and rs3135388.

Found at: doi:10.1371/journal.pone.0011296.s005 (0.14 MB

DOC)

Table S5 Table S5: 48 SNPs that are associated with MS

susceptibility in the HLA-DRB1*15:01(-) dataset are grouped

together using an algorithm to define SNP clusters based on

LD-R2$.05 (moderate to strong LD) [15]. The 48 SNPs can be

grouped into 20 SNP clusters and tagging SNPs for each cluster

are designated by an asterisk. The SNPs are listed in order of

cluster size with the largest cluster including 10 SNPs and the

smallest SNP clusters include only single SNPs.

Found at: doi:10.1371/journal.pone.0011296.s006 (0.09 MB

DOC)

Table S6 Table S6: Two locus haplotypes for the SNPs

rs2523393 (tags HLA-B*44:02) and SNP rs459039 (near HLA-G).

A MS risk haplotype is rs2523393:T.C with rs4959039:A.G and

a MS protective haplotype is rs2523393:C.T with

rs4959039:G.A. The heterozygous haplotype is appears to be

protective suggesting a dominant effect of the protective

haplotype. The p-values and odds ratios are adjusted for the

covariates sex (men versus women) and cohort (discovery versus

replication) to control for stratification.

Found at: doi:10.1371/journal.pone.0011296.s007 (0.05 MB

DOC)

Table S7 Table S7: SNPs significantly associated with MS

susceptibility in the HLA-G locus typed in an independent dataset

used for a genome wide meta-analysis.

Found at: doi:10.1371/journal.pone.0011296.s008 (0.12 MB

DOC)
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